Home High-Flow Therapy in Patients with Chronic Respiratory Diseases: Physiological Rationale and Clinical Results
Abstract
:1. Introduction
2. The Potential Mechanisms by Which HHFT May Offer Advantages to Stable Hypoxemic and/or Hypercapnic Patients
- A—improved lung mucociliary clearance and decreased inspiratory resistance by providing heated and humidified gas;
- B—washout of anatomic dead space;
- C—mild distending pressure; and
- D—increased alveolar PO2.
2.1. A—Improvement in Lung Mucociliary Clearance and Attenuation of Inspiratory Resistance Provided by Heated and Humidified Gas
2.2. B—Dead Space Washout
2.3. C—Provide a Mild Distending Pressure
2.4. D—Increased Alveolar PO2
3. Effects of HHFT on COPD Exacerbations and Economic Impact
4. HFT Role in the Management of Palliative Patients
5. Differences between Home and Hospital Implementation and Types of Home Devices
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chikata, Y.; Izawa, M.; Okuda, N.; Itagaki, T.; Nakataki, E.; Onodera, M.; Imanaka, H.; Nishimura, M. Humidification performance of two high-flow nasal cannula devices: A bench study. Respir. Care 2014, 59, 1186–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delorme, M.; Bouchard, P.-A.; Simard, S.; Lellouche, F. Hygrometric Performances of Different High-Flow Nasal Cannula Devices: Bench Evaluation and Clinical Tolerance. Respir. Care 2021, 66, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Locke, R.G.; Wolfson, M.R.; Shaffer, T.H.; Rubenstein, S.D.; Greenspan, J.S. Inadvertent administration of positive end-distending pressure during nasal cannula flow. Pediatrics 1993, 91, 135–138. [Google Scholar] [CrossRef] [PubMed]
- Sreenan, C.; Lemke, R.P.; Hudson-Mason, A.; Osiovich, H. High-flow nasal cannulae in the management of apnea of prematurity: A comparison with conventional nasal continuous positive airway pressure. Pediatrics 2001, 107, 1081–1083. [Google Scholar] [CrossRef] [PubMed]
- Dewan, N.A.; Bell, C.W. Effect of low flow and high flow oxygen delivery on exercise tolerance and sensation of dyspnea. A study comparing the transtracheal catheter and nasal prongs. Chest 1994, 105, 1061–1065. [Google Scholar] [CrossRef]
- Kernick, J.; Magarey, J. What is the evidence for the use of high flow nasal cannula oxygen in adult patients admitted to critical care units? A systematic review. Aust. Crit. Care 2010, 23, 53–70. [Google Scholar] [CrossRef]
- Rochwerg, B.; Granton, D.; Wang, D.X.; Helviz, Y.; Einav, S.; Frat, J.P.; Mekontso-Dessap, A.; Schreiber, A.; Azoulay, E.; Mercat, A.; et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: A systematic review and meta-analysis. Intensiv. Care Med. 2019, 45, 563–572. [Google Scholar] [CrossRef] [Green Version]
- Fernando, S.M.; Tran, A.; Sadeghirad, B.; Burns, K.E.A.; Fan, E.; Brodie, D.; Munshi, L.; Goligher, E.C.; Cook, D.J.; Fowler, R.A.; et al. Noninvasive respiratory support following extubation in critically ill adults: A systematic review and network meta-analysis. Intensiv. Care Med. 2021, 48, 137–147. [Google Scholar] [CrossRef]
- Rea, H.; McAuley, S.; Jayaram, L.; Garrett, J.; Hockey, H.; Storey, L.; O’Donnell, G.; Haru, L.; Payton, M.; O’Donnell, K. The clinical utility of long-term humidification therapy in chronic airway disease. Respir. Med. 2010, 104, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Hasani, A.; Chapman, T.; McCool, D.; Smith, R.; Dilworth, J.; Agnew, J. Domiciliary humidification improves lung mucociliary clearance in patients with bronchiectasis. Chronic Respir. Dis. 2008, 5, 81–86. [Google Scholar] [CrossRef]
