Protein Induced by Vitamin K Absence II: A Potential Biomarker to Differentiate Pancreatic Ductal Adenocarcinoma from Pancreatic Benign Lesions and Predict Vascular Invasion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Measurements of PIVKA-II
2.3. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Differential Diagnostic Value of PIVKA-II in PDAC
3.3. Comparison of Differential Diagnostic Value of PIVKA-II, CA19-9, and Their Combination in PDAC
3.4. Differential Diagnostic Value of PIVKA-II in CA19-9-Negative Cohort
3.5. Differential Diagnostic Value of Adjusted PIVKA-II in PDAC
3.6. Predictive Value of PIVKA-II for Vascular Invasion in PDAC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA A Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Lok, V.; Ngai, C.H.; Zhang, L.; Yuan, J.; Lao, X.Q.; Ng, K.; Chong, C.; Zheng, Z.J.; Wong, M.C.S. Worldwide Burden of, Risk Factors for, and Trends in Pancreatic Cancer. Gastroenterology 2021, 160, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Brown, Z.J.; Cloyd, J.M. Surgery for pancreatic cancer: Recent progress and future directions. Hepatobiliary Surg. Nutr. 2021, 10, 376–378. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.P.; Oldfield, L.; Ney, A.; Hart, P.A.; Keane, M.G.; Pandol, S.J.; Li, D.; Greenhalf, W.; Jeon, C.Y.; Koay, E.J.; et al. Early detection of pancreatic cancer. The lancet. Gastroenterol. Hepatol. 2020, 5, 698–710. [Google Scholar] [CrossRef]
- Blackford, A.L.; Canto, M.I.; Klein, A.P.; Hruban, R.H.; Goggins, M. Recent Trends in the Incidence and Survival of Stage 1A Pancreatic Cancer: A Surveillance, Epidemiology, and End Results Analysis. J. Natl. Cancer Inst. 2020, 112, 1162–1169. [Google Scholar] [CrossRef]
- Wood, L.D.; Canto, M.I.; Jaffee, E.M.; Simeone, D.M. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology 2022, 163, 386–402.e381. [Google Scholar] [CrossRef]
- Liu, C.; Deng, S.; Jin, K.; Gong, Y.; Cheng, H.; Fan, Z.; Qian, Y.; Huang, Q.; Ni, Q.; Luo, G.; et al. Lewis antigen-negative pancreatic cancer: An aggressive subgroup. Int. J. Oncol. 2020, 56, 900–908. [Google Scholar] [CrossRef] [Green Version]
- Tonack, S.; Jenkinson, C.; Cox, T.; Elliott, V.; Jenkins, R.E.; Kitteringham, N.R.; Greenhalf, W.; Shaw, V.; Michalski, C.W.; Friess, H.; et al. iTRAQ reveals candidate pancreatic cancer serum biomarkers: Influence of obstructive jaundice on their performance. Br. J. Cancer 2013, 108, 1846–1853. [Google Scholar] [CrossRef] [Green Version]
- de Icaza, E.; López-Cervantes, M.; Arredondo, A.; Robles-Díaz, G. Likelihood ratios of clinical, laboratory and image data of pancreatic cancer: Bayesian approach. J. Eval. Clin. Pract. 2009, 15, 62–68. [Google Scholar] [CrossRef]
- Liebman, H.A. Isolation and characterization of a hepatoma-associated abnormal (des-gamma-carboxy)prothrombin. Cancer Res. 1989, 49, 6493–6497. [Google Scholar]
- Tang, W.; Kokudo, N.; Sugawara, Y.; Guo, Q.; Imamura, H.; Sano, K.; Karako, H.; Qu, X.; Nakata, M.; Makuuchi, M. Des-gamma-carboxyprothrombin expression in cancer and/or non-cancer liver tissues: Association with survival of patients with resectable hepatocellular carcinoma. Oncol. Rep. 2005, 13, 25–30. [Google Scholar] [PubMed]
- Feng, H.; Li, B.; Li, Z.; Wei, Q.; Ren, L. PIVKA-II serves as a potential biomarker that complements AFP for the diagnosis of hepatocellular carcinoma. BMC Cancer 2021, 21, 401. [Google Scholar] [CrossRef] [PubMed]
