Impact of Hyperoxia after Graft Reperfusion on Lactate Level and Outcomes in Adults Undergoing Orthotopic Liver Transplantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Definition and Study Endpoints
2.4. Statistical Analysis
2.5. Ethical Validation
3. Results
3.1. Study Population
3.2. Primary Endpoint
3.3. Secondary Endpoints
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
LT | liver transplantation |
IR | ischemia–reperfusion |
ROS | reactive oxygen species |
FiO2 | fraction of inspired oxygen |
PaO2 | oxygen partial arterial pressure |
ICU | intensive care unit |
PR | prothrombin ration |
AST | aspartate amino transaminase |
ALT | alanine amino transaminase |
AP | alkaline phosphatase |
GGT | gamma-glutamyl transferase |
MELD | model for end-stage liver disease |
NASH | nonalcoholic steatosis hepatitis |
HCC | hepatocellular carcinoma |
HAA | acute alcoholic hepatitis |
MV | mechanical ventilation |
RBC | packed red blood cells |
FFP | fresh frozen plasma |
References
- Agence de la Biomédecine. Transplantation Hépatique; Rapport Annuel; Agence de la Biomédecine: Saint-Denis, France, 2019. [Google Scholar]
- Smit, B.; Smulders, Y.M.; de Waard, M.C.; Boer, C.; Vonk, A.B.A.; Veerhoek, D.; Kamminga, S.; de Grooth, H.-J.S.; García-Vallejo, J.J.; Musters, R.J.P.; et al. Moderate hyperoxic versus near-physiological oxygen targets during and after coronary artery bypass surgery: A randomised controlled trial. Crit. Care 2016, 20, 55. [Google Scholar] [CrossRef]
- Casillas-Ramírez, A.; Mosbah, I.B.; Ramalho, F.; Roselló-Catafau, J.; Peralta, C. Past and future approaches to ischemia-reperfusion lesion associated with liver transplantation. Life Sci. 2006, 79, 1881–1894. [Google Scholar] [CrossRef]
- Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol. 2003, 552 Pt 2, 335–344. [Google Scholar] [CrossRef]
- Brueckl, C.; Kaestle, S.; Kerem, A.; Habazettl, H.; Krombach, F.; Kuppe, H.; Kuebler, W.M. Hyperoxia-Induced Reactive Oxygen Species Formation in Pulmonary Capillary Endo-thelial Cells In Situ. Am. J. Respir. Cell. Mol. Biol. 2006, 34, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Davis, W.B.; Rennard, S.I.; Bitterman, P.B.; Crystal, R.G. Pulmonary Oxygen Toxicity: Early Reversible Changes in Human Alveolar Structures Induced by Hyperoxia. N. Engl. J. Med. 1983, 309, 878–883. [Google Scholar]
- Crapo, J.D. Morphologic Changes in Pulmonary Oxygen Toxicity. Annu. Rev. Physiol. 1986, 48, 721–731. [Google Scholar] [CrossRef] [PubMed]
- Nunn, J.F. Nunn’s Applied Respiratory Physiology, 4th ed.; Butterworth-Heineman: Oxford, UK, 1993. [Google Scholar]
- Benumof, J.L. Preoxygenation: Best Method for Both Efficacy and Efficiency? Anesthesiology 1999, 91, 603. [Google Scholar] [CrossRef]
- Meyhoff, C.S.; Wetterslev, J.; Jorgensen, L.N.; Henneberg, S.W.; Høgdall, C.; Lundvall, L.; Svendsen, P.-E.; Mollerup, H.; Lunn, T.H.; Simonsen, I.; et al. Effect of High Perioperative Oxygen Fraction on Surgical Site Infection and Pulmonary Complications After Abdominal Surgery: The PROXI Randomized Clinical Trial. JAMA 2009, 302, 1543–1550. [Google Scholar] [CrossRef]
