Global Longitudinal Strain Is Associated with Mortality in Patients with Multiple Myeloma
Abstract
:1. Introduction
2. Methods
2.1. Patient Cohort
2.2. D Echocardiogram (Echo) Analysis
2.3. Electrocardiogram (ECG) Analysis
2.4. Mortality Ascertainment
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Echocardiographic and ECG Characteristics
3.3. GLS and Overall Survival
3.4. Cases of Amyloidosis
3.5. Assessment of Confounding by LVEF
3.6. Assessment of Confounding by Treatment
3.7. Assessment of Confounding by Selection Bias
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plummer, C.; Driessen, C.; Szabo, Z.; Mateos, M.V. Management of cardiovascular risk in patients with multiple myeloma. Blood. Cancer J. 2019, 9, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madan, S.; Dispenzieri, A.; Lacy, M.Q.; Buadi, F.; Hayman, S.R.; Zeldenrust, S.R.; Rajkumar, S.V.; Gertz, M.A.; Kumar, S.K. Clinical features and treatment response of light chain (AL) amyloidosis diagnosed in patients with previous diagnosis of multiple myeloma. Mayo. Clin. Proc. 2010, 85, 232–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahlis, N.J.; Lazarus, H.M. Multiple myeloma-associated AL amyloidosis: Is a distinctive therapeutic approach warranted? Bone. Marrow. Transplant. 2006, 38, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Stokke, T.M.; Hasselberg, N.E.; Smedsrud, M.K.; Sarvari, S.I.; Haugaa, K.H.; Smiseth, O.A.; Edvardsen, T.; Remme, E.W. Geometry as a Confounder When Assessing Ventricular Systolic Function: Comparison Between Ejection Fraction and Strain. J. Am. Coll. Cardiol. 2017, 70, 942–954. [Google Scholar] [CrossRef]
- Potter, E.; Marwick, T.H. Assessment of Left Ventricular Function by Echocardiography: The Case for Routinely Adding Global Longitudinal Strain to Ejection Fraction. JACC. Cardiovasc. Imaging 2018, 11, 260–274. [Google Scholar] [CrossRef]
- Bertini, M.; Ng, A.C.; Antoni, M.L.; Nucifora, G.; Ewe, S.H.; Auger, D.; Marsan, N.A.; Schalij, M.J.; Bax, J.J.; Delgado, V. Global longitudinal strain predicts long-term survival in patients with chronic ischemic cardiomyopathy. Circ. Cardiovasc. Imaging 2012, 5, 383–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, G.Y.; Marwick, T.H.; Kim, H.S.; Kim, M.K.; Hong, K.S.; Oh, D.J. Global 2-dimensional strain as a new prognosticator in patients with heart failure. J. Am. Coll. Cardiol. 2009, 54, 618–624. [Google Scholar] [CrossRef] [Green Version]
- Park, J.J.; Park, J.B.; Park, J.H.; Cho, G.Y. Global Longitudinal Strain to Predict Mortality in Patients With Acute Heart Failure. J. Am. Coll. Cardiol. 2018, 71, 1947–1957. [Google Scholar] [CrossRef]
- Buss, S.J.; Emami, M.; Mereles, D.; Korosoglou, G.; Kristen, A.V.; Voss, A.; Schellberg, D.; Zugck, C.; Galuschky, C.; Giannitsis, E.; et al. Longitudinal left ventricular function for prediction of survival in systemic light-chain amyloidosis: Incremental value compared with clinical and biochemical markers. J. Am. Coll. Cardiol. 2012, 60, 1067–1076. [Google Scholar] [CrossRef] [Green Version]
- Koyama, J.; Falk, R.H. Prognostic significance of strain Doppler imaging in light-chain amyloidosis. JACC Cardiovasc. Imaging 2010, 3, 333–342. [Google Scholar] [CrossRef] [Green Version]