- Nagata, K.; Kikuchi, T.; Horie, T.; Shiraki, A.; Kitajima, T.; Kadowaki, T.; Tokioka, F.; Chohnabayashi, N.; Watanabe, A.; Sato, S.; et al. Domiciliary High-Flow Nasal Cannula Oxygen Therapy for Patients with Stable Hypercapnic Chronic Obstructive Pulmonary Disease. A Multicenter Randomized Crossover Trial. Ann. Am. Thorac. Soc. 2018, 15, 432–439. [Google Scholar] [CrossRef]
- Fraser, J.F.; Spooner, A.J.; Dunster, K.R.; Anstey, C.; Corley, A. Nasal high flow oxygen therapy in patients with COPD reduces respiratory rate and tissue carbon dioxide while increasing tidal and end-expiratory lung volumes: A randomised crossover trial. Thorax 2016, 71, 759–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storgaard, L.H.; Hockey, H.-U.; Laursen, B.S.; Weinreich, U.M. Long-term effects of oxygen-enriched high-flow nasal cannula treatment in COPD patients with chronic hypoxemic respiratory failure. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 1195–1205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storgaard, L.H.; Hockey, H.-U.; Weinreich, U.M. Development in PaCO2 over 12 months in patients with COPD with persistent hypercapnic respiratory failure treated with high-flow nasal cannula—Post-hoc analysis from a randomised controlled trial. BMJ Open Respir. Res. 2020, 7, e000712. [Google Scholar] [CrossRef] [PubMed]
- Pisani, L.; Betti, S.; Biglia, C.; Fasano, L.; Catalanotti, V.; Prediletto, I.; Comellini, V.; Bacchi-Reggiani, L.; Fers, S.N. Effects of high-flow nasal cannula in patients with persistent hypercapnia after an acute COPD exacerbation: A prospective pilot study. BMC Pulm. Med. 2020, 20, 12–19. [Google Scholar] [CrossRef]
- Bräunlich, J.; Dellweg, D.; Bastian, A.; Budweiser, S.; Randerath, W.; Triché, D.; Bachmann, M.; Kähler, C.; Bayarassou, A.H.; Mäder, I.; et al. Nasal high-flow versus noninvasive ventilation in patients with chronic hypercapnic COPD. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 1411–1421. [Google Scholar] [CrossRef] [Green Version]
- Harada, J.; Nagata, K.; Morimoto, T.; Iwata, K.; Matsunashi, A.; Sato, Y.; Tachikawa, R.; Ishikawa, A.; Tomii, K. Effect of high-flow nasal cannula oxygen therapy on exercise tolerance in patients with idiopathic pulmonary fibrosis: A randomized crossover trial. Respirology 2021, 27, 144–151. [Google Scholar] [CrossRef]
- Nagata, K.; Horie, T.; Chohnabayashi, N.; Jinta, T.; Tsugitomi, R.; Shiraki, A.; Tokioka, F.; Kadowaki, T.; Watanabe, A.; Fukui, M.; et al. Home High-Flow Nasal Cannula Oxygen Therapy for Stable Hypercapnic COPD: A Randomized Clinical Trial. Am. J. Respir. Crit. Care Med. 2022, 206, 1326–1335. [Google Scholar] [CrossRef]
- Good, W.R.; Garrett, J.; Hockey, H.U.; Jayaram, L.; Wong, C.; Rea, H. The role of high-flow nasal therapy in bronchiectasis: A post hoc analysis. ERJ Open Res. 2021, 7, 00711-2020. [Google Scholar] [CrossRef]
- Hui, D.; Mahler, D.A.; Larsson, L.; Wu, J.; Thomas, S.; Harrison, C.A.; Hess, K.; Lopez-Mattei, J.; Thompson, K.; Gomez, D.; et al. High-Flow Nasal Cannula Therapy for Exertional Dyspnea in Patients with Cancer: A Pilot Randomized Clinical Trial. Oncol. 2020, 26, e1470–e1479. [Google Scholar] [CrossRef]
- Goligher, E.C.; Slutsky, A.S. Not Just Oxygen? Mechanisms of Benefit from High-Flow Nasal Cannula in Hypoxemic Respiratory Failure. Am. J. Respir. Crit. Care Med. 2017, 195, 1128–1131. [Google Scholar] [CrossRef] [PubMed]
