The Impact of Weight Loss Prior to Hospital Readmission
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ram, P.; Shah, M.; Lo, K.B.U.; Agarwal, M.; Patel, B.; Tripathi, B.; Arora, S.; Patel, N.; Jorde, U.P.; Banerji, S. Etiologies and predictors of readmission among obese and morbidly obese patients admitted with heart failure. Heart Fail. Rev. 2021, 26, 829–838. [Google Scholar] [CrossRef]
- Braet, A.; Weltens, C.; Sermeus, W.; Vleugels, A. Risk factors for unplanned hospital re-admissions: A secondary data analysis of hospital discharge summaries. J. Eval. Clin. Pract. 2015, 21, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Brunner-La Rocca, H.P.; Peden, C.J.; Soong, J.; Holman, P.A.; Bogdanovskaya, M.; Barclay, L. Reasons for readmission after hospital discharge in patients with chronic diseases-Information from an international dataset. PLoS ONE 2020, 15, e0233457. [Google Scholar] [CrossRef]
- Allaudeen, N.; Vidyarthi, A.; Maselli, J.; Auerbach, A. Redefining readmission risk factors for general medicine patients. J. Hosp. Med. 2011, 6, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Mudge, A.M.; Kasper, K.; Clair, A.; Redfern, H.; Bell, J.J.; Barras, M.A.; Dip, G.; Pachana, N.A. Recurrent readmissions in medical patients: A prospective study. J. Hosp. Med. 2011, 6, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Graham, K.L.; Wilker, E.H.; Howell, M.D.; Davis, R.B.; Marcantonio, E.R. Differences between early and late readmissions among patients: A cohort study. Ann. Intern. Med. 2015, 162, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Friedmann, J.M.; Jensen, G.L.; Smiciklas-Wright, H.; McCamish, M.A. Predicting early nonelective hospital readmission in nutritionally compromised older adults. Am. J. Clin. Nutr. 1997, 65, 1714–1720. [Google Scholar] [CrossRef]
- Cruz, P.L.M.; Soares, B.L.M.; da Silva, J.E.; Lima, E.S.R.R. Clinical and nutritional predictors of hospital readmission within 30 days. Eur. J. Clin. Nutr. 2022, 76, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.; Miller, M.; Kaambwa, B.; Shahi, R.; Hakendorf, P.; Horwood, C.; Thompson, C. Malnutrition and its association with readmission and death within 7 days and 8-180 days postdischarge in older patients: A prospective observational study. BMJ Open 2017, 7, e018443. [Google Scholar]
- Sharma, Y.; Miller, M.; Kaambwa, B.; Shahi, R.; Hakendorf, P.; Horwood, C.; Thompson, C. Factors influencing early and late readmissions in Australian hospitalised patients and investigating role of admission nutrition status as a predictor of hospital readmissions: A cohort study. BMJ Open 2018, 8, e022246. [Google Scholar] [CrossRef]
- Jepma, P.; Ter Riet, G.; van Rijn, M.; Latour, C.H.M.; Peters, R.J.G.; Scholte Op Reimer, W.J.M.; Buurman, B.M. Readmission and mortality in patients >/=70 years with acute myocardial infarction or heart failure in the Netherlands: A retrospective cohort study of incidences and changes in risk factors over time. Neth. Heart J. 2019, 27, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Hua, M.; Gong, M.N.; Brady, J.; Wunsch, H. Early and late unplanned rehospitalizations for survivors of critical illness. Crit. Care Med. 2015, 43, 430–438. [Google Scholar] [CrossRef]
- Berenson, R.A.; Paulus, R.A.; Kalman, N.S. Medicare’s readmissions-reduction program—A positive alternative. N. Engl. J. Med. 2012, 366, 1364–1366. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.O.; Young, R.S.; Hinami, K.; Leung, A.; Williams, M.V. Interventions to reduce 30-day rehospitalization: A systematic review. Ann. Intern. Med. 2011, 155, 520–528. [Google Scholar] [CrossRef]
- Sharma, Y.; Thompson, C.; Kaambwa, B.; Shahi, R.; Miller, M. Validity of the Malnutrition Universal Screening Tool (MUST) in Australian hospitalized acutely unwell elderly patients. Asia Pac. J. Clin. Nutr. 2017, 26, 994–1000. [Google Scholar] [PubMed]
- Zhao, Y.; Li, Z.; Yang, T.; Wang, M.; Xi, X. Is body mass index associated with outcomes of mechanically ventilated adult patients in intensive critical units? A systematic review and meta-analysis. PLoS ONE 2018, 13, e0198669. [Google Scholar] [CrossRef] [PubMed]
- Laukkanen, J.A.; Kunutsor, S.K.; Hernesniemi, J.; Immonen, J.; Eskola, M.; Zaccardi, F.; Niemela, M.; Makikallio, T.; Hagnas, M.; Piuhola, J.; et al. Underweight and obesity are related to higher mortality in patients undergoing coronary angiography: The KARDIO invasive cardiology register study. Catheter. Cardiovasc. Interv. 2022, 100, 1242–1251. [Google Scholar] [CrossRef]
- Finkielman, J.D.; Gajic, O.; Afessa, B. Underweight is independently associated with mortality in post-operative and non-operative patients admitted to the intensive care unit: A retrospective study. BMC Emerg. Med. 2004, 4, 3. [Google Scholar] [CrossRef]