- Poté, N.; Cauchy, F.; Albuquerque, M.; Voitot, H.; Belghiti, J.; Castera, L.; Puy, H.; Bedossa, P.; Paradis, V. Performance of PIVKA-II for early hepatocellular carcinoma diagnosis and prediction of microvascular invasion. J. Hepatol. 2015, 62, 848–854. [Google Scholar] [CrossRef] [PubMed]
- Kemik, A.S.; Kemik, O.; Purisa, S.; Tuzun, S. Serum des-gamma-carboxyprothrombin in patients with pancreatic head adenocarcinoma. Bratisl. Lek. Listy 2011, 112, 552–554. [Google Scholar]
- Tartaglione, S.; Pecorella, I.; Zarrillo, S.R.; Granato, T.; Viggiani, V.; Manganaro, L.; Marchese, C.; Angeloni, A.; Anastasi, E. Protein Induced by Vitamin K Absence II (PIVKA-II) as a potential serological biomarker in pancreatic cancer: A pilot study. Biochem. Med. 2019, 29, 020707. [Google Scholar] [CrossRef]
- Tartaglione, S.; Mancini, P.; Viggiani, V.; Chirletti, P.; Angeloni, A.; Anastasi, E. PIVKA-II: A biomarker for diagnosing and monitoring patients with pancreatic adenocarcinoma. PLoS ONE 2021, 16, e0251656. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Lu, Z.; Liu, Y.; Kong, J.; Liu, J. Progression of Prothrombin Induced by Vitamin K Absence-II in Hepatocellular Carcinoma. Front. Oncol. 2021, 11, 726213. [Google Scholar] [CrossRef]
- Suzuki, Y.; Ichihara, T.; Nakao, A.; Sakamoto, J.; Takagi, H.; Nagura, H. High serum levels of DUPAN2 antigen and CA19-9 in pancreatic cancer: Correlation with immunocytochemical localization of antigens in cancer cells. Hepato-Gastroenterology 1988, 35, 128–135. [Google Scholar]
- Wong, J.C.; Raman, S. Surgical resectability of pancreatic adenocarcinoma: CTA. Abdom. Imaging 2010, 35, 471–480. [Google Scholar] [CrossRef] [Green Version]
- Tempero, M.A.; Malafa, M.P.; Al-Hawary, M.; Behrman, S.W.; Benson, A.B.; Cardin, D.B.; Chiorean, E.G.; Chung, V.; Czito, B.; Del Chiaro, M.; et al. Pancreatic Adenocarcinoma, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. JNCCN 2021, 19, 439–457. [Google Scholar] [CrossRef]
- Li, H.; Pan, W.; Xu, L.; Yin, D.; Cheng, S.; Zhao, F. Prognostic Significance of Microvascular Invasion in Pancreatic Ductal Adenocarcinoma: A Systematic Review and Meta-Analysis. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e930545. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.B.; Cheng, Y.N.; Cui, S.X.; Zhong, J.L.; Ward, S.G.; Sun, L.R.; Chen, M.H.; Kokudo, N.; Tang, W.; Qu, X.J. Des-gamma-carboxy prothrombin stimulates human vascular endothelial cell growth and migration. Clin. Exp. Metastasis 2009, 26, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Zhang, D. The 8th Edition American Joint Committee on Cancer Staging for Hepato-pancreato-biliary Cancer: A Review and Update. Arch. Pathol. Lab. Med. 2021, 145, 543–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okusaka, T.; Nakamura, M.; Yoshida, M.; Kitano, M.; Uesaka, K.; Ito, Y.; Furuse, J.; Hanada, K.; Okazaki, K. Clinical Practice Guidelines for Pancreatic Cancer 2019 From the Japan Pancreas Society: A Synopsis. Pancreas 2020, 49, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Kamisawa, T.; Wood, L.D.; Itoi, T.; Takaori, K. Pancreatic cancer. Lancet 2016, 388, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Al-Shaheri, F.N.; Alhamdani, M.S.S.; Bauer, A.S.; Giese, N.; Büchler, M.W.; Hackert, T.; Hoheisel, J.D. Blood biomarkers for differential diagnosis and early detection of pancreatic cancer. Cancer Treat. Rev. 2021, 96, 102193. [Google Scholar] [CrossRef]