- Pisani, L.; Vega, M.L. Use of Nasal High Flow in Stable COPD: Rationale and Physiology. COPD J. Chronic Obstr. Pulm. Dis. 2017, 14, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Simel, D.L.; Mastin, J.P.; Pratt, P.C.; Wisseman, C.L.; Shelburne, J.D.; Spock, A.; Ingram, P. Scanning electron microscopic study of the airways in normal children and in patients with cystic fibrosis and other lung diseases. Pediatr. Pathol. 1984, 2, 47–64. [Google Scholar] [CrossRef]
- Salah, B.; Dinh-Xuan, A.T.; Fouilladieu, J.L.; Lockhart, A.; Regnard, J. Nasal mucociliary transport in healthy subjects is slower when breathing dry air. Eur. Respir. J. 1988, 1, 852–855. [Google Scholar] [CrossRef]
- Mall, M.A.; Harkema, J.R.; Trojanek, J.B.; Treis, D.; Livraghi, A.; Schubert, S.; Zhou, Z.; Kreda, S.M.; Tilley, S.L.; Hudson, E.J.; et al. Development of Chronic Bronchitis and Emphysema in β-Epithelial Na+ Channel–Overexpressing Mice. Am. J. Respir. Crit. Care Med. 2008, 177, 730–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuquemelle, E.; Pham, T.; Papon, J.-F.; Louis, B.; Danin, P.-E.; Brochard, L. Heated and humidified high-flow oxygen therapy reduces discomfort during hypoxemic respiratory failure. Respir. Care 2012, 57, 1571–1577. [Google Scholar] [CrossRef] [Green Version]
- Chanques, G.; Constantin, J.-M.; Sauter, M.; Jung, B.; Sebbane, M.; Verzilli, D.; Lefrant, J.-Y.; Jaber, S. Discomfort associated with underhumidified high-flow oxygen therapy in critically ill patients. Intensiv. Care Med. 2009, 35, 996–1003. [Google Scholar] [CrossRef]
- Fontanari, P.; Burnet, H.; Zattara-Hartmann, M.C.; Jammes, Y. Changes in airway resistance induced by nasal inhalation of cold dry, dry, or moist air in normal individuals. J. Appl. Physiol. 1996, 81, 1739–1743. [Google Scholar] [CrossRef] [Green Version]
- Fontanari, P.; Zattara-Hartmann, M.; Burnet, H.; Jammes, Y. Nasal eupnoeic inhalation of cold, dry air increases airway resistance in asthmatic patients. Eur. Respir. J. 1997, 10, 2250–2254. [Google Scholar] [CrossRef] [Green Version]
- Shepard, J.W.; Burger, C.D. Nasal and oral flow-volume loops in normal subjects and patients with obstructive sleep apnea. Am. Rev. Respir. Dis. 1990, 142 Pt 1, 1288–1293. [Google Scholar] [CrossRef]
- On, L.S.; Boonyongsunchai, P.; Webb, S.; Davies, L.; Calverley, P.M.A.; Costello, R.W. Function of pulmonary neuronal m2 muscarinic receptors in stable chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2001, 163, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Polverino, E.; Goeminne, P.C.; McDonnell, M.J.; Aliberti, S.; Marshall, S.E.; Loebinger, M.R.; Murris, M.; Cantón, R.; Torres, A.; Dimakou, K.; et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur. Respir. J. Off. J. Eur. Soc. Clin. Respir. Physiol. 2017, 50, 1700629. [Google Scholar] [CrossRef] [PubMed]
- Crimi, C.; Noto, A.; Cortegiani, A.; Campisi, R.; Heffler, E.; Gregoretti, C.; Crimi, N. High Flow Nasal Therapy Use in Patients with Acute Exacerbation of COPD and Bronchiectasis: A Feasibility Study. COPD J. Chronic Obstr. Pulm. Dis. 2020, 17, 184–190. [Google Scholar] [CrossRef]
- Birk, R.; Händel, A.; Wenzel, A.; Kramer, B.; Aderhold, C.; Hörmann, K.; Stuck, B.A.; Sommer, J.U. Heated air humidification versus cold air nebulization in newly tracheostomized patients. Head Neck 2017, 39, 2481–2487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolidon, S.; Dupuis, J.; Valencia, L.-C.M.; Salaün, M.; Thiberville, L.; Muir, J.-F.; Cuvelier, A.; Patout, M. Characteristics and outcome of patients set up on high-flow oxygen therapy at home. Ther. Adv. Respir. Dis. 2019, 13, 1753466619879794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Möller, W.; Celik, G.; Feng, S.; Bartenstein, P.; Meyer, G.; Eickelberg, O.; Schmid, O.; Tatkov, S. Nasal high flow clears anatomical dead space in upper airway models. J. Appl. Physiol. 2015, 118, 1525–1532. [Google Scholar] [CrossRef]
