Evaluation of the Value of Perfusion-Weighted Magnetic Resonance Imaging in the Differential Diagnosis of Sellar and Parasellar Tumors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Perfusion Measurements
2.3.1. Measurements of Normal-Appearing White Matter
2.3.2. Measurements of Tumors of the Sellar and Parasellar Regions
- -
- Mean perfusion parameters for the whole tumor (labeled as rCBV’1)—the arithmetic mean of the perfusion values collected by outlining the tumor with ROIs on each axial slice (Figure 4A).
- -
- Mean of maximum perfusion parameters (labeled as rCBV’2)—the arithmetic mean of the maximum perfusion values collected by outlining the regions with the highest values with circular ROIs (about 30–60 mm2) on each axial slice of the tumor (Figure 4B).
- -
- Maximum perfusion values (labeled as rCBV’3)—the maximum values collected from the whole tumor with a circular ROI (about 30 mm2–60 mm2) (Figure 4B).
2.4. Statistical Analysis
3. Results
- -
- Mean rCBV’1 > 3.45 enables us to differentiate meningiomas from non-functional pituitary adenomas with a sensitivity of 65% and a specificity of 88%.
- -
- Mean rCBV’1 > 3.54 enables us to differentiate meningiomas from hormone-secreting adenomas with a sensitivity of 88% and a specificity of 82%.
- -
- Maximum rPH’3 > 2.37 enables us to differentiate meningiomas from non-functional adenomas with a sensitivity of 61% and a specificity of 76%.
- -
- Mean of maximum rPH’2 > 1.92 enables us to differentiate meningiomas from hormone-secreting adenomas with a sensitivity of 82% and a specificity of 55%.
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Melmed, S. Pituitary-Tumor Endocrinopathies. N. Engl. J. Med. 2020, 382, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Gittleman, H.; Ostrom, Q.; Farah, P.D.; Ondracek, A.; Chen, Y.; Wolinsky, Y.; Kruchko, C.; Singer, J.; Kshettry, V.R.; Laws, E.R.; et al. Descriptive epidemiology of pituitary tumors in the United States, 2004–2009. J. Neurosurg. 2014, 121, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Simão, G.N. Sellar and parasellar abnormalities. Radiol. Bras. 2018, 51, IX. [Google Scholar] [CrossRef]
- Bonneville, J.-F. Magnetic Resonance Imaging of Pituitary Tumors. Imaging Endocr. Disord. 2016, 45, 97–120. [Google Scholar] [CrossRef]
- Pierallini, A.; Caramia, F.; Falcone, C.; Tinelli, E.; Paonessa, A.; Ciddio, A.B.; Fiorelli, M.; Bianco, F.; Natalizi, S.; Ferrante, L.; et al. Pituitary Macroadenomas: Preoperative Evaluation of Consistency with Diffusion-weighted MR Imaging—Initial Experience. Radiology 2006, 239, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, C.; Maeda, M.; Hori, K.; Kozuka, Y.; Sakuma, H.; Taki, W.; Takeda, K. Apparent diffusion coefficient of pituitary macroadenoma evaluated with line-scan diffusion-weighted imaging. J. Neuroradiol. 2007, 34, 228–235. [Google Scholar] [CrossRef]
- Jouibari, M.F.; Ghodsi, S.M.; Akhlaghpoor, S.; Mehrazin, M.; Saadat, S.; Khoshnevisan, A.; Padeganeh, T.; Aoude, A. Complementary effect of H MRS in diagnosis of suprasellar tumors. Clin. Imaging 2012, 36, 810–815. [Google Scholar] [CrossRef]