- Lee Chuy, K.; Drill, E.; Yang, J.C.; Landau, H.; Hassoun, H.; Nahhas, O.; Chen, C.L.; Yu, A.F.; Steingart, R.M.; Liu, J.E. Incremental Value of Global Longitudinal Strain for Predicting Survival in Patients With Advanced AL Amyloidosis. JACC CardioOncol 2020, 2, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Cohen, O.C.; Ismael, A.; Pawarova, B.; Manwani, R.; Ravichandran, S.; Law, S.; Foard, D.; Petrie, A.; Ward, S.; Douglas, B.; et al. Longitudinal strain is an independent predictor of survival and response to therapy in patients with systemic AL amyloidosis. Eur. Heart J. 2022, 43, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Karagodin, I.; Carvalho Singulane, C.; Woodward, G.M.; Xie, M.; Tucay, E.S.; Tude Rodrigues, A.C.; Vasquez-Ortiz, Z.Y.; Alizadehasl, A.; Monaghan, M.J.; Ordonez Salazar, B.A.; et al. Echocardiographic Correlates of In-Hospital Death in Patients with Acute COVID-19 Infection: The World Alliance Societies of Echocardiography (WASE-COVID) Study. J. Am. Soc. Echocardiogr. 2021, 34, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Duffy, G.; Cheng, P.P.; Yuan, N.; He, B.; Kwan, A.C.; Shun-Shin, M.J.; Alexander, K.M.; Ebinger, J.; Lungren, M.P.; Rader, F.; et al. High-Throughput Precision Phenotyping of Left Ventricular Hypertrophy With Cardiovascular Deep Learning. JAMA. Cardiol. 2022, 7, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, H.; Wright, L.; Nolan, M.; Potter, E.L.; Yang, H.; Marwick, T.H. Feasibility, Reproducibility, and Clinical Implications of the Novel Fully Automated Assessment for Global Longitudinal Strain. J. Am. Soc. Echocardiogr. 2021, 34, 136–145.e132. [Google Scholar] [CrossRef] [PubMed]
- Asch, F.M.; Descamps, T.; Sarwar, R.; Karagodin, I.; Singulane, C.C.; Xie, M.; Tucay, E.S.; Tude Rodrigues, A.C.; Vasquez-Ortiz, Z.Y.; Monaghan, M.J.; et al. Human vs. Artificial Intelligence-Based Echocardiography Analysis as Predictor of Outcomes: An analysis from the World Alliance Societies of Echocardiography COVID study. J. Am. Soc. Echocardiogr. 2022, 35, 1226–1237.e7. [Google Scholar] [CrossRef]
- Greipp, P.R.; San Miguel, J.; Durie, B.G.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Avet-Loiseau, H.; Kyle, R.A.; et al. International staging system for multiple myeloma. J. Clin. Oncol. 2005, 23, 3412–3420. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report From International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet. Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Kaur, G.; Mejia Saldarriaga, M.; Shah, N.; Catamero, D.D.; Yue, L.; Ashai, N.; Goradia, N.; Heisler, J.; Xiao, Z.; Ghalib, N.; et al. Multiple Myeloma in Hispanics: Incidence, Characteristics, Survival, Results of Discovery, and Validation Using Real-World and Connect MM Registry Data. Clin. Lymphoma. Myeloma. Leuk. 2021, 21, e384–e397. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 28, 1–39.e14. [Google Scholar] [CrossRef] [Green Version]