- Möller, W.; Feng, S.; Domanski, U.; Franke, K.-J.; Celik, G.; Bartenstein, P.; Becker, S.; Meyer, G.; Schmid, O.; Eickelberg, O.; et al. Nasal high flow reduces dead space. J. Appl. Physiol. 2017, 122, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Delorme, M.; Bouchard, P.-A.; Simon, M.; Simard, S.; Lellouche, F. Physiologic Effects of High-Flow Nasal Cannula in Healthy Subjects. Respir. Care 2020, 65, 1346–1354. [Google Scholar] [CrossRef]
- Spoletini, G.; Mega, C.; Pisani, L.; Alotaibi, M.; Khoja, A.; Price, L.L.; Blasi, F.; Nava, S.; Hill, N.S. High-flow nasal therapy vs standard oxygen during breaks off noninvasive ventilation for acute respiratory failure: A pilot randomized controlled trial. J. Crit. Care 2018, 48, 418–425. [Google Scholar] [CrossRef]
- Groves, N.; Tobin, A. High flow nasal oxygen generates positive airway pressure in adult volunteers. Aust. Crit. Care 2007, 20, 126–131. [Google Scholar] [CrossRef]
- Parke, R.L.; Bloch, A.; McGuinness, S.P. Effect of Very-High-Flow Nasal Therapy on Airway Pressure and End-Expiratory Lung Impedance in Healthy Volunteers. Respir. Care 2015, 60, 1397–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parke, R.L.; McGuinness, S.P. Pressures delivered by nasal high flow oxygen during all phases of the respiratory cycle. Respir. Care 2013, 58, 1621–1624. [Google Scholar] [CrossRef] [Green Version]
- Mündel, T.; Feng, S.; Tatkov, S.; Schneider, H. Mechanisms of nasal high flow on ventilation during wakefulness and sleep. J. Appl. Physiol. 2013, 114, 1058–1065. [Google Scholar] [CrossRef] [PubMed]
- Vieira, F.; Bezerra, F.S.; Coudroy, R.; Schreiber, A.; Telias, I.; Dubo, S.; Cavalot, G.; Pereira, S.M.; Piraino, T.; Brochard, L.J. High-flow nasal cannula compared with continuous positive airway pressure: A bench and physiological study. J. Appl. Physiol. 2022, 132, 1580–1590. [Google Scholar] [CrossRef]
- Pisani, L.; Fasano, L.; Corcione, N.; Comellini, V.; Musti, M.A.; Brandao, M.; Bottone, D.; Calderini, E.; Navalesi, P.; Nava, S. Change in pulmonary mechanics and the effect on breathing pattern of high flow oxygen therapy in stable hypercapnic COPD. Thorax 2017, 72, 373–375. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wei, L.; Wang, S.; Ke, L.; Zhao, H.; Mao, J.; Li, J.; Mao, Z. The effects of pursed lip breathing combined with diaphragmatic breathing on pulmonary function and exercise capacity in patients with COPD: A systematic review and meta-analysis. Physiother. Theory Pract. 2020, 38, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Joshi, R.; Cave, G. How Much PEEP Does High Flow Deliver via Tracheostomy? A Literature Review and Benchtop Experiment. Crit. Care Res. Pract. 2021, 2021, 6036891. [Google Scholar] [CrossRef]
- Natalini, D.; Grieco, D.L.; Santantonio, M.T.; Mincione, L.; Toni, F.; Anzellotti, G.M.; Eleuteri, D.; Di Giannatale, P.; Antonelli, M.; Maggiore, S.M. Physiological effects of high-flow oxygen in tracheostomized patients. Ann. Intensiv. Care 2019, 9, 114. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, S.S.; Lederer, D.J.; Garvey, C.M.; Hernandez, C.; Lindell, K.O.; McLaughlin, S.; Schneidman, A.M.; Casaburi, R.; Chang, V.; Cosgrove, G.P.; et al. Optimizing Home Oxygen Therapy. An Official American Thoracic Society Workshop Report. Ann. Am. Thorac. Soc. 2018, 15, 1369–1381. [Google Scholar] [CrossRef]