- Chernov, M.F.; Kawamata, T.; Amano, K.; Ono, Y.; Suzuki, T.; Nakamura, R.; Muragaki, Y.; Iseki, H.; Kubo, O.; Hori, T.; et al. Possible role of single-voxel 1H-MRS in differential diagnosis of suprasellar tumors. J. Neuro-Oncol. 2008, 91, 191–198. [Google Scholar] [CrossRef]
- Mahmoud, O.M.; Tominaga, A.; Amatya, V.J.; Ohtaki, M.; Sugiyama, K.; Saito, T.; Sakoguchi, T.; Kinoshita, Y.; Shrestha, P.; Abe, N.; et al. Role of PROPELLER diffusion weighted imaging and apparent diffusion coefficient in the diagnosis of sellar and parasellar lesions. Eur. J. Radiol. 2010, 74, 420–427. [Google Scholar] [CrossRef]
- Mahmoud, O.M.; Tominaga, A.; Amatya, V.J.; Ohtaki, M.; Sugiyama, K.; Sakoguchi, T.; Kinoshita, Y.; Takeshima, Y.; Abe, N.; Akiyama, Y.; et al. Role of PROPELLER diffusion-weighted imaging and apparent diffusion coefficient in the evaluation of pituitary adenomas. Eur. J. Radiol. 2011, 80, 412–417. [Google Scholar] [CrossRef]
- Rutland, J.W.; Loewenstern, J.; Ranti, D.; Tsankova, N.M.; Bellaire, C.P.; Bederson, J.B.; Delman, B.N.; Shrivastava, R.K.; Balchandani, P. Analysis of 7-tesla diffusion-weighted imaging in the prediction of pituitary macroadenoma consistency. J. Neurosurg. 2021, 134, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Bladowska, J.; Sasiadek, M. Diagnostic imaging of the pituitary and parasellar region. In Pituitary Adenomas; Rahimi-Movaghar, V., Ed.; IntechOpen: Rijeka, Croatia, 2012; pp. 13–32. [Google Scholar]
- Bladowska, J.; Sokolska, V.; Sozański, T.; Bednarek-Tupikowska, G.; Sąsiadek, M. Comparison of post-surgical MRI presentation of the pituitary gland and its hormonal function. Pol. J. Radiol. 2010, 75, 29–36. [Google Scholar]
- Bladowska, J.; Zimny, A.; Guziński, M.; Hałoń, A.; Tabakow, P.; Czyż, M.; Czapiga, B.; Jarmundowicz, W.; Sąsiadek, M.J. Usefulness of perfusion weighted magnetic resonance imaging with signal-intensity curves analysis in the differential diagnosis of sellar and parasellar tumors: Preliminary report. Eur. J. Radiol. 2013, 82, 1292–1298. [Google Scholar] [CrossRef]
- Zhang, H.; Rödiger, L.A.; Shen, T.; Miao, J.; Oudkerk, M. Perfusion MR imaging for differentiation of benign and malignant meningiomas. Neuroradiology 2008, 50, 525–530. [Google Scholar] [CrossRef] [PubMed]
- Hakyemez, B.; Yildirim, N.; Erdoðan, C.; Kocaeli, H.; Korfali, E.; Parlak, M. Meningiomas with conventional MRI findings resembling intraaxial tumors: Can perfusion-weighted MRI be helpful in differentiation? Neuroradiology 2006, 48, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Floriano, V.H.; Torres, U.S.; Spotti, A.R.; Ferraz-Filho, J.R.L.; Tognola, W.A. The Role of Dynamic Susceptibility Contrast-Enhanced Perfusion MR Imaging in Differentiating between Infectious and Neoplastic Focal Brain Lesions: Results from a Cohort of 100 Consecutive Patients. PLoS ONE 2013, 8, e81509. [Google Scholar] [CrossRef]
- Ma, Z.; He, W.; Zhao, Y.; Yuan, J.; Zhang, Q.; Wu, Y.; Chen, H.; Yao, Z.; Li, S.; Wang, Y. Predictive value of PWI for blood supply and T1-spin echo MRI for consistency of pituitary adenoma. Neuroradiology 2015, 58, 51–57. [Google Scholar] [CrossRef]
