The Clinical Value of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Predicting Hematoma Expansion and Poor Outcomes in Patients with Acute Intracerebral Hemorrhage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Qureshi, A.I.; Mendelow, A.D.; Hanley, D.F. Intracerebral haemorrhage. Lancet 2009, 373, 1632–1644. [Google Scholar] [CrossRef]
- An, S.J.; Kim, T.J.; Yoon, B.W. Epidemiology, Risk Factors, and Clinical Features of Intracerebral Hemorrhage: An Update. J. Stroke 2017, 19, 3–10. [Google Scholar] [CrossRef]
- Sorimachi, T.; Fujii, Y. Early neurological change in patients with spontaneous supratentorial intracerebral hemorrhage. J. Clin. Neurosci. 2010, 17, 1367–1371. [Google Scholar] [CrossRef]
- Li, Z.; You, M.; Long, C.; Bi, R.; Xu, H.; He, Q.; Hu, B. Hematoma Expansion in Intracerebral Hemorrhage: An Update on Prediction and Treatment. Front. Neurol. 2020, 11, 702. [Google Scholar] [CrossRef]
- Hemphill, J.C., 3rd; Bonovich, D.C.; Besmertis, L.; Manley, G.T.; Johnston, S.C. The ICH score: A simple, reliable grading scale for intracerebral hemorrhage. Stroke 2001, 32, 891–897. [Google Scholar] [CrossRef]
- Hou, J.; Manaenko, A.; Hakon, J.; Hansen-Schwartz, J.; Tang, J.; Zhang, J.H. Liraglutide, a long-acting GLP-1 mimetic, and its metabolite attenuate inflammation after intracerebral hemorrhage. J. Cereb. Blood Flow. Metab. 2012, 32, 2201–2210. [Google Scholar] [CrossRef]
- Wu, H.; Zhang, Z.; Li, Y.; Zhao, R.; Li, H.; Song, Y.; Qi, J.; Wang, J. Time course of upregulation of inflammatory mediators in the hemorrhagic brain in rats: Correlation with brain edema. Neurochem. Int. 2010, 57, 248–253. [Google Scholar] [CrossRef]
- Silva, Y.; Leira, R.; Tejada, J.; Lainez, J.M.; Castillo, J.; Davalos, A.; Stroke Project, Cerebrovascular Diseases Group of the Spanish Neurological Society. Molecular signatures of vascular injury are associated with early growth of intracerebral hemorrhage. Stroke 2005, 36, 86–91. [Google Scholar] [CrossRef]
- Wang, F.; Hu, S.; Ding, Y.; Ju, X.; Wang, L.; Lu, Q.; Wu, X. Neutrophil-to-Lymphocyte Ratio and 30-Day Mortality in Patients with Acute Intracerebral Hemorrhage. J. Stroke Cerebrovasc. Dis. 2016, 25, 182–187. [Google Scholar] [CrossRef]
- Lattanzi, S.; Cagnetti, C.; Provinciali, L.; Silvestrini, M. Neutrophil-to-Lymphocyte Ratio Predicts the Outcome of Acute Intracerebral Hemorrhage. Stroke 2016, 47, 1654–1657. [Google Scholar] [CrossRef]
- Luo, S.; Yang, W.S.; Shen, Y.Q.; Chen, P.; Zhang, S.Q.; Jia, Z.; Li, Q.; Zhao, J.T.; Xie, P. The clinical value of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, and D-dimer-to-fibrinogen ratio for predicting pneumonia and poor outcomes in patients with acute intracerebral hemorrhage. Front. Immunol. 2022, 13, 1037255. [Google Scholar] [CrossRef] [PubMed]
- Giede-Jeppe, A.; Bobinger, T.; Gerner, S.T.; Sembill, J.A.; Sprugel, M.I.; Beuscher, V.D.; Lucking, H.; Hoelter, P.; Kuramatsu, J.B.; Huttner, H.B. Neutrophil-to-Lymphocyte Ratio Is an Independent Predictor for In-Hospital Mortality in Spontaneous Intracerebral Hemorrhage. Cerebrovasc. Dis. 2017, 44, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zhang, W.; Huang, C.; Zhu, Y. Clinical significance of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in acute cerebral hemorrhage with gastrointestinal hemorrhage, and logistic regression analysis of risk factors. Exp. Ther. Med. 2019, 18, 1533–1538. [Google Scholar] [CrossRef] [PubMed]