- Hardinge, M.; Annandale, J.; Bourne, S.; Cooper, B.; Evans, A.; Freeman, D.; Green, A.; Hippolyte, S.; Knowles, V.; MacNee, W.; et al. British Thoracic Society guidelines for home oxygen use in adults. Thorax 2015, 70 (Suppl. 1), i1–i43. [Google Scholar] [CrossRef] [Green Version]
- Wagstaff, T.A.J.; Soni, N. Performance of six types of oxygen delivery devices at varying respiratory rates. Anaesthesia 2007, 62, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, J.E.; Williams, A.B.; Gerard, C.; Hockey, H. Evaluation of a humidified nasal high-flow oxygen system, using oxygraphy, capnography and measurement of upper airway pressures. Anaesth. Intensiv. Care 2011, 39, 1103–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatila, W.; Nugent, T.; Vance, G.; Gaughan, J.; Criner, G.J. The effects of high-flow vs low-flow oxygen on exercise in advanced obstructive airways disease. Chest 2004, 126, 1108–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirio, S.; Piran, M.; Vitacca, M.; Piaggi, G.; Ceriana, P.; Prazzoli, M.; Carlucci, A. Effects of heated and humidified high flow gases during high-intensity constant-load exercise on severe COPD patients with ventilatory limitations. Respir Med. 2016, 118, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, S.S.; Storgaard, L.H.; Weinreich, U.M. Cost-Effectiveness of Domiciliary High Flow Nasal Cannula Treatment in COPD Patients with Chronic Respiratory Failure. Clin. Outcomes Res. 2021, 13, 553–564. [Google Scholar] [CrossRef]
- Lanken, P.N.; Terry, P.B.; DeLisser, H.M.; Fahy, B.F.; Hansen-Flaschen, J.; Heffner, J.E.; Levy, M.; Mularski, R.A.; Osborne, M.L.; Prendergast, T.J.; et al. An official american thoracic society clinical policy statement: Palliative care for patients with respiratory diseases and critical illnesses. Am. J. Respir. Crit. Care Med. 2008, 177, 912–927. [Google Scholar] [CrossRef] [Green Version]
- Hardinge, M.; Suntharalingam, J.; Wilkinson, T.; British Thoracic Society. Guideline update: The British Thoracic Society Guidelines on home oxygen use in adults. Thorax 2015, 70, 589–591. [Google Scholar] [CrossRef] [Green Version]
- Galbraith, S.; Fagan, P.; Perkins, P.; Lynch, A.; Booth, S. Does the use of a handheld fan improve chronic dyspnea? A randomized, controlled, crossover trial. J. Pain Symptom Manag. 2010, 39, 831–838. [Google Scholar] [CrossRef]
- American Thoracic Society; European Respiratory Society; European Society of Intensive Care Medicine; Société de Réanimation de Langue Française. International Consensus Conferences in Intensive Care Medicine: Noninvasive positive pressure ventilation in acute respiratory failure. Am. J. Respir Crit Care Med. 2001, 163, 283–291. [Google Scholar] [CrossRef]
- Meduri, G.U.; Fox, R.C.; Abou-Shala, N.; Leeper, K.V.; Wunderink, R.G. Noninvasive mechanical ventilation via face mask in patients with acute respiratory failure who refused endotracheal intubation. Crit. Care Med. 1994, 22, 1584–1590. [Google Scholar] [CrossRef]
- Curtis, J.R.; Cook, D.J.; Sinuff, T.; White, D.B.; Hill, N.; Keenan, S.P.; Benditt, J.O.; Kacmarek, R.; Kirchhoff, K.T.; Levy, M.M.; et al. Noninvasive positive pressure ventilation in critical and palliative care settings: Understanding the goals of therapy. Crit. Care Med. 2007, 35, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Rochwerg, B.; Brochard, L.; Elliott, M.W.; Hess, D.; Hill, N.S.; Nava, S.; Navalesi, P.; Antonelli, M.; Brozek, J.; Conti, G.; et al. Official ERS/ATS clinical practice guidelines: Noninvasive ventilation for