- Stub, D.; Smith, K.; Bernard, S.; Nehme, Z.; Stephenson, M.; Bray, J.E.; Cameron, P.; Barger, B.; Ellims, A.H.; Taylor, A.J.; et al. Air Versus Oxygen in ST-Segment–Elevation Myocardial Infarction. Circulation 2015, 131, 2143–2150. [Google Scholar] [CrossRef] [PubMed]
- Fred, R.; Joon, K.; Mitchell, M.; Matthew, V.; Jacqueline, U.; Kamran, A.M.; Jack, J.; Carissa, C.P.; Diana, T.; McBride, W.; et al. Association Between Hyperoxia and Mortality After Stroke: A Multicenter Cohort Study*. Crit. Care Med. 2014, 42, 387–396. [Google Scholar]
- Ni, Y.-N.; Wang, Y.-M.; Liang, B.-M.; Liang, Z.-A. The effect of hyperoxia on mortality in critically ill patients: A systematic review and meta analysis. BMC Pulm. Med. 2019, 19, 53. [Google Scholar] [CrossRef]
- Lilien, T.A.; Groeneveld, N.S.; van Etten-Jamaludin, F.; Peters, M.J.; Buysse, C.M.P.; Ralston, S.L.; van Woensel, J.B.M.; Bos, L.D.J.; Bem, R.A. Association of Arterial Hyperoxia with Outcomes in Critically Ill Children: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e2142105. [Google Scholar] [CrossRef]
- Chopinet, S.; Bobot, M.; Reydellet, L.; Bollon, E.; Gérolami, R.; Decoster, C.; Blasco, V.; Moal, V.; Grégoire, E.; Hardwigsen, J. Peri-operative risk factors of chronic kidney disease after liver transplantation. J. Nephrol. 2021, 35, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Olthoff, K.M.; Kulik, L.; Samstein, B.; Kaminski, M.; Abecassis, M.; Emond, J.; Shaked, A.; Christie, J.D. Validation of a current definition of early allograft dysfunction in liver transplant recipients and analysis of risk factors. Liver Transplant. 2010, 16, 943–949. [Google Scholar] [CrossRef]
- Serracino-Inglott, F.; Mathie, R.T. Hepatic ischemia-reperfusion injury. Am. J. Surg. 2001, 181, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Theodoraki, K.; Arkadopoulos, N.; Fragulidis, G.; Voros, D.; Karapanos, K.; Markatou, M.; Kostopanagiotou, G.; Smyrniotis, V. Transhepatic lactate gradient in relation to liver ischemia/reperfusion injury during major hepatectomies. Liver Transplant. 2006, 12, 1825–1831. [Google Scholar] [CrossRef] [PubMed]
- Cannistrà, M.; Ruggiero, M.; Zullo, A.; Gallelli, G.; Serafini, S.; Maria, M.; Naso, A.; Grande, R.; Serra, R.; Nardo, B. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int. J. Surg. 2016, 33, S57–S70. [Google Scholar] [CrossRef]
- Rinne, T. Cardioprotection and cardioplégia. In Textbook of Cardiothoracic Anesthesiology; Thys, D., Ed.; McGraw-Hill Co: New York, NY, USA, 2001; pp. 488–511. [Google Scholar]
- Koeppel, T.A.; Thies, J.C.; Schemmer, P.; Trauner, M.; Gebhard, M.-M.; Otto, G.; Post, S. Inhibition of nitric oxide synthesis in ischemia/reperfusion of the rat liver is followed by impairment of hepatic microvascular blood flow. J. Hepatol. 1997, 27, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Mészáros, K.; Lang, C.H.; Bagby, G.J.; Spitzer, J.J. Tumor necrosis factor increases in vivo glucose utilization of macrophage-rich tissues. Biochem. Biophys. Res. Commun. 1987, 149, 1–6. [Google Scholar] [CrossRef]