- Chang, J.C.; Kundranda, M. Novel Diagnostic and Predictive Biomarkers in Pancreatic Adenocarcinoma. Int. J. Mol. Sci. 2017, 18, 667. [Google Scholar] [CrossRef] [Green Version]
- Humphris, J.L.; Chang, D.K.; Johns, A.L.; Scarlett, C.J.; Pajic, M.; Jones, M.D.; Colvin, E.K.; Nagrial, A.; Chin, V.T.; Chantrill, L.A.; et al. The prognostic and predictive value of serum CA19.9 in pancreatic cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2012, 23, 1713–1722. [Google Scholar] [CrossRef]
- Le Pendu, J.; Marionneau, S.; Cailleau-Thomas, A.; Rocher, J.; Le Moullac-Vaidye, B.; Clément, M. ABH and Lewis histo-blood group antigens in cancer. APMIS Acta Pathol. Microbiol. Et Immunol. Scand. 2001, 109, 9–31. [Google Scholar] [CrossRef]
- Vestergaard, E.M.; Hein, H.O.; Meyer, H.; Grunnet, N.; Jørgensen, J.; Wolf, H.; Orntoft, T.F. Reference values and biological variation for tumor marker CA 19-9 in serum for different Lewis and secretor genotypes and evaluation of secretor and Lewis genotyping in a Caucasian population. Clin. Chem. 1999, 45, 54–61. [Google Scholar]
- Su, S.B.; Qin, S.Y.; Chen, W.; Luo, W.; Jiang, H.X. Carbohydrate antigen 19-9 for differential diagnosis of pancreatic carcinoma and chronic pancreatitis. World J. Gastroenterol. 2015, 21, 4323–4333. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Cao, Z.; Liu, W.; You, L.; Zhou, L.; Wang, C.; Lou, W.; Sun, B.; Miao, Y.; Liu, X.; et al. Plasma miRNAs Effectively Distinguish Patients With Pancreatic Cancer From Controls: A Multicenter Study. Ann. Surg. 2016, 263, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.; Prassas, I.; Dimitromanolakis, A.; Brand, R.E.; Serra, S.; Diamandis, E.P.; Blasutig, I.M. Validation of biomarkers that complement CA19.9 in detecting early pancreatic cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2014, 20, 5787–5795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, Y.; Inoue, T.; Fukusato, T. Protein induced by vitamin K absence or antagonist II-producing gastric cancer. World J. Gastrointest. Pathophysiol. 2010, 1, 129–136. [Google Scholar] [CrossRef]
- Mayerle, J.; Kalthoff, H.; Reszka, R.; Kamlage, B.; Peter, E.; Schniewind, B.; González Maldonado, S.; Pilarsky, C.; Heidecke, C.D.; Schatz, P.; et al. Metabolic biomarker signature to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Gut 2018, 67, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.A.; Kochman, M.L.; Lewis, J.D.; Kadish, S.; Morris, J.B.; Rosato, E.F.; Ginsberg, G.G. Endosonography is superior to angiography in the preoperative assessment of vascular involvement among patients with pancreatic carcinoma. J. Clin. Gastroenterol. 2001, 32, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Soriano, A.; Castells, A.; Ayuso, C.; Ayuso, J.R.; de Caralt, M.T.; Ginès, M.A.; Real, M.I.; Gilabert, R.; Quintó, L.; Trilla, A.; et al. Preoperative staging and tumor resectability assessment of pancreatic cancer: Prospective study comparing endoscopic ultrasonography, helical computed tomography, magnetic resonance imaging, and angiography. Am. J. Gastroenterol. 2004, 99, 492–501. [Google Scholar] [CrossRef]