- Pagourelias, E.D.; Mirea, O.; Duchenne, J.; Van Cleemput, J.; Delforge, M.; Bogaert, J.; Kuznetsova, T.; Voigt, J.U. Echo Parameters for Differential Diagnosis in Cardiac Amyloidosis: A Head-to-Head Comparison of Deformation and Nondeformation Parameters. Circ. Cardiovasc. Imaging 2017, 10, e005588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Surawicz, B.; Childers, R.; Deal, B.J.; Gettes, L.S.; Bailey, J.J.; Gorgels, A.; Hancock, E.W.; Josephson, M.; Kligfield, P.; Kors, J.A.; et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: Part III: Intraventricular conduction disturbances: A scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society. Endorsed by the International Society for Computerized Electrocardiology. J. Am. Coll. Cardiol. 2009, 53, 976–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Lee, G.Y.; Choi, J.O.; Kim, K.; Kim, S.J.; Jeon, E.S. Associations of Electrocardiographic Parameters with Left Ventricular Longitudinal Strain and Prognosis in Cardiac Light Chain Amyloidosis. Sci. Rep. 2019, 9, 7746. [Google Scholar] [CrossRef] [Green Version]
- Siegel, R.J.; Roberts, W.C. Electrocardiographic observations in severe aortic valve stenosis: Correlative necropsy study to clinical, hemodynamic,, and ECG variables demonstrating relation of 12-lead QRS amplitude to peak systolic transaortic pressure gradient. Am. Heart J. 1982, 103, 210–221. [Google Scholar] [CrossRef] [PubMed]
- Heitner, S.; Maziarz, R.T.; Stentz, A.; Dawson, K.; Scott, E.C. Cardiac Assessment of Global Longitudinal Strain May Predict Early Mortality in Myeloma Patients Undergoing Melphalan ASCT. Biol. Blood Marrow Transplant. 2016, 22, S39–S40. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Liu, M.; Wang, F.; Xiong, Y.; Tang, Z.; Li, Q.; Lu, Q.; Liang, S.; Niu, T.; et al. Myocardial Injury in Multiple Myeloma Patients With Preserved Left Ventricular Ejection Fraction: Noninvasive Left Ventricular Pressure-Strain Myocardial Work. Front. Cardiovasc. Med. 2022, 8. [Google Scholar] [CrossRef]
- Grogan, M.; Dispenzieri, A.; Gertz, M.A. Light-chain cardiac amyloidosis: Strategies to promote early diagnosis and cardiac response. Heart 2017, 103, 1065–1072. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, S.; Vallurupalli, S.; Ambach, S.; Magier, A.; Watts, E.; Truong, V.; Hakeem, A.; Mazur, W. Myocardial strain pattern in patients with cardiac amyloidosis secondary to multiple myeloma: A cardiac MRI feature tracking study. Int. J. Cardiovasc. Imaging 2018, 34, 27–33. [Google Scholar] [CrossRef]
- Hansen, M.W.; Merchant, N. MRI of hypertrophic cardiomyopathy: Part 2, Differential diagnosis, risk stratification, and posttreatment MRI appearances. AJR Am. J. Roentgenol 2007, 189, 1344–1352. [Google Scholar] [CrossRef]
- Dorbala, S.; Cuddy, S.; Falk, R.H. How to Image Cardiac Amyloidosis: A Practical Approach. JACC Cardiovasc. Imaging 2020, 13, 1368–1383. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.; Pica, S.; Reant, P.; Abdel-Gadir, A.; Treibel, T.A.; Banypersad, S.M.; Maestrini, V.; Barcella, W.; Rosmini, S.; Bulluck, H.; et al. Prognostic Value of Late Gadolinium Enhancement Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Circulation 2015, 132, 1570–1579. [Google Scholar] [CrossRef] [PubMed]
N | GLS ≥ 18% | GLS < 18% | p Value | |
---|---|---|---|---|
Total | 242 | 190 (78.51) | 52 (21.49) | |
Age (SD, years) | 242 | 63.48 (10.59) | 61.19 (12.10) | 0.18 |