- Kraut, J.A.; Madias, N.E. Lactic Acidosis. N. Engl. J. Med. 2014, 371, 2309–2319. [Google Scholar]
- Vary, T.C.; Siegel, J.H.; Nakatani, T.; Sato, T.; Aoyama, H. Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am. J. Physiol. Endocrinol. Metab. 1986, 250, E634–E640. [Google Scholar] [CrossRef] [PubMed]
- Kreisberg, R.A. Lactate Homeostasis and Lactic Acidosis. Ann. Intern. Med. 1980, 92, 227–237. [Google Scholar] [CrossRef]
- Cady, L.D.; Weil, M.H.; Afifi, A.A.; Michaels, S.F.; Liu, V.Y.; Shubin, H. Quantization of severity of critical illness with special reference to blood lactate. Crit. Care Med. 1973, 1, 75–80. [Google Scholar] [CrossRef]
- Kaplan, L.J.; Kellum, J.A. Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit. Care Med. 2004, 32, 1120–1124. [Google Scholar] [CrossRef]
- Cecconi, M.; De Backer, D.; Antonelli, M.; Beale, R.; Bakker, J.; Hofer, C.; Jaeschke, R.; Mebazaa, A.; Pinsky, M.R.; Teboul, J.L.; et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2014, 40, 1795–1815. [Google Scholar] [CrossRef] [PubMed]
- Wiggans, M.G.; Starkie, T.; Shahtahmassebi, G.; Woolley, T.; Birt, D.; Erasmus, P.; Anderson, I.; Bowles, M.J.; Aroori, S.; Stell, A.D. Serum arterial lactate concentration predicts mortality and organ dysfunction following liver resection. Perioper. Med. 2013, 2, 21. [Google Scholar] [CrossRef]
- Zangl, Q.; Martignoni, A.; Jackson, S.H.; Ohta, A.; Klaunberg, B.; Kaufmann, I.; Lukashev, D.; Ward, J.M.; Sitkovsky, M.; Thiel, M.; et al. Postoperative Hyperoxia (60%) Worsens Hepatic Injury in Mice. Anesthesiology 2014, 121, 1217–1225. [Google Scholar] [CrossRef]
- Hilmi, I.; Horton, C.N.; Planinsic, R.M.; Sakai, T.; Nicolau-Raducu, R.; Damian, D.; Gligor, S.; Marcos, A. The impact of postreperfusion syndrome on short-term patient and liver allograft outcome in patients undergoing orthotopic liver transplantation. Liver Transplant. 2008, 14, 504–508. [Google Scholar] [CrossRef]
- Lee, S.; Sa, G.J.; Kim, S.Y.; Park, C.S. Intraoperative predictors of early tracheal extubation after living-donor liver transplantation. Korean J. Anesthesiol. 2014, 67, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Razonable, R.R.; Findlay, J.Y.; O’Riordan, A.; Burroughs, S.G.; Ghobrial, R.M.; Agarwal, B.; Davenport, A.; Gropper, M. Critical care issues in patients after liver transplantation. Liver Transplant. 2011, 17, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Durand, F.; Antoine, C.; Soubrane, O. Liver Transplantation in France. Liver Transplant. 2019, 25, 763–770. [Google Scholar] [CrossRef]
- Antoine, C.; Jasseron, C.; Dondero, F.; Savier, E.; for the French National Steering Committee of Donors After Circulatory Death. Liver Transplantation from Controlled Donors After Circulatory Death Using Normothermic Regional Perfusion: An Initial French Experience. Liver Transplant. 2020, 26, 1516–1521. [Google Scholar] [CrossRef]
- Lee, H.; Cho, C.W.; Yoon, S.; Suh, K.-S.; Ryu, H.G. Effect of sham feeding with gum chewing on postoperative ileus after liver trans-plantation-a randomized controlled trial. Clin. Transplant. 2016, 30, 1501–1507. [Google Scholar] [CrossRef]