- Jang, J.Y.; Han, Y.; Lee, H.; Kim, S.W.; Kwon, W.; Lee, K.H.; Oh, D.Y.; Chie, E.K.; Lee, J.M.; Heo, J.S.; et al. Oncological Benefits of Neoadjuvant Chemoradiation With Gemcitabine Versus Upfront Surgery in Patients With Borderline Resectable Pancreatic Cancer: A Prospective, Randomized, Open-label, Multicenter Phase 2/3 Trial. Ann. Surg. 2018, 268, 215–222. [Google Scholar] [CrossRef]
- Versteijne, E.; Suker, M.; Groothuis, K.; Akkermans-Vogelaar, J.M.; Besselink, M.G.; Bonsing, B.A.; Buijsen, J.; Busch, O.R.; Creemers, G.M.; van Dam, R.M.; et al. Preoperative Chemoradiotherapy Versus Immediate Surgery for Resectable and Borderline Resectable Pancreatic Cancer: Results of the Dutch Randomized Phase III PREOPANC Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 1763–1773. [Google Scholar] [CrossRef]
- Wolff, R.A. Adjuvant or Neoadjuvant Therapy in the Treatment in Pancreatic Malignancies: Where Are We? Surg. Clin. N. Am. 2018, 98, 95–111. [Google Scholar] [CrossRef]
- Chen, V.L.; Sharma, P. Role of Biomarkers and Biopsy in Hepatocellular Carcinoma. Clin. Liver Dis. 2020, 24, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Cui, S.X.; Zhang, Y.S.; Chu, J.H.; Song, Z.Y.; Qu, X.J. Des-gamma-carboxy prothrombin (DCP) antagonizes the effects of gefitinib on human hepatocellular carcinoma cells. Cell. Physiol. Biochem. 2015, 35, 201–212. [Google Scholar] [CrossRef] [PubMed]
- Fujikawa, T.; Shiraha, H.; Ueda, N.; Takaoka, N.; Nakanishi, Y.; Matsuo, N.; Tanaka, S.; Nishina, S.; Suzuki, M.; Takaki, A.; et al. Des-gamma-carboxyl prothrombin-promoted vascular endothelial cell proliferation and migration. J. Biol. Chem. 2007, 282, 8741–8748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppola, A.; La Vaccara, V.; Fiore, M.; Farolfi, T.; Ramella, S.; Angeletti, S.; Coppola, R.; Caputo, D. CA19.9 Serum Level Predicts Lymph-Nodes Status in Resectable Pancreatic Ductal Adenocarcinoma: A Retrospective Single-Center Analysis. Front. Oncol. 2021, 11, 690580. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.S.; Lee, S.; Lee, H.S.; Bang, S.; Han, K.; Park, M.S. Retrospective Evaluation of Treatment Response in Patients with Nonmetastatic Pancreatic Cancer Using CT and CA 19-9. Radiology 2022, 303, 548–556. [Google Scholar] [CrossRef]
- Koom, W.S.; Seong, J.; Kim, Y.B.; Pyun, H.O.; Song, S.Y. CA 19-9 as a predictor for response and survival in advanced pancreatic cancer patients treated with chemoradiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2009, 73, 1148–1154. [Google Scholar] [CrossRef]
Characteristic | Group 1 n = 138 | Group 2 n = 90 | p | ||
---|---|---|---|---|---|
Age, years, median (IQR) | 62 (52–67) | 60 (50–66) | p = 0.352 | ||
Sex, male, n (%) | 91 (65.9%) | 55 (60.0%) | p = 0.457 | ||
Total bilirubin, mg/dL, median (IQR) | 23.6 (13.3–185.4) | 12.5 (9.3–15.9) | p < 0.001 | ||
Type of resection PD n (%) | 100 (72.5%) | 33 (36.7%) | p < 0.001 | ||
CA19-9 U/L median (IQR) | 379.3 (114.1–1000) | 10.6 (6.8–15.7) | p < 0.001 | ||
PIVKA-II mAU/mL, median (IQR) | 36.4 (26.1–166.8) | 23.3 (19.9–27.2) | p < 0.001 | ||
AST IU/L median (IQR) | 39.5 (21–111.5) | 20 (16.3–24) | p < 0.001 | ||
ALT IU/L median (IQR) | 55 (17–185.8) | 16 (11.3–23) | p < 0.001 | ||
Albumin (g/dL) mean ± SD | 3.6 ± 0.1 | 3.9 ± 0.1 | p = 0.027 | ||
WBC × 109/L median (IQR) | 5.64 (4.8–7.2) | 5.7 (4.9–6.5) | p = 0.696 | ||
CP n (%) | 14 (10.1%) | 17 (18.9%) | p = 0.060 |