Female (%) | 242 | 98 (51.58) | 12 (23.08) | <0.001 |
Race (%) | 242 | 0.42 | ||
Black | 81 (42.63) | 22 (42.31) | ||
Hispanic | 65 (34.21) | 14 (26.92) | ||
White | 13 (6.84) | 7 (13.46) | ||
Other/UK | 31 (16.32) | 9 (17.31) | ||
Hypertension (%) | 242 | 84 (44.21) | 21 (40.38) | 0.62 |
Diabetes (%) | 242 | 20 (10.53) | 5 (9.62) | 0.85 |
Median CCI (IQR) | 242 | 2.5 (2) | 3 (2.5) | 0.92 |
Myeloma Type | 242 | 0.35 | ||
Conventional | 154 (81.05) | 44 (84.62) | ||
Light Chain | 33 (17.37) | 6 (11.54) | ||
Non-Secretory | 2 (1.05) | 2 (3.85) | ||
UK | 1 (0.53) | 0 (0.0) | ||
Heavy Chain Involved (%) | 242 | 0.40 | ||
IgG | 105 (55.26) | 34 (65.38) | ||
IgA | 47 (24.74) | 9 (17.31) | ||
Other/No heavy chain involvement | 38 (20.00) | 9 (17.31) | ||
Light Chain Involved (%) | 242 | 0.65 | ||
Kappa | 127 (66.84) | 36 (69.23) | ||
Lamda | 56 (29.47) | 13 (25.00) | ||
Other | 7 (3.68) | 3 (5.77) | ||
R-ISS Stage | 242 | 0.69 | ||
Stage I | 10 (5.26) | 5 (9.62) | ||
Stage II | 68 (35.79) | 19 (36.54) | ||
Stage III | 22 (11.58) | 5 (9.62) | ||
Missing | 90 (47.37) | 23 (44.23) | ||
ISS Stage | 242 | 0.84 | ||
Stage I | 47 (24.74) | 16 (30.77) | ||
Stage II | 48 (25.26) | 13 (25.00) | ||
Stage III | 58 (30.53) | 14 (26.92) | ||
Missing | 37 (19.47) | 9 (17.31) | ||
Beta 2 Microglobulin (IQR, mg/L) | 144 | 3.2 (3.6) | 3.4 (2.4) | 0.78 |
LDH (IQR, U/L) | 150 | 195 (95) | 203 (98) | 0.62 |
Albumin (SD, g/dL) | 220 | 3.7 (0.8) | 3.7 (0.8) | 0.82 |
Hgb (SD, g/dL) | 220 | 10.2 (2.3) | 10.6 (2.5) | 0.29 |
Cr (IQR, mg/dL) | 218 | 1 (1) | 1 (1.5) | 0.042 |
Troponin (IQR, ng/mL) | 82 | 0.01 (0) | 0.01 (0.02) | 0.013 |
N | GLS ≥ 18% | GLS < 18% | p Value | |
---|---|---|---|---|
Total | 242 | 190 (78.51) | 52 (21.49) | |
Time of Echo from MM diagnosis (IQR, days) | 242 | 156 (195) | 123 (193) | 0.77 |
Indication for Echo: | 0.040 | |||
Symptoms | 110 | 77 (40.53) | 33 (63.46) | |
Screen prior to MM treatment | 25 | 21 (11.05) | 4 (7.69) | |
During MM Treatment | 36 | 31 (16.32) | 5 (9.62) | |
Other | 71 | 61 (32.11) | 10 (19.23) | |
LA Dimension (SD, cm) | 216 | 3.65 (0.55) | 3.74 (0.72) | 0.34 |
Diastolic LVID (SD, cm) | 234 | 4.67 (0.62) | 4.96 (0.71) | 0.005 |
Systolic LVID (SD, cm) | 214 | 3.03 (0.61) | 3.52 (0.70) | <0.001 |
IVSd (IQR, cm) | 234 | 0.94 (0.21) | 1 (0.33) | 0.016 |
IVSd ≥ 1.2 cm (%) | 234 | 21 (11.54) | 15 (28.85) | 0.002 |
LVPWd (IQR, cm) | 234 | 0.90 (0.2) | 0.96 (0.19) | 0.006 |
LV Mass Index (IQR, g/m2) | 178 | 80.60 (24.48) | 96.17 (29.90) | <0.001 |
EFSR ≥ 4.1 (%) | 242 | 0 (0) | 9 (17.31) | <0.001 |
LA Volume Index (SD, mL/m2) | 57 | 29.21 (9.11) | 30.78 (10.59) | 0.62 |
E/E’ (IQR) | 192 | 8.2 (3.7) | 9.8 (6.5) | 0.064 |
E/E’ >9.6 (%) | 192 | 48 (30.77) | 18 (50.00) | 0.029 |
Stroke Volume (IQR, mL) | 171 | 65.1 (22.3) | 54.3 (18.5) | 0.004 |
LVEF by Echo Go (SD, %) | 242 | 64.21 (6.55) | 53.97 (5.83) | <0.001 |
LVEF by Simpson’s Method (SD, %) | 242 | 63.81 (8.85) | 57.39 (8.99) | <0.001 |
Conduction Disease on ECG (%) | 170 | 21 (15.91) | 9 (23.68) | 0.27 |
QTc > 483 ms (%) | 167 | 7 (5.34) | 4 (11.11) | 0.25 |
LVH by Siegel Criteria (%) | 170 | 34 (25.76) | 9 (23.68) | 0.80 |
Low-Voltage ECG (%) | 170 | 0 (0) | 2 (5.26) | 0.049 |