acute respiratory failure. Eur. Respir. J. 2017, 50, 1602426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruangsomboon, O.; Dorongthom, T.; Chakorn, T.; Monsomboon, A.; Praphruetkit, N.; Limsuwat, C.; Surabenjawong, U.; Riyapan, S.; Nakornchai, T.; Chaisirin, W. High-Flow Nasal Cannula Versus Conventional Oxygen Therapy in Relieving Dyspnea in Emergency Palliative Patients with Do-Not-Intubate Status: A Randomized Crossover Study. Ann. Emerg. Med. 2020, 75, 615–626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyauchi, T.; Hasegawa, H.; Kanata, K.; Kakutani, T.; Amano, Y.; Ozawa, Y.; Matsui, T.; Yokomura, K.; Suda, T. Efficacy and Tolerability of High-Flow Nasal Cannula Oxygen Therapy for Hypoxemic Respiratory Failure in Patients with Interstitial Lung Disease with Do-Not-Intubate Orders: A Retrospective Single-Center Study. Respiration 2018, 96, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Bode, S.; Grove, G. Use of Humidified High Flow Nasal Oxygen in Community Palliative Care: A Case Report. Palliat. Med. Rep. 2020, 1, 179–182. [Google Scholar] [CrossRef]
- Goda, K.; Kenzaka, T.; Kuriyama, K.; Hoshijima, M.; Akita, H. End-of-life home care of an interstitial pneumonia patient supported by high-flow nasal cannula therapy: A case report. World J. Clin. Cases 2020, 8, 4853–4857. [Google Scholar] [CrossRef]
- Vega, M.; Pisani, L. Nasal high flow oxygen in acute respiratory failure. Pulmonology 2021, 27, 240–247. [Google Scholar] [CrossRef]
- Pinkham, M.I.; Domanski, U.; Franke, K.-J.; Hartmann, J.; Schroeder, M.; Williams, T.; Nilius, G.; Tatkov, S. Effect of respiratory rate and size of cannula on pressure and dead-space clearance during nasal high flow in patients with COPD and acute respiratory failure. J. Appl. Physiol. 2022, 132, 553–563. [Google Scholar] [CrossRef]
Study Population | Study Design | HFT Settings | Outcomes | Results | Hypothesized Physiologic Effect | |
---|---|---|---|---|---|---|
Rea et al. (2010) [9] | 108 stable patients diagnosed with COPD or bronchiectasis. | Randomized open-label controlled trial: HFT vs. usual care. | Flow: 20–25 L/m. HFT use: 1.6 ± 0.67 h/d. Temperature: 37 °C. | Exacerbation rate, time to first exacerbation, number of exacerbated days and hospital admissions, change in QoL scores, lung function, 6MWT, and inflammatory markers (sputum cell counts) over 12 months. | HFT reduced exacerbation rate, increased time to first exacerbation, reduced exacerbation frequency, improved QoL scores and lung function. | Improvement in mucociliary clearance. Washout of dead space. PEEP effect. |
Hasani et al. (2008) [10] | 10 patients diagnosed with idiopathic bronchiectasis in stable phase. | Physiologic study: HFT in bronchiectasis patients. | Flow: 20–25 L/m. HFT use: >3 h/d. Temperature: 37 °C. | Clearance of radioactively tagged 99mTc-polystyrene aerosolized particles. | HFT improved lung mucociliary clearance. | Improvement in mucociliary clearance. |
Nagata et al. (2018) [11] | 32 patients diagnosed with stable hypercapnic COPD. | Multicenter, randomized crossover trial: HFT + LTOT vs. LTOT (6 weeks for each trial). | Flow: 29.2 ± 1.9 L/min (group A); 30.3 ± 4.6 L/min (group B). HFT use: 7.1 ± 1.5 h/d (group A); 8.6 ± 2.9 h/d (group B). | Variations in QoL scores, dyspnea scores, ABG, nocturnal PtcCO2, SpO2, PFTs, 6MWT, and physical activity. AECOPD. | HFT improved QoL scores, PaCO2, pH, and nocturnal PtcCO2. | Dead space washout. |