- Venara, A.; Neunlist, M.; Slim, K.; Barbieux, J.; Colas, P.A.; Hamy, A.; Meurette, G. L’iléus postopératoire. Mécanismes, incidence, prévention. J. Chir. Viscérale. 2016, 153, 453–461. [Google Scholar] [CrossRef]
- Paugam-Burtz, C.; Kavafyan, J.; Merckx, P.; Dahmani, S.; Sommacale, D.; Ramsay, M.; Belghiti, J.; Mantz, J. Postreperfusion syndrome during liver transplantation for cirrhosis: Outcome and predictors. Liver Transplant. 2009, 15, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Umbro, I.; Tinti, F.; Scalera, I.; Evison, F.; Gunson, B.; Sharif, A.; Ferguson, J.; Muiesan, P.; Mitterhofer, A.P. Acute kidney injury and post-reperfusion syndrome in liver transplantation. World J. Gastroenterol. 2016, 22, 9314–9323. [Google Scholar] [CrossRef] [PubMed]
- Saidi, R.F.; Kenari, S.K.H. Liver Ischemia/Reperfusion Injury: An Overview. J. Investig. Surg. 2014, 27, 366–379. [Google Scholar] [CrossRef]
- Ellman, P.I.; Alvis, J.S.; Tache-Leon, C.; Singh, R.; Reece, T.B.; Kern, J.A.; Tribble, C.G.; Kron, I.L. Hyperoxic ventilation exacerbates lung reperfusion injury. J. Thorac. Cardiovasc. Surg. 2005, 130, 1440.e1–1440.e8. [Google Scholar] [CrossRef] [PubMed]
- Guensch, D.P.; Fischer, K.; Shie, N.; Lebel, J.; Friedrich, M.G. Hyperoxia Exacerbates Myocardial Ischemia in the Presence of Acute Coronary Artery Stenosis in Swine. Circ. Cardiovasc. Interv. 2015, 8, e002928. [Google Scholar] [CrossRef]
- Kilgannon, J.H.; Jones, A.E.; Shapiro, N.I.; Angelos, M.G.; Milcarek, B.; Hunter, K.; Parrillo, J.E.; Trzeciak, S.; for the Emergency Medicine Shock Research Network (EMShockNet) Investigators. Association Between Arterial Hyperoxia Following Resuscitation from Cardiac Arrest and In-Hospital Mortality. JAMA 2010, 303, 7. [Google Scholar] [CrossRef]
- Damiani, E.; Adrario, E.; Girardis, M.; Romano, R.; Pelaia, P.; Singer, M.; Donati, A. Arterial hyperoxia and mortality in critically ill patients: A systematic review and meta-analysis. Crit. Care 2014, 18, 711. [Google Scholar] [CrossRef]
- Wang, C.-H.; Chang, W.-T.; Huang, C.-H.; Tsai, M.-S.; Yu, P.-H.; Wang, A.-Y.; Chen, N.-C.; Chen, W.-J. The effect of hyperoxia on survival following adult cardiac arrest: A systematic review and meta-analysis of observational studies. Resuscitation 2014, 85, 1142–1148. [Google Scholar] [CrossRef]
- Richards, E.M.; Fiskum, G.; Rosenthal, R.E.; Hopkins, I.; McKenna, M.C. Hyperoxic Reperfusion After Global Ischemia Decreases Hippocampal Energy Metabolism. Stroke 2007, 38, 1578–1584. [Google Scholar] [CrossRef] [PubMed]
- Roberts, B.W.; Kilgannon, J.H.; Hunter, B.R.; Puskarich, M.A.; Pierce, L.; Donnino, M.; Leary, M.; Kline, J.A.; Jones, A.E.; Shapiro, N.I. Association between early hyperoxia exposure after resuscitation from cardiac arrest and neurological disability: A prospective multi-center protocol-directed cohort study. Circulation 2018, 137, 2114–2124. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Eastwood, G.M.; Glassford, N.J.; Leah, P.; Helen, Y.; Mercedes, G.-A.; Antoine, G.S.; Rinaldo, B. Conservative Oxygen Therapy in Mechanically Ventilated Patients: A Pilot Before-and-After Trial. Crit. Care Med. 2014, 42, 1414–1422. [Google Scholar] [CrossRef]