Hazard Ratio | 95% CI | p Value | |
---|---|---|---|
Age | 1.02 | 1.00–1.03 | 0.071 |
Female | 0.70 | 0.49–1.01 | 0.055 |
Race (Ref = Black) | |||
Hispanic | 0.98 | 0.65–1.47 | 0.92 |
White | 0.80 | 0.38–1.67 | 0.55 |
Other/UK | 093 | 0.56–1.55 | 0.78 |
HTN | 1.10 | 0.77–1.56 | 0.61 |
Diabetes | 2.41 | 1.48–3.94 | <0.001 |
CCI * | 2.09 | 1.53–2.85 | <0.001 |
ISS (Ref = Stage I) | |||
Stage II | 1.88 | 1.14–3.08 | 0.013 |
Stage III | 1.94 | 1.20–3.15 | 0.007 |
UK | 1.23 | 0.69–2.19 | 0.478 |
R-ISS (Ref = Stage I) | |||
Stage II | 1.14 | 0.54–2.45 | 0.72 |
Stage III | 2.30 | 1.00–5.28 | 0.050 |
UK | 1.00 | 0.48–2.12 | 0.99 |
Albumin | 0.85 | 0.69–1.06 | 0.15 |
Hemoglobin | 0.89 | 0.83–0.97 | 0.005 |
Creatinine * | 1.59 | 1.25–2.04 | <0.001 |
Indication for Echo (Ref = other) | |||
Symptoms | 2.07 | 1.34–3.21 | 0.001 |
Screen prior to MM treatment | 1.30 | 0.68–2.51 | 0.43 |
During MM Treatment | 1.25 | 0.67–2.35 | 0.48 |
E/E’ | 1.66 | 0.96–2.86 | 0.070 |
IVSd ≥ 1.2 cm | 1.59 | 0.99–2.56 | 0.054 |
LVEF | 0.98 | 0.95–1.00 | 0.049 |
Stroke Volume | 1.02 | 0.47–2.21 | 0.97 |
GLS < 18% | 1.65 | 1.12–2.43 | 0.011 |
Variables Included | Hazard Ratio | 95% CI | p Value |
---|---|---|---|
GLS < 18% | 1.81 | 1.07–3.05 | 0.026 |
LVEF | 0.99 | 0.96–1.02 | 0.41 |
History of Diabetes | 1.73 | 0.97–3.11 | 0.065 |
CCI * | 1.49 | 1.00–2.22 | 0.049 |
R-ISS Stages (Ref = Stage I) | |||
Stage II | 1.56 | 0.71–3.41 | 0.26 |
Stage III | 2.28 | 0.91–5.67 | 0.077 |
Stage IV | 1.44 | 0.66–3.15 | 0.36 |
Hgb at Diagnosis | 0.90 | 0.83–0.98 | 0.017 |
Cr at Diagnosis * | 1.15 | 0.83–1.58 | 0.40 |
Indication for Echo | |||
Symptoms | 1.59 | 0.96–2.64 | 0.074 |
Screen prior to MM treatment | 0.87 | 0.40–1.90 | 0.74 |
During MM Treatment | 1.07 | 0.54–2.12 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, Z.; Castagna, F.; Hanif, W.; Apple, S.J.; Zhang, L.; Tauras, J.M.; Braunschweig, I.; Kaur, G.; Janakiram, M.; Wang, Y.; et al. Global Longitudinal Strain Is Associated with Mortality in Patients with Multiple Myeloma. J. Clin. Med. 2023, 12, 2595. https://doi.org/10.3390/jcm12072595
Cui Z, Castagna F, Hanif W, Apple SJ, Zhang L, Tauras JM, Braunschweig I, Kaur G, Janakiram M, Wang Y, et al. Global Longitudinal Strain Is Associated with Mortality in Patients with Multiple Myeloma. Journal of Clinical Medicine. 2023; 12(7):2595. https://doi.org/10.3390/jcm12072595
Chicago/Turabian StyleCui, Zhu, Francesco Castagna, Waqas Hanif, Samuel J. Apple, Lili Zhang, James M. Tauras, Ira Braunschweig, Gurbakhash Kaur, Murali Janakiram, Yanhua Wang, and et al. 2023. "Global Longitudinal Strain Is Associated with Mortality in Patients with Multiple Myeloma" Journal of Clinical Medicine 12, no. 7: 2595. https://doi.org/10.3390/jcm12072595
APA StyleCui, Z., Castagna, F., Hanif, W., Apple, S. J., Zhang, L., Tauras, J. M., Braunschweig, I., Kaur, G., Janakiram, M., Wang, Y., Fang, Y., Diaz, J. C., Hoyos, C., Marin, J., Pellikka, P. A., Romero, J. E., Garcia, M. J., Verma, A. K., Shah, N., & Slipczuk, L. (2023). Global Longitudinal Strain Is Associated with Mortality in Patients with Multiple Myeloma. Journal of Clinical Medicine, 12(7), 2595. https://doi.org/10.3390/jcm12072595