- Mangla, R.; Kolar, B.; Zhu, T.; Zhong, J.; Almast, J.; Ekholm, S. Percentage Signal Recovery Derived from MR Dynamic Susceptibility Contrast Imaging Is Useful to Differentiate Common Enhancing Malignant Lesions of the Brain. Am. J. Neuroradiol. 2011, 32, 1004–1010. [Google Scholar] [CrossRef]
- Neska-Matuszewska, M.; Zimny, A.; Bladowska, J.; Sąsiadek, M. Diffusion and perfusion MR patterns of central nervous system lymphomas. Adv. Clin. Exp. Med. 2018, 27, 1099–1108. [Google Scholar] [CrossRef]
- Cha, S.; Lupo, J.; Chen, M.-H.; Lamborn, K.; McDermott, M.; Berger, M.; Nelson, S.; Dillon, W. Differentiation of Glioblastoma Multiforme and Single Brain Metastasis by Peak Height and Percentage of Signal Intensity Recovery Derived from Dynamic Susceptibility-Weighted Contrast-Enhanced Perfusion MR Imaging. Am. J. Neuroradiol. 2007, 28, 1078–1084. [Google Scholar] [CrossRef]
- Lupo, J.M.; Cha, S.; Chang, S.M.; Nelson, S.J. Dynamic Susceptibility-Weighted Perfusion Imaging of High-Grade Gliomas: Characterization of Spatial Heterogeneity. Am. J. Neuroradiol. 2005, 26, 1446–1454. [Google Scholar] [PubMed]
- Svolos, P.; Kousi, E.; Kapsalaki, E.; Theodorou, K.; Fezoulidis, I.; Kappas, C.; Tsougos, I. The role of diffusion and perfusion weighted imaging in the differential diagnosis of cerebral tumors: A review and future perspectives. Cancer Imaging 2014, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Romano, A.; Espagnet, M.C.R.; Calabria, L.F.; Coppola, V.; Talamanca, L.F.; Cipriani, V.; Minniti, G.; Pierallini, A.; Fantozzi, L.M.; Bozzao, A. Clinical applications of dynamic susceptibility contrast perfusion-weighted MR imaging in brain tumours. La Radiol. Med. 2011, 117, 445–460. [Google Scholar] [CrossRef] [PubMed]
- Barajas, R.F.; Chang, J.S.; Segal, M.R.; Parsa, A.T.; McDermott, M.W.; Berger, M.S.; Cha, S. Differentiation of Recurrent Glioblastoma Multiforme from Radiation Necrosis after External Beam Radiation Therapy with Dynamic Susceptibility-weighted Contrast-enhanced Perfusion MR Imaging. Radiology 2009, 253, 486–496. [Google Scholar] [CrossRef] [PubMed]
- Rossi, A.; Gandolfo, C.; Morana, G.; Severino, M.; Garrè, M.L.; Cama, A. New MR sequences (diffusion, perfusion, spectroscopy) in brain tumours. Pediatr. Radiol. 2010, 40, 999–1009. [Google Scholar] [CrossRef]
- Saloner, D.; Uzelac, A.; Hetts, S.; Martin, A.; Dillon, W. Modern meningioma imaging techniques. J. Neuro-Oncol. 2008, 99, 333–340. [Google Scholar] [CrossRef]
- Yang, S.; Law, M.; Zagzag, D.; Wu, H.H.; Cha, S.; Golfinos, J.G.; Knopp, E.A.; Johnson, G. Dynamic Contrast-Enhanced Perfusion MR Imaging Measurements of Endothelial Permeability: Differentiation between Atypical and Typical Meningiomas. Am. J. Neuroradiol. 2003, 24, 1554–1559. [Google Scholar]
- Maia, A.C., Jr.; Malheiros, S.M.; da Rocha, A.J.; da Silva, C.J.; Gabbai, A.A.; Ferraz, F.A.; Stávale, J.N. MR cerebral blood volume maps correlated with vascular endothelial growth factor expression and tumor grade in nonenhancing gliomas. AJNR Am. J. Neuroradiol. 2005, 26, 777–783. [Google Scholar]
- Hall, W.A. Pituitary Magnetic Resonance Imaging in Normal Human Volunteers: Occult Adenomas in the General Population. Ann. Intern. Med. 1994, 120, 817–820. [Google Scholar] [CrossRef]