- Deby-Dupont, G.; Deby, C.; Lamy, M. Données actuelles sur la toxicité de l’oxygène. Réanimation 2002, 11, 28–39. [Google Scholar] [CrossRef]
- Rosenthal, R.E.; Silbergleit, R.; Hof, P.R.; Haywood, Y.; Fiskum, G. Hyperbaric Oxygen Reduces Neuronal Death and Improves Neurological Outcome After Canine Cardiac Arrest. Stroke 2003, 34, 1311–1316. [Google Scholar] [CrossRef]
- Burke, A.; Lucey, M.R. Non-Alcoholic Fatty Liver Disease, Non-Alcoholic Steatohepatitis and Orthotopic Liver Transplantation. Am. J. Transplant. 2004, 4, 686–693. [Google Scholar] [CrossRef] [PubMed]
Group PaO2 < 200 mmHg (n = 118) | Group PaO2 > 200 mmHg (n = 104) | p | |
---|---|---|---|
Age (years) | 53 ± 10 | 53 ± 11 | 0.74 |
Male | 93 (78%) | 76 (73%) | 0.35 |
Size (cm) | 171 ± 18 | 172 ± 10 | 0.60 |
Weight (kg) | 76 ± 16 | 74 ± 15 | 0.20 |
BMI (kg/m2) | 26 ± 4.3 | 25 ± 4.6 | 0.22 |
Child-Pugh score | 10 ± 3 | 9 ± 3 | 0.09 |
MELD score | 21 ± 10 | 20 ± 11 | 0.35 |
PR (%) < 70 | 48 ± 22 | 53 ± 25 | 0.14 |
Factor V (IU/L) | 0.52 ± 0.32 | 0.56 ± 0.33 | 0.35 |
Total bilirubin (µmol/L) < 17 | 138 ± 159 | 119 ± 152 | 0.36 |
AST (IU/L) < 34 | 194 ± 696 | 216 ± 767 | 0.82 |
ALT (IU/L) < 34 | 136 ± 445 | 197 ± 760 | 0.46 |
GGT (IU/L) < 45 | 130 ± 218 | 158 ± 197 | 0.34 |
AP (IU/L) < 70 | 174 ± 143 | 172 ± 148 | 0.95 |
Hemoglobin (g/dL) | 10.7 ± 2.4 | 10.9 ± 2.3 | 0.38 |
Platelets (G/L) (150–250) | 100 ± 68 | 104 ± 67 | 0.67 |
Serum creatinine (µmol/L) | 107 ± 78 | 109 ± 82 | 0.87 |
Albumin (g/L) (35–50) | 32 ± 7 | 33 ± 7 | 0.50 |
Etiologies: | |||
Cirrhosis | 95 (80%) | 77 (74%) | 0.25 |
Alcoholic cirrhosis | 40 (34%) | 24 (23%) | 0.08 |
Viral cirrhosis | 21 (18%) | 23 (22%) | 0.42 |
NASH cirrhosis | 10 (8%) | 5 (5%) | 0.27 |
Combined cirrhosis | 13 (11%) | 14 (13%) | 0.58 |
AAH | 2 (1.7%) | 2 (1.9%) | 0.90 |
HCC | 34 (29%) | 33 (32%) | 0.63 |
Hepato-biliary pathologies | 5 (4.2%) | 5 (4.8%) | 0.83 |
Fulminant hepatitis | 5 (4.2%) | 6 (5.8%) | 0.60 |
Re-transplants | 7 (6%) | 10 (9.6%) | 0.30 |
Others | 17 (14%) | 22 (21%) | 0.19 |
Group PaO2 < 200 mmHg (n = 118) | Group PaO2 > 200 mmHg (n = 104) | p | |
---|---|---|---|
Age (years) | 57 ± 16 | 53 ± 17 | 0.03 |
Size (cm) | 169 ± 9 | 170 ± 9 | 0.66 |
Weight (kg) | 75 ± 14 | 74 ± 15 | 0.60 |
BMI (kg/m2) | 26 ± 5 | 26 ± 5 | 0.44 |
PR (%) | 68 ± 15 | 70 ± 16 | 0.26 |
Total bilirubin (µmol/L) < 17 | 12 ± 9 | 11 ± 7 | 0.53 |
AST (IU/L) < 34 | 81 ± 190 | 61 ± 70 | 0.31 |
ALT (IU/L) < 34 | 66 ± 144 | 49 ± 53 | 0.24 |
GGT (IU/L) < 45 | 49 ± 57 | 48 ± 49 | 0.94 |
AP (IU/L) < 70 | 75 ± 40 | 70 ± 32 | 0.34 |
Natremia (mmol/L) < 133 | 147 ± 8 | 147 ± 8 | 0.99 |
Group PaO2 < 200 mmHg (n = 118) | Group PaO2 > 200 mmHg (n = 104) | p | |
---|---|---|---|
PaO2 after reperfusion (mmHg) | 141 ± 39 | 281 ± 67 | <0.01 |
Duration of surgery (minutes) | 304 ± 68 | 294 ± 63 | 0.26 |
Duration of cold ischemia (minutes) | 456 ± 125 | 462 ± 123 | 0.70 |
Anhepatic duration (minutes) | 70 ± 23 | 71 ± 23 | 0.67 |