- Hemphill, J.C., 3rd; Greenberg, S.M.; Anderson, C.S.; Becker, K.; Bendok, B.R.; Cushman, M.; Fung, G.L.; Goldstein, J.N.; Macdonald, R.L.; Mitchell, P.H.; et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2015, 46, 2032–2060. [Google Scholar] [CrossRef]
- Demchuk, A.M.; Dowlatshahi, D.; Rodriguez-Luna, D.; Molina, C.A.; Blas, Y.S.; Dzialowski, I.; Kobayashi, A.; Boulanger, J.M.; Lum, C.; Gubitz, G.; et al. Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): A prospective observational study. Lancet Neurol. 2012, 11, 307–314. [Google Scholar] [CrossRef]
- Hanley, D.F.; Thompson, R.E.; Rosenblum, M.; Yenokyan, G.; Lane, K.; McBee, N.; Mayo, S.W.; Bistran-Hall, A.J.; Gandhi, D.; Mould, W.A.; et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): A randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet 2019, 393, 1021–1032. [Google Scholar] [CrossRef]
- Qureshi, A.I.; Palesch, Y.Y.; Barsan, W.G.; Hanley, D.F.; Hsu, C.Y.; Martin, R.L.; Moy, C.S.; Silbergleit, R.; Steiner, T.; Suarez, J.I.; et al. Intensive Blood-Pressure Lowering in Patients with Acute Cerebral Hemorrhage. N. Engl. J. Med. 2016, 375, 1033–1043. [Google Scholar] [CrossRef]
- Brouwers, H.B.; Chang, Y.; Falcone, G.J.; Cai, X.; Ayres, A.M.; Battey, T.W.; Vashkevich, A.; McNamara, K.A.; Valant, V.; Schwab, K.; et al. Predicting hematoma expansion after primary intracerebral hemorrhage. JAMA Neurol. 2014, 71, 158–164. [Google Scholar] [CrossRef]
- Chan, S.; Conell, C.; Veerina, K.T.; Rao, V.A.; Flint, A.C. Prediction of intracerebral haemorrhage expansion with clinical, laboratory, pharmacologic, and noncontrast radiographic variables. Int. J. Stroke 2015, 10, 1057–1061. [Google Scholar] [CrossRef]
- Keep, R.F.; Hua, Y.; Xi, G. Intracerebral haemorrhage: Mechanisms of injury and therapeutic targets. Lancet Neurol. 2012, 11, 720–731. [Google Scholar] [CrossRef]
- Maestrini, I.; Strbian, D.; Gautier, S.; Haapaniemi, E.; Moulin, S.; Sairanen, T.; Dequatre-Ponchelle, N.; Sibolt, G.; Cordonnier, C.; Melkas, S.; et al. Higher neutrophil counts before thrombolysis for cerebral ischemia predict worse outcomes. Neurology 2015, 85, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Li, X.F.; Zhang, T.B.; Tang, Q.W.; Peng, M.; Zhao, W.Y. Prognostic Role of the Neutrophil-to-Lymphocyte Ratio in Intracerebral Hemorrhage: A Systematic Review and Meta-Analysis. Front. Neurosci. 2022, 16, 825859. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Qian, J.; Tao, C.; Wang, Y.; Lin, S.; You, C.; Yang, M. Neutrophil to lymphocyte ratio predicts island sign in patients with intracranial hemorrhage. Medicine 2018, 97, e13057. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gong, Q.; Guo, C.; Luo, Y.; Chen, L. Neutrophil-to-lymphocyte ratio predicts hematoma growth in intracerebral hemorrhage. J. Int. Med. Res. 2019, 47, 2970–2975. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, S.; Costa, F.; Seabra, M.; Dias, R.; Soares, A.; Dias, C.; Azevedo, E.; Castro, P. Systemic inflammation status at admission affects the outcome of intracerebral hemorrhage by increasing perihematomal edema but not the hematoma growth. Acta Neurol. Belg. 2021, 121, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Ruf, W.; Ruggeri, Z.M. Neutrophils release brakes of coagulation. Nat. Med. 2010, 16, 851–852. [Google Scholar] [CrossRef]