- Molitch, M.E. Diagnosis and Treatment of Pituitary Adenomas. JAMA 2017, 317, 516–524. [Google Scholar] [CrossRef]
- Santelli, L.; Ramondo, G.; Della Puppa, A.; Ermani, M.; Scienza, R.; D’Avella, D.; Manara, R. Diffusion-weighted imaging does not predict histological grading in meningiomas. Acta Neurochir. 2010, 152, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Zimny, A.; Sasiadek, M. Contribution of perfusion-weighted magnetic resonance imaging in the differentiation of meningiomas and other extra-axial tumors: Case reports and literature review. J. Neuro-Oncol. 2010, 103, 777–783. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Baird, G.; Bell, L.; Quarles, C.; Boxerman, J. Utility of Percentage Signal Recovery and Baseline Signal in DSC-MRI Optimized for Relative CBV Measurement for Differentiating Glioblastoma, Lymphoma, Metastasis, and Meningioma. Am. J. Neuroradiol. 2019, 40, 1445–1450. [Google Scholar] [CrossRef]
- Kremer, S.; Grand, S.; Remy, C.; Pasquier, B.; Benabid, A.L.; Bracard, S.; Le Bas, J.F. Contribution of dynamic contrast MR imaging to the differentiation between dural metastasis and meningioma. Neuroradiology 2004, 46, 642–648. [Google Scholar] [CrossRef]
- Neska-Matuszewska, M.; Bladowska, J.; Sąsiadek, M.; Zimny, A. Differentiation of glioblastoma multiforme, metastases and primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a peritumoral zone—Searching for a practical approach. PLoS ONE 2018, 13, e0191341. [Google Scholar] [CrossRef]
- Larkin, S.J.; Ansorge, O. Pathology and pathogenesis of craniopharyngiomas. Pituitary 2012, 16, 9–17. [Google Scholar] [CrossRef]
- Young, R.J.; Knopp, E.A. Brain MRI: Tumor evaluation. J. Magn. Reson. Imaging 2006, 24, 709–724. [Google Scholar] [CrossRef]
- Hartmann, M.; Heiland, S.; Harting, I.; Tronnier, V.M.; Sommer, C.; Ludwig, R.; Sartor, K. Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci. Lett. 2003, 338, 119–122. [Google Scholar] [CrossRef]
- Gao, L.; Guo, X.; Tian, R.; Wang, Q.; Feng, M.; Bao, X.; Deng, K.; Yao, Y.; Lian, W.; Wang, R.; et al. Pituitary abscess: Clinical manifestations, diagnosis and treatment of 66 cases from a large pituitary center over 23 years. Pituitary 2016, 20, 189–194. [Google Scholar] [CrossRef]
- Dalan, R.; Leow, M.K.S. Pituitary abscess: Our experience with a case and a review of the literature. Pituitary 2007, 11, 299–306. [Google Scholar] [CrossRef]
- Feraco, P.; Donner, D.; Gagliardo, C.; Leonardi, I.; Piccinini, S.; Del Poggio, A.; Franciosi, R.; Petralia, B.; Hauwe, L.V.D. Cerebral abscesses imaging: A practical approach. J. Popul. Ther. Clin. Pharmacol. 2020, 27, e11–e24. [Google Scholar] [CrossRef] [PubMed]
- Mallereau, C.H.; Todeschi, J.; Ganau, M.; Cebula, H.; Bozzi, M.T.; Romano, A.; Le Van, T.; Ollivier, I.; Zaed, I.; Spatola, G.; et al. Pituitary Abscess: A Challenging Preoperative Diagnosis—A Multicenter Study. Medicina 2023, 59, 565. [Google Scholar] [CrossRef] [PubMed]