Fraser et al. (2016) [12] | 30 stable COPD patients in LTOT | Randomized physiologic crossover trial: HFT vs. LTOT (20 min for each period). | Flow: 30 L/m. | Variations in TcO2, TcCO2, SpO2, Vt, MV, RR, I:E ratio, EELI, HR, dyspnea, and comfort. | HFT reduced TcO2, TcCO2, RR, and I:E ratio. HFT increased Vt and EELI. | Dead space washout, PEEP effect. |
Storgaard et al. (2018) [13] | 200 COPD patients with chronic hypoxemic respiratory failure. | Randomized clinical trial: HFT + LTOT vs. LTOT. | Flow: 20 L/m. HFT use: 6h/d. Temperature: not available. | Rate of AECOPD, hospital admissions, variations in dyspnea, QoL scores, PaCO2, all-cause mortality and exercise performance at 12 months. | HFT reduced AECOPD rate, improved dyspnea, QoL scores, and 6MWT distance. HFT decreased PaCO2 at 12 months. | Improvement in mucociliary clearance. |
Storgaard et al. (2020) [14] | 74 COPD patients with persistent hypercapnic failure. | Post-hoc analysis of Ref [13]: HFT + LTOT vs. LTOT. | Flow: 20 L/m. HFT use: 6.9 h/d. Temperature: not available. | PaCO2 decreased in HFT + LTOT group while it increased in LTOT group. | Clearance of CO2 from the anatomical dead space. | |
Pisani et al. (2020) [15] | 50 COPD or COPD/OSA hypercapnic patients recovered from an acute exacerbation. | Interventional study: HFT in persistent hypercapnia following acute exacerbation. | Flow: 33.5 ± 3.2 L/min. HFT use: 8h/d + night-time. | Variations in ABG, RR. | HFT reduced RR. HFT reduced pCO2 only in pure COPD patients. | Dead space washout. |
Bräunlich et al. (2019) [16] | 102 COPD patients with stable daytime hypercapnia. | Multi-centered, randomized controlled crossover trial: HFT vs. NIV (6 weeks for each trial). | Flow: 19.8 ± 0.6 L/min. | Variations in pCO2, lung function, QoL scores, 6MWT, and duration of device use. | HFT was effective as NIV in terms of pCO2 reduction (slight tendency in favor of NIV) and QoL scores. | Dead space washout. |
Harada et al. (2022) [17] | 24 patients diagnosed with IPF and exercise-induced oxygen desaturation. | Prospective, randomized crossover trial: HFT vs. SOT (Venturi mask). | Flow: 60 L/m. FiO2: 50%. Temperature: 37 °C. | Endurance time, SpO2, dyspnea leg fatigue, HR, comfort. | HFT improved exercise duration, leg fatigue, and minimum SpO2. | Ensured adequate inspiratory flow. |
Nagata et al. (2022) [18] | 104 patients diagnosed with COPD (GOLD 2-4). | Randomized clinical trial: HFT + LTOT vs. LTOT. | Flow: 28.5 ± 4.57 L/min. HFT use: 7.3 ± 3.0 h/d. Temperature: 37 °C; modified according to patient’s comfort. | Moderate/severe AECOPD rate. Variations in ABG, pulmonary function, QoL scores. | HFT reduced the rate of moderate/severe AECOPD, improved time to first exacerbation, QoL scores, and pulmonary function. | Improvement in secretory clearance. Improve muscle weakness. |
Good et al. (2020) [19] | 45 patients diagnosed with bronchiectasis. | Post-hoc analysis of Ref [9]: HFT vs. usual care. | Flow: 20–25 L/m. HFT use: 1.7 h/d. Temperature: 37 °C. | HFT reduced exacerbation rate and improved QoL scores. | Improvement in mucociliary clearance. | |
Hui et al. (2020) [20] | 44 non-hypoxemic patients diagnosed with cancer involving the lung. | Double-blind, randomized clinical trial: HFox vs. HFair vs. LFox vs. LFair. | HFox Flow: 48 ± 12 L/m. HFair flow: 46 ± 11 L/minute. Temperature: 35 °C. | Dyspnea, exercise duration, leg discomfort during exercise test. | HFox and LFox reduced exertional dyspnea compared to LFair. HFox improved exercise capacity compared to LFair. |
FiO2 * | Flow (L/m) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 | 55 | 60 | ||
Concentrator oxygen flow rate in L/m | 1 | 26 | 25 | 24 | 24 | 23 | 23 | 23 | 23 | 22 | 22 |