- Steppich, B.A.; Seitz, I.; Busch, G.; Stein, A.; Ott, I. Modulation of tissue factor and tissue factor pathway inhibitor-1 by neutrophil proteases. Thromb. Haemost. 2008, 100, 1068–1075. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.X.; O’Barr, T.J.; Anderson, A.J. Polymorphonuclear leukocytes promote neurotoxicity through release of matrix metalloproteinases, reactive oxygen species, and TNF-alpha. J. Neurochem. 2007, 102, 900–912. [Google Scholar] [CrossRef]
- Sansing, L.H.; Harris, T.H.; Kasner, S.E.; Hunter, C.A.; Kariko, K. Neutrophil depletion diminishes monocyte infiltration and improves functional outcome after experimental intracerebral hemorrhage. Acta Neurochir. Suppl. 2011, 111, 173–178. [Google Scholar]
- Tapia-Perez, J.H.; Karagianis, D.; Zilke, R.; Koufuglou, V.; Bondar, I.; Schneider, T. Assessment of systemic cellular inflammatory response after spontaneous intracerebral hemorrhage. Clin. Neurol. Neurosurg. 2016, 150, 72–79. [Google Scholar] [CrossRef]
- Motomura, T.; Shirabe, K.; Mano, Y.; Muto, J.; Toshima, T.; Umemoto, Y.; Fukuhara, T.; Uchiyama, H.; Ikegami, T.; Yoshizumi, T.; et al. Neutrophil-lymphocyte ratio reflects hepatocellular carcinoma recurrence after liver transplantation via inflammatory microenvironment. J. Hepatol. 2013, 58, 58–64. [Google Scholar] [CrossRef]
- Montecucco, F.; Liberale, L.; Bonaventura, A.; Vecchie, A.; Dallegri, F.; Carbone, F. The Role of Inflammation in Cardiovascular Outcome. Curr. Atheroscler. Rep. 2017, 19, 11. [Google Scholar] [CrossRef]
- Favas, T.T.; Dev, P.; Chaurasia, R.N.; Chakravarty, K.; Mishra, R.; Joshi, D.; Mishra, V.N.; Kumar, A.; Singh, V.K.; Pandey, M.; et al. Neurological manifestations of COVID-19: A systematic review and meta-analysis of proportions. Neurol. Sci. 2020, 41, 3437–3470. [Google Scholar] [CrossRef] [PubMed]
- Aksu, K.; Donmez, A.; Keser, G. Inflammation-induced thrombosis: Mechanisms, disease associations and management. Curr. Pharm. Des. 2012, 18, 1478–1493. [Google Scholar] [PubMed]
- Nording, H.M.; Seizer, P.; Langer, H.F. Platelets in inflammation and atherogenesis. Front. Immunol. 2015, 6, 98. [Google Scholar] [CrossRef]
- Koupenova, M.; Clancy, L.; Corkrey, H.A.; Freedman, J.E. Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circ. Res. 2018, 122, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Krenn-Pilko, S.; Langsenlehner, U.; Thurner, E.M.; Stojakovic, T.; Pichler, M.; Gerger, A.; Kapp, K.S.; Langsenlehner, T. The elevated preoperative platelet-to-lymphocyte ratio predicts poor prognosis in breast cancer patients. Br. J. Cancer 2014, 110, 2524–2530. [Google Scholar] [CrossRef] [PubMed]
- Ozcan Cetin, E.H.; Cetin, M.S.; Canpolat, U.; Akdi, A.; Aras, D.; Temizhan, A.; Aydogdu, S. Platelet-to-lymphocyte ratio as a novel marker of in-hospital and long-term adverse outcomes among patients with acute pulmonary embolism: A single center large-scale study. Thromb. Res. 2017, 150, 33–40. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, Y. Platelet-to-Lymphocyte Ratio as a New Predictive Index of Neurological Outcomes in Patients with Acute Intracranial Hemorrhage: A Retrospective Study. Med. Sci. Monit. 2018, 24, 4413–4420. [Google Scholar] [CrossRef]