- Cha, J.; Kim, S.T.; Nam, D.-H.; Kong, D.-S.; Kim, H.-J.; Kim, Y.K.; Kim, H.Y.; Park, G.M.; Jeon, P.; Kim, K.H.; et al. Differentiation of Hemangioblastoma from Metastatic Brain Tumor using Dynamic Contrast-enhanced MR Imaging. Clin. Neuroradiol. 2016, 27, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.K.; Na, D.G.; Ryoo, J.W.; Roh, H.G.; Moon, C.H.; Byun, H.S.; Kim, J.H. Perfusion MR Imaging: Clinical Utility for the Differential Diagnosis of Various Brain Tumors. Korean J. Radiol. 2002, 3, 171–179. [Google Scholar] [CrossRef]
- Bing, F.; Kremer, S.; Lamalle, L.; Chabardes, S.; Ashraf, A.; Pasquier, B.; Le Bas, J.-F.; Krainik, A.; Grand, S. Value of perfusion MRI in the study of pilocytic astrocytoma and hemangioblastoma: Preliminary findings. J. Neuroradiol. 2009, 36, 82–87. [Google Scholar] [CrossRef]
- She, D.J.; Xing, Z.; Zeng, Z.; Shang, X.Y.; Cao, D.R. Differentiation of hemangioblastomas from pilocytic astrocytomas using 3-T magnetic resonance perfusion-weighted imaging and MR spectroscopy. Neuroradiology 2014, 57, 275–281. [Google Scholar] [CrossRef]
- Chibbaro, S.; Cebula, H.; Ganau, M.; Gubian, A.; Todeschi, J.; Lhermitte, B.; Proust, F.; Noel, G. Multidisciplinary management of an intra-sellar cavernous hemangioma: Case report and review of the literature. J. Clin. Neurosci. 2018, 52, 135–138. [Google Scholar] [CrossRef]
- Romano, A.; Ganau, M.; Zaed, I.; Scibilia, A.; Oretti, G.; Chibbaro, S. Primary Endoscopic Management of Apoplexy in a Giant Pituitary Adenoma. World Neurosurg. 2020, 142, 312–313. [Google Scholar] [CrossRef]
- Chibbaro, S.; Signorelli, F.; Milani, D.; Cebula, H.; Scibilia, A.; Bozzi, M.T.; Messina, R.; Zaed, I.; Todeschi, J.; Ollivier, I.; et al. Primary Endoscopic Endonasal Management of Giant Pituitary Adenomas: Outcome and Pitfalls from a Large Prospective Multicenter Experience. Cancers 2021, 13, 3603. [Google Scholar] [CrossRef]
Type of Tumor | n | % |
---|---|---|
Non-functional adenomas | 51 | 41.1 |
Meningiomas | 17 | 13.7 |
Non-functional adenomas following surgery | 12 | 9.7 |
Hormone-secreting adenomas | 11 | 8.9 |
Adamantinomatous type of craniopharyngiomas | 9 | 7.3 |
Metastasis | 5 | 4.0 |
Rathke’s cleft cysts | 5 | 4.0 |
Papillary type of craniopharyngiomas | 4 | 3.2 |
Lymphomas | 2 | 1.6 |
Optic chiasm gliomas | 2 | 1.6 |
Hamartomas | 2 | 1.6 |
Cavernous hemangioma | 1 | 0.8 |
Hemangioblastoma | 1 | 0.8 |
Intrasellar abscess | 1 | 0.8 |
Teratoma maturum | 1 | 0.8 |
No. | AUC | Parameter | Cut-Off | Compared Tumors |
---|---|---|---|---|
1 | 0.882 | rCBV’2 | 4.57 | Meningiomas vs. Hormone-secreting pituitary adenomas |
2 | 0.872 | rCBV’1 | 3.54 | Meningiomas vs. Hormone-secreting pituitary adenomas |
3 | 0.834 | rCBV’3 | 5.29 | Meningiomas vs. Hormone-secreting pituitary adenomas |
4 | 0.833 | rCBV’1 | 4.27 | Meningiomas vs. Non-functional adenomas followed after surgery |
5 | 0.824 | rCBV’2 | 4.53 | Meningiomas vs. Non-functional adenomas followed after surgery |
6 | 0.797 | rCBV’1 | 3.45 | Non-functional adenomas vs. Meningiomas |
7 | 0.790 | rCBV’2 | 4.52 | Non-functional adenomas vs. Meningiomas |
8 | 0.787 | rCBV’3 | 5.16 | Non-functional adenomas vs. Meningiomas |
9 | 0.755 | rCBV’3 | 5.08 | Meningiomas vs. Non-functional adenomas following surgery |
No. | AUC | Parameter | Cut-Off | Compared Tumors |
---|---|---|---|---|