Variables | Group 1 (n%) | Group 2 (n%) |
---|---|---|
Location (pancreatic head) | 100 (72.5%) | 33 (36.67%) |
Differentiated grade (poor), | 36 (26.1%) | NA |
Lymphatic metastasis | 57 (41.3%) | NA |
Vascular invasion | 7069 (50.70%) | NA |
Macro- | 44 (31.9%) | NA |
Micro- | 26 (18.8%) | NA |
Vascular resection and or reconstruction | 54 (39.1%) | NA |
Tumor size *, >4 cm | 84 (60.9%) | 42 (46.67%) |
Staging, T4NxM0 + | 10 (7.2%) | NA |
Vascular resection and or reconstruction | 54 (39.1%) | NA |
R0 resection # | 92 (66.7%) | NA |
Variables | Sensitivity | Specificity | AUC (95%CI) | PPV | NPV |
---|---|---|---|---|---|
PIVKA-II | 68.1% | 83.3% | 0.787 (0.730–0.845) | 86.2% | 63.0% |
CA19-9 | 83.3% | 94.4% | 0.906 (0.864–0.948) | 95.8% | 78.7% |
PIVKA-II + CA19-9 | 87.7% | 94.4% | 0.945 (0.916–0.974) | 96.0% | 83.3% |
PIVKA-II/ Total bilirubin | 66.7% | 79.2% | 0.749 (0.686–0.813) | 82.9% | 60.7% |
Group 1 | Group 2 | Total | p | Sensitivity | Specificity | |
---|---|---|---|---|---|---|
PIVKA-II(+) | 15 | 14 | 29 | <0.001 | 65.2% | 83.5% |
PIVKA-II(−) | 8 | 71 | 79 | |||
Total | 23 | 85 | 108 |
Characteristic | Vascular Invasion | Univariate Analysis | Multivariate Analysis | |||
---|---|---|---|---|---|---|
Positive n = 70 | Negative n = 68 | p Value | OR (95% CI) | p Value | OR (95% CI) | |
PIVKA-II, >I36.4 mAU/mL, n | 51 | 18 | <0.001 | 7.46 (3.51–15.84) | <0.001 | 0.07 (0.03–0.21) |
Age, ≥70 years, n | 8 | 12 | 0.300 | 0.60 (0.23–2.58) | NA | NA |
Sex, male, n | 47 | 44 | 0.763 | 1.12 (0.56–2.25) | NA | NA |
CA19-9. >198.5 U/L, n | 49 | 36 | 0.039 | 2.07 (1.03–4.17) | 0.73 | 0.85 (0.35–2.10) |
Albumin <3.2 g/dl, n | 22 | 30 | 0.124 | 0.58 (0.29–1.16) | NA | NA |
Tumor size * >7.8 cm, n | 9 | 2 | 0.032 | 4.87 (1.01–23.43) | 0.10 | 0.19 (0.03–1.39) |
Location, pancreatic head, n | 54 | 46 | 0.212 | 1.61 (0.76–3.43) | NA | NA |
Pathologic differentiation, poorly, n | 20 | 16 | 0.500 | 1.30 (0.61–2.79) | NA | NA |
Imaging findings, positive, n | 41 | 13 | <0.001 | 5.98 (2.77–12.91) | <0.001 | 0.09 (0.03–0.26) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, G.; Zhang, Y.; Cui, Y.; Liu, J. Protein Induced by Vitamin K Absence II: A Potential Biomarker to Differentiate Pancreatic Ductal Adenocarcinoma from Pancreatic Benign Lesions and Predict Vascular Invasion. J. Clin. Med. 2023, 12, 2769. https://doi.org/10.3390/jcm12082769
Yang Y, Li G, Zhang Y, Cui Y, Liu J. Protein Induced by Vitamin K Absence II: A Potential Biomarker to Differentiate Pancreatic Ductal Adenocarcinoma from Pancreatic Benign Lesions and Predict Vascular Invasion. Journal of Clinical Medicine. 2023; 12(8):2769. https://doi.org/10.3390/jcm12082769
Chicago/Turabian StyleYang, Yang, Guangbing Li, Yu Zhang, Yunfeng Cui, and Jun Liu. 2023. "Protein Induced by Vitamin K Absence II: A Potential Biomarker to Differentiate Pancreatic Ductal Adenocarcinoma from Pancreatic Benign Lesions and Predict Vascular Invasion" Journal of Clinical Medicine 12, no. 8: 2769. https://doi.org/10.3390/jcm12082769
APA StyleYang, Y., Li, G., Zhang, Y., Cui, Y., & Liu, J. (2023). Protein Induced by Vitamin K Absence II: A Potential Biomarker to Differentiate Pancreatic Ductal Adenocarcinoma from Pancreatic Benign Lesions and Predict Vascular Invasion. Journal of Clinical Medicine, 12(8), 2769. https://doi.org/10.3390/jcm12082769