- Tao, C.; Wang, J.; Hu, X.; Ma, J.; Li, H.; You, C. Clinical Value of Neutrophil to Lymphocyte and Platelet to Lymphocyte Ratio After Aneurysmal Subarachnoid Hemorrhage. Neurocrit. Care 2017, 26, 393–401. [Google Scholar] [CrossRef]
- Li, W.; Deng, W. Platelet-to-lymphocyte ratio predicts short-term mortality in patients with moderate to severe traumatic brain injury. Sci. Rep. 2022, 12, 13976. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Bhaskar, S.M.M. Prognostic Role of the Platelet-Lymphocyte Ratio in Acute Ischemic Stroke Patients Undergoing Reperfusion Therapy: A Meta-Analysis. J. Cent. Nerv. Syst. Dis. 2022, 14, 11795735221110373. [Google Scholar] [CrossRef] [PubMed]
- Curbelo, J.; Luquero Bueno, S.; Galvan-Roman, J.M.; Ortega-Gomez, M.; Rajas, O.; Fernandez-Jimenez, G.; Vega-Piris, L.; Rodriguez-Salvanes, F.; Arnalich, B.; Diaz, A.; et al. Correction: Inflammation biomarkers in blood as mortality predictors in community-acquired pneumonia admitted patients: Importance of comparison with neutrophil count percentage or neutrophil-lymphocyte ratio. PLoS ONE 2019, 14, e0212915. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Yang, M. Platelet-to-lymphocyte ratio is associated with cardiovascular disease in continuous ambulatory peritoneal dialysis patients. Int. Immunopharmacol. 2020, 78, 106063. [Google Scholar] [CrossRef]
- Hirahara, T.; Arigami, T.; Yanagita, S.; Matsushita, D.; Uchikado, Y.; Kita, Y.; Mori, S.; Sasaki, K.; Omoto, I.; Kurahara, H.; et al. Combined neutrophil-lymphocyte ratio and platelet-lymphocyte ratio predicts chemotherapy response and prognosis in patients with advanced gastric cancer. BMC Cancer 2019, 19, 672. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, Q.; Peng, M.; Lv, D.; Zi, W.; Xu, G.; Liu, X. The relationship between the platelet to leukocyte ratio and mechanical thrombectomy outcomes in acute ischemic stroke patients. Neurol. Res. 2020, 42, 890–896. [Google Scholar] [CrossRef]
- Duan, Z.; Wang, H.; Wang, Z.; Hao, Y.; Zi, W.; Yang, D.; Zhou, Z.; Liu, W.; Lin, M.; Shi, Z.; et al. Neutrophil-Lymphocyte Ratio Predicts Functional and Safety Outcomes after Endovascular Treatment for Acute Ischemic Stroke. Cerebrovasc. Dis. 2018, 45, 221–227. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Zhou, H.; Hui, X.; Li, H.; Zheng, J. A high neutrophil-to-platelet ratio is associated with hematoma expansion in patients with spontaneous intracerebral hemorrhage: A retrospective study. BMC Neurol. 2023, 23, 27. [Google Scholar] [CrossRef]
Hematoma Expansion (−) n = 429 | Hematoma Expansion (+) n = 91 | p-Value | |
---|---|---|---|
Age, year (SD) | 62.8 (15.9) | 70.8 (12.5) | 0.02 |
Male, n (%) | 266 (62.0) | 46 (50.5) | 0.04 |
Interval from onset to sample, hour (IQR) | 4 (2–6) | 4 (2–6) | 0.32 |
Initial NIHSS, score (IQR) | 5 (4–10) | 16 (10–20) | <0.001 |
Initial GCS, score (IQR) | 13 (8–15) | 5 (4–9) | <0.001 |
Hypertension, n (%) | 224 (52.2) | 59 (64.8) | 0.04 |
Diabetes mellitus, n (%) | 88 (20.5) | 33 (36.3) | 0.002 |
Hyperlipidemia, n (%) | 35 (8.2) | 9 (9.9) | 0.68 |
CAD, n (%) | 29 (6.8) | 9 (9.9) | 0.37 |
Current smoking, n (%) | 47 (11.0) | 10 (11.1) | 0.90 |
Prior stroke, n (%) | 72 (16.8) | 19 (20.9) | 0.36 |
Prior antiplatelet use, n (%) | 119 (27.7) | 29 (31.9) | 0.44 |
Prior anticoagulation, n (%) | 14 (3.3) | 7 (7.7) | 0.07 |
ICH lesion, n (%) | 0.13 | ||
deep | 182 (42.4) | 31 (34.1) | |