1. | 0.711 | rPH’2 | 1.92 | Meningiomas vs. Hormone-secreting pituitary adenomas |
2 | 0.694 | rPH’3 | 2.37 | Non-functional adenomas vs. Meningiomas |
3 | 0.679 | rPH’3 | 4.64 | Meningiomas vs. Hormone-secreting pituitary adenomas |
4 | 0.676 | rPH’2 | 1.96 | Non-functional adenomas vs. Meningiomas |
Type of Tumor | Mean TR | Mean CC | Mean AP |
---|---|---|---|
Non-functional adenomas | 2.43 | 2.58 | 2.21 |
Meningiomas | 2.97 | 2.70 | 2.98 |
Non-functional adenomas following surgery | 2.56 | 2.67 | 2.34 |
Hormone-secreting adenomas | 3.13 | 3.31 | 2.63 |
Adamantinomatous type of craniopharyngiomas | 2.71 | 3.30 | 2.72 |
Metastasis | 2.68 | 2.00 | 2.42 |
Rathke’s cleft cysts | 1.22 | 1.42 | 0.86 |
Papillary type of craniopharyngiomas | 2.65 | 2.93 | 2.70 |
Lymphomas | 1.70 | 1.75 | 1.60 |
Optic chiasm gliomas | 2.80 | 2.35 | 2.85 |
Hamartomas | 2.10 | 1.60 | 1.30 |
Cavernous hemangioma * | 2.20 | 2.90 | 2.40 |
Hemangioblastoma * | 3.60 | 2.50 | 2.40 |
Intrasellar abscess * | 2.00 | 2.10 | 1.50 |
Teratoma maturum * | 2.50 | 3.00 | 2.20 |
Type of Tumor | n | Mean rCBV | Max rCBV | Mean rPH | Max rPH |
---|---|---|---|---|---|
Metastasis | 5 | 3.64 | 7.77 | 1.80 | 3.65 |
Rathke’s cleft cyst | 5 | 3.12 | 4.23 | 0.31 | 0.58 |
Papillary type of craniopharyngioma | 4 | 2.25 | 5.24 | 1.94 | 5.06 |
Lymphoma | 2 | 1.17 | 2.15 | 0.73 | 1.99 |
Optic chiasm glioma | 2 | 3.40 | 6.24 | 3.33 | 6.62 |
Hamartoma | 2 | 1.09 | 1.59 | 3.55 | 3.76 |
Cavernous hemangioma | 1 | 2.07 | 5.07 | 0.22 | 0.40 |
Hemangioblastoma | 1 | 4.22 | 9.21 | 2.90 | 7.03 |
Intrasellar abscess | 1 | 0.63 | 0.79 | 0.73 | 1.26 |
Teratoma maturum | 1 | 3.50 | 9.19 | 0.96 | 1.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korbecki, A.; Machaj, W.; Korbecka, J.; Sobański, M.; Kaczorowski, M.; Tabakow, P.; Hałoń, A.; Trybek, G.; Podgórski, P.; Bladowska, J. Evaluation of the Value of Perfusion-Weighted Magnetic Resonance Imaging in the Differential Diagnosis of Sellar and Parasellar Tumors. J. Clin. Med. 2023, 12, 2957. https://doi.org/10.3390/jcm12082957
Korbecki A, Machaj W, Korbecka J, Sobański M, Kaczorowski M, Tabakow P, Hałoń A, Trybek G, Podgórski P, Bladowska J. Evaluation of the Value of Perfusion-Weighted Magnetic Resonance Imaging in the Differential Diagnosis of Sellar and Parasellar Tumors. Journal of Clinical Medicine. 2023; 12(8):2957. https://doi.org/10.3390/jcm12082957
Chicago/Turabian StyleKorbecki, Adrian, Weronika Machaj, Justyna Korbecka, Michał Sobański, Maciej Kaczorowski, Paweł Tabakow, Agnieszka Hałoń, Grzegorz Trybek, Przemysław Podgórski, and Joanna Bladowska. 2023. "Evaluation of the Value of Perfusion-Weighted Magnetic Resonance Imaging in the Differential Diagnosis of Sellar and Parasellar Tumors" Journal of Clinical Medicine 12, no. 8: 2957. https://doi.org/10.3390/jcm12082957
APA StyleKorbecki, A., Machaj, W., Korbecka, J., Sobański, M., Kaczorowski, M., Tabakow, P., Hałoń, A., Trybek, G., Podgórski, P., & Bladowska, J. (2023). Evaluation of the Value of Perfusion-Weighted Magnetic Resonance Imaging in the Differential Diagnosis of Sellar and Parasellar Tumors. Journal of Clinical Medicine, 12(8), 2957. https://doi.org/10.3390/jcm12082957