Transfusion: | |||
RBC (units) | 2.7 ± 3.8 | 2.9 ± 4.4 | 0.59 |
Cell-Saver® (units a) | 1.8 ± 1.8 | 2.2 ± 2.3 | 0.08 |
FFP (units) | 4.1 ± 3.8 | 4.3 ± 3.9 | 0.77 |
Platelets concentrate (units) | 0.8 ± 0.8 | 0.7 ± 0.8 | 0.40 |
Group PaO2 < 200 mmHg (n = 118) | Group PaO2 > 200 mmHg (n = 104) | p | |
---|---|---|---|
Primary outcome: | |||
Lactate (mmol/L) < 0.80 15 min after reperfusion | 4.81 ± 2 | 6.03 ± 4 | <0.01 |
Secondary outcomes: | |||
Lactate end of LT (mmol/L) < 0.80 | 3.25 ± 2.1 | 4.22 ± 3.8 | 0.02 |
AST peak (IU/L) < 34 | 1015 ± 1540 | 1570 ± 2457 | 0.04 |
ALT peak (IU/L) < 34 | 699 ± 856 | 988 ± 1118 | 0.03 |
PR J7 (%) | 77.4 ± 16 | 76.7 ± 20 | 0.79 |
Factor V D7 (IU/mL) | 1.2 ± 0.38 | 1.2 ± 0.56 | 0.75 |
Bilirubin D7 (µmol/L) < 17 Early allograft dysfunction | 86 ± 85 31 (26%) | 83 ± 91 43 (42%) | 0.80 0.02 |
Norepinephrine level (mg/h) | 1.2 ± 1.4 | 1.4 ± 1.5 | 0.34 |
Duration of MV (hours) | 11 ± 13 | 24 ± 49 | <0.01 |
Duration of ileus (days) | 4.3 ± 1.6 | 4.9 ± 1.9 | 0.03 |
ICU length of stay (days) | 11.6 ± 14 | 20.6 ± 48 | 0.05 |
Hospital length of stay (days) | 27.6 ± 21 | 32.5 ± 39 | 0.26 |
Mortality in ICU | 5 (4.2%) | 8 (7.7%) | 0.27 |
Mortality at 1 year | 12 (10.2%) | 14 (13.5%) | 0.44 |
Postoperative complications: | |||
Acute renal failure | 35 (30%) | 43 (42%) | 0.06 |
Renal replacement therapy | 16 (14%) | 17 (17%) | 0.54 |
Hemorrhages | 8 (7%) | 14 (14%) | 0.07 |
Cardiovascular | 18 (15%) | 12 (12%) | 0.50 |
Respiratory | 11 (9%) | 12 (12%) | 0.50 |
Sepsis | 32 (27%) | 22 (22%) | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reydellet, L.; Le Saux, A.; Blasco, V.; Nafati, C.; Harti-Souab, K.; Armand, R.; Lannelongue, A.; Gregoire, E.; Hardwigsen, J.; Albanese, J.; et al. Impact of Hyperoxia after Graft Reperfusion on Lactate Level and Outcomes in Adults Undergoing Orthotopic Liver Transplantation. J. Clin. Med. 2023, 12, 2940. https://doi.org/10.3390/jcm12082940
Reydellet L, Le Saux A, Blasco V, Nafati C, Harti-Souab K, Armand R, Lannelongue A, Gregoire E, Hardwigsen J, Albanese J, et al. Impact of Hyperoxia after Graft Reperfusion on Lactate Level and Outcomes in Adults Undergoing Orthotopic Liver Transplantation. Journal of Clinical Medicine. 2023; 12(8):2940. https://doi.org/10.3390/jcm12082940
Chicago/Turabian StyleReydellet, Laurent, Audrey Le Saux, Valery Blasco, Cyril Nafati, Karim Harti-Souab, Romain Armand, Ariane Lannelongue, Emilie Gregoire, Jean Hardwigsen, Jacques Albanese, and et al. 2023. "Impact of Hyperoxia after Graft Reperfusion on Lactate Level and Outcomes in Adults Undergoing Orthotopic Liver Transplantation" Journal of Clinical Medicine 12, no. 8: 2940. https://doi.org/10.3390/jcm12082940
APA StyleReydellet, L., Le Saux, A., Blasco, V., Nafati, C., Harti-Souab, K., Armand, R., Lannelongue, A., Gregoire, E., Hardwigsen, J., Albanese, J., & Chopinet, S. (2023). Impact of Hyperoxia after Graft Reperfusion on Lactate Level and Outcomes in Adults Undergoing Orthotopic Liver Transplantation. Journal of Clinical Medicine, 12(8), 2940. https://doi.org/10.3390/jcm12082940