lobar | 172 (40.1) | 39 (42.9) | |
infratentorial | 51 (11.9) | 18 (19.8) | |
Combined IVH | 24 (5.6) | 3 (3.3) | |
WBC count, ×109/L (SD) | 11.25 (23.21) | 16.51 (48.21) | 0.08 |
Platelet count, ×109/L (SD) | 215.1 (94.3) | 233.8 (100.7) | 0.22 |
Hemoglobin, g/L (SD) | 13.7 (2.0) | 12.4 (2.2) | 0.26 |
Prothrombin time, INR (IQR) | 1.05 (1.01–1.13) | 1.07 (1.01–1.19) | 0.16 |
LDL, mg/dL (SD) | 87.8 (34.9) | 73.8 (34.9) | 0.49 |
Creatinine, mg/dL (SD) | 1.1 (2.3) | 1.4 (1.6) | 0.12 |
CRP, mg/dL (SD) | 12.2 (27.9) | 15.1 (33.0) | 0.14 |
HbA1c, % (SD) | 6.0 (1.0) | 6.3 (1.2) | 0.01 |
Initial random glucose, mg/dL (SD) | 147.9 (55.2) | 202.1 (83.9) | <0.001 |
Initial SBP, mmHg (SD) | 157.9 (32.7) | 162.8 (40.0) | 0.01 |
SBP at f/u CT, mmHg (SD) | 111.9 (15.8) | 119.0 (20.3) | <0.001 |
DBP, mmHg (SD) | 78.3 (18.4) | 80.8 (19.7) | 0.06 |
NLR, (SD) | 3.08 (1.77–5.16) | 8.24 (5.80–14.41) | <0.001 |
PLR, (SD) | 11.76 (6.08–21.17) | 29.05 (14.75–41.51) | <0.001 |
Initial ICH volume, mL (IQR) | 9 (3–25) | 24 (9–81) | <0.001 |
Hemostatic therapy, n (%) | 90 (21.0) | 25 (27.9) | 0.21 |
OR * | 95% CI | p-Value | OR * | 95% CI | p-Value | ||
---|---|---|---|---|---|---|---|
Raw NLR | 1.19 | 1.12–1.27 | <0.001 | Raw PLR | 1.01 | 1.00–1.02 | 0.04 |
NLR T1 | reference | PLR T1 | reference | ||||
NLR T2 | 3.12 | 0.82–11.83 | 0.10 | PLR T2 | 2.33 | 0.93–5.80 | 0.07 |
NLR T3 | 19.96 | 5.58–71.34 | <0.001 | PLR T3 | 6.30 | 2.77–14.34 | <0.001 |
1-Month Mortality | 3-Month mRS 3–6 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
OR * | 95% CI | OR * | 95% CI | OR * | 95% CI | OR * | 95% CI | ||||
Raw NLR | 1.16 | 1.08–1.24 | Raw PLR | 1.01 | 0.99–1.02 | Raw NLR | 1.10 | 1.05–1.26 | Raw PLR | 0.995 | 0.98–1.01 |
NLR T1 | reference | PLR T1 | reference | NLR T1 | reference | PLR T1 | reference | ||||
NLR T2 | 3.09 | 0.49–19.37 | PLR T2 | 0.76 | 0.21–2.71 | NLR T2 | 3.46 | 1.56–7.67 | PLR T2 | 1.62 | 0.79–3.33 |
NLR T3 | 13.23 | 2.24–78.33 | PLR T3 | 3.04 | 1.07–8.59 | NLR T3 | 3.24 | 1.45–7.25 | PLR T3 | 0.89 | 0.40–1.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Sohn, J.-H.; Kim, C.; Park, S.Y.; Lee, S.-H. The Clinical Value of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Predicting Hematoma Expansion and Poor Outcomes in Patients with Acute Intracerebral Hemorrhage. J. Clin. Med. 2023, 12, 3004. https://doi.org/10.3390/jcm12083004
Kim Y, Sohn J-H, Kim C, Park SY, Lee S-H. The Clinical Value of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Predicting Hematoma Expansion and Poor Outcomes in Patients with Acute Intracerebral Hemorrhage. Journal of Clinical Medicine. 2023; 12(8):3004. https://doi.org/10.3390/jcm12083004
Chicago/Turabian StyleKim, Yejin, Jong-Hee Sohn, Chulho Kim, So Young Park, and Sang-Hwa Lee. 2023. "The Clinical Value of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Predicting Hematoma Expansion and Poor Outcomes in Patients with Acute Intracerebral Hemorrhage" Journal of Clinical Medicine 12, no. 8: 3004. https://doi.org/10.3390/jcm12083004
APA StyleKim, Y., Sohn, J. -H., Kim, C., Park, S. Y., & Lee, S. -H. (2023). The Clinical Value of Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio for Predicting Hematoma Expansion and Poor Outcomes in Patients with Acute Intracerebral Hemorrhage. Journal of Clinical Medicine, 12(8), 3004. https://doi.org/10.3390/jcm12083004