2 | 32 | 29 | 27 | 26 | 26 | 25 | 25 | 24 | 24 | 24 | |
3 | 37 | 33 | 31 | 29 | 28 | 27 | 26 | 26 | 25 | 25 | |
4 | 42 | 37 | 34 | 32 | 30 | 29 | 28 | 27 | 27 | 26 | |
5 | 47 | 41 | 37 | 34 | 32 | 31 | 30 | 29 | 28 | 28 | |
6 | 53 | 45 | 40 | 37 | 35 | 33 | 32 | 31 | 30 | 29 | |
7 | 58 | 49 | 43 | 40 | 37 | 35 | 33 | 32 | 31 | 30 | |
8 | 63 | 53 | 46 | 42 | 39 | 37 | 35 | 34 | 33 | 32 | |
9 | 68 | 56 | 50 | 45 | 42 | 39 | 37 | 35 | 34 | 33 | |
10 | 73 | 60 | 53 | 47 | 44 | 41 | 39 | 37 | 36 | 34 | |
11 | 78 | 64 | 56 | 50 | 46 | 43 | 41 | 39 | 37 | 36 | |
12 | 82 | 68 | 59 | 53 | 48 | 45 | 42 | 40 | 38 | 37 | |
13 | 87 | 71 | 62 | 55 | 50 | 47 | 44 | 42 | 40 | 38 | |
14 | 92 | 75 | 65 | 58 | 53 | 49 | 46 | 43 | 41 | 40 | |
15 | 93 | 79 | 68 | 60 | 55 | 51 | 47 | 45 | 43 | 41 |
MyAirvo™ (Fisher and Paykel) | Lumis™ HFT (ResMed) | H-FLOW™ (Medical Products Research S.r.l.) | |
---|---|---|---|
Flow range | 10–60 L/min. | 15–40 L/min. | 10–60 L/min. |
Concentrator oxygen flow rate | Up to 15 L/m. | Up to 15 L/m. | Up 15 L/m. |
Humidification and temperature settings | Pass-over system. Reusable or auto-fill water chamber. Heated breathing tube T° target setting = 31 °C, 34 °C, 37 °C. Humidity performance of 33 mg/L at 37 °C, and of 12 mg/L at 31 °C and 34 °C. | Pass-over system. Reusable water chamber. Heated breathing tube (ClimateLineAir™ + tube cover) T° target setting of 31 °C, 34 °C, 37 °C). Humidity level from 1 to 5 (from the lowest to the highest humidity). | Pass-over system. Reusable or auto-fill water chamber. Heated breathing tube T° target setting = 31 °C, 34 °C, 37 °C. Humidity performance of 33 mg/L at 37 °C, and of 12 mg/L at 31 °C and 34 °C. |
Interface | Optiflow +™ nasal cannula (3 sizes). Optiflow Tracheostomy™ interface. | AcuCare™ nasal cannula or generic high-flow nasal cannula (note: tracheostomy use is contraindicated for Lumis HFT). | Generic high-flow nasal cannula. Generic high-flow tracheostomy interface. |
Alarms | Yes. | Messages and warnings. | Yes. |
Patient compliance monitoring | USB port for data download therapy, Infosmart™. | SD card for data download therapy (ResScan™ and Airview™- telemonitoring). Soon, the ability to remotely edit settings will be available. | SD card. |
Possibility of connecting a built-in oximeter | No. | Yes, Air10 oximeter adapter (Nonin-XPod®, Global Headquarters, Plymouth, UK). | Yes. |
Weight | 2.2 kg. | 1.29 kg. | 3 kg. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vega Pittao, M.L.; Schifino, G.; Pisani, L.; Nava, S. Home High-Flow Therapy in Patients with Chronic Respiratory Diseases: Physiological Rationale and Clinical Results. J. Clin. Med. 2023, 12, 2663. https://doi.org/10.3390/jcm12072663
Vega Pittao ML, Schifino G, Pisani L, Nava S. Home High-Flow Therapy in Patients with Chronic Respiratory Diseases: Physiological Rationale and Clinical Results. Journal of Clinical Medicine. 2023; 12(7):2663. https://doi.org/10.3390/jcm12072663
Chicago/Turabian StyleVega Pittao, Maria Laura, Gioacchino Schifino, Lara Pisani, and Stefano Nava. 2023. "Home High-Flow Therapy in Patients with Chronic Respiratory Diseases: Physiological Rationale and Clinical Results" Journal of Clinical Medicine 12, no. 7: 2663. https://doi.org/10.3390/jcm12072663
APA StyleVega Pittao, M. L., Schifino, G., Pisani, L., & Nava, S. (2023). Home High-Flow Therapy in Patients with Chronic Respiratory Diseases: Physiological Rationale and Clinical Results. Journal of Clinical Medicine, 12(7), 2663. https://doi.org/10.3390/jcm12072663