- Sayeed, Z.; Anoushiravani, A.A.; Chambers, M.C.; Gilbert, T.J.; Scaife, S.L.; El-Othmani, M.M.; Saleh, K.J. Comparing In-Hospital Total Joint Arthroplasty Outcomes and Resource Consumption Among Underweight and Morbidly Obese Patients. J. Arthroplasty 2016, 31, 2085–2090. [Google Scholar] [CrossRef]
- Zacharias, H.; Raw, J.; Nunn, A.; Parsons, S.; Johnson, M. Is there a role for subcutaneous furosemide in the community and hospice management of end-stage heart failure? Palliat. Med. 2011, 25, 658–663. [Google Scholar] [CrossRef]
- Gill, G.S.; Lam, P.H.; Brar, V.; Patel, S.; Arundel, C.; Deedwania, P.; Faselis, C.; Allman, R.M.; Zhang, S.; Morgan, C.J.; et al. In-Hospital Weight Loss and Outcomes in Patients With Heart Failure. J. Card. Fail. 2022, 28, 1116–1124. [Google Scholar] [CrossRef]
- Zannidi, D.; Patel, P.S.; Leventea, E.; Paciepnik, J.; Dobson, F.; Heyes, C.; Goudie, R.J.B.; Griep, L.M.O.; Preller, J.; Spillman, L.N. Factors Associated with Significant Weight Loss in Hospitalised Patients with COVID-19: A Retrospective Cohort Study in a Large Teaching Hospital. Nutrients 2022, 14, 4195. [Google Scholar] [CrossRef] [PubMed]
- Tadokoro, R.; Iida, T.; Mikura, K.; Imai, H.; Murai, N.; Kaji, M.; Hashizume, M.; Kigawa, Y.; Endo, K.; Iizaka, T.; et al. Factors involved in body weight loss and its maintenance in morbidly obese inpatients. Diabetol. Int. 2020, 11, 41–48. [Google Scholar] [CrossRef]
- Cereda, E.; Klersy, C.; Pedrolli, C.; Cameletti, B.; Bonardi, C.; Quarleri, L.; Cappello, S.; Bonoldi, A.; Bonadeo, E.; Caccialanza, R. The Geriatric Nutritional Risk Index predicts hospital length of stay and in-hospital weight loss in elderly patients. Clin. Nutr. 2015, 34, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Williamson, D.A.; Bray, G.A.; Ryan, D.H. Is 5% weight loss a satisfactory criterion to define clinically significant weight loss? Obesity 2015, 23, 2319–2320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z. Residuals and regression diagnostics: Focusing on logistic regression. Ann. Transl. Med. 2016, 4, 195. [Google Scholar] [CrossRef]
- Maali, Y.; Perez-Concha, O.; Coiera, E.; Roffe, D.; Day, R.O.; Gallego, B. Predicting 7-day, 30-day and 60-day all-cause unplanned readmission: A case study of a Sydney hospital. BMC Med. Inform. Decis. Mak. 2018, 18, 1. [Google Scholar] [CrossRef]
- Averin, A.; Shaff, M.; Weycker, D.; Lonshteyn, A.; Sato, R.; Pelton, S.I. Mortality and readmission in the year following hospitalization for pneumonia among US adults. Respir Med. 2021, 185, 106476. [Google Scholar] [CrossRef]
- Leitao, A.; Brito, A.; Pinho, J.; Alves, J.N.; Costa, R.; Amorim, J.M.; Ribeiro, M.; Pinho, I.; Ferreira, C. Predictors of hospital readmission 1 year after ischemic stroke. Intern. Emerg. Med. 2017, 12, 63–68. [Google Scholar] [CrossRef]
- Fusco, K.; Thompson, C.; Woodman, R.; Horwood, C.; Hakendorf, P.; Sharma, Y. The Impact of Morbid Obesity on the Health Outcomes of Hospital Inpatients: An Observational Study. J. Clin. Med. 2021, 10, 4382. [Google Scholar] [CrossRef]
- Woolley, C.; Thompson, C.; Hakendorf, P.; Horwood, C. The Effect of Age upon the Interrelationship of BMI and Inpatient Health Outcomes. J. Nutr. Health Aging 2019, 23, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Caughey, G.E.; Pratt, N.L.; Barratt, J.D.; Shakib, S.; Kemp-Casey, A.R.; Roughead, E.E. Understanding 30-day re-admission after hospitalisation of older patients for diabetes: Identifying those at greatest risk. Med. J. Aust. 2017, 206, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Dennis, D.M.; Carter, V.; Trevenen, M.; Tyler, J.; Perrella, L.; Lori, E.; Cooper, I. Do acute hospitalised patients in Australia have a different body mass index to the general Australian population: A point prevalence study? Aust. Health Rev. 2018, 42, 121–129. [Google Scholar] [CrossRef] [PubMed]
Characteristics of Index Admission | Stable Weight | Weight Gain > 5% | p Value 2 | Weight Loss > 5% | p Value 2 | p Value 3 |
---|---|---|---|---|---|---|
Total n = 1297 (%) | n = 671 (52) | n = 240 (18) | n = 386 (30) | |||
Age (median, IQR) | 74 (58, 84) | 68 (55, 81) | <0.001 | 74 (60, 84) | 0.004 | <0.001 |
Gender (male, n (%)) | 356 (53) | 122 (50) | 1.000 | 194 (50) | 1.000 | 0.445 |
BMI (median, IQR) | 26.5 (22.9, 30.4) | 25.2 (21.5, 30.9) | 0.383 | 26.7 (23.7, 31.4) | 0.036 | 0.030 |
ATSI, n (%) | 11 (2) | 6 (2) | 1.000 | 6 (2) | 1.000 | 0.877 |
CCI (median, IQR) | 1 (0, 2) | 1 (0, 2) | 0.686 | 1 (0, 2) | <0.001 | <0.001 |
Outcomes of index admission | ||||||
LOS 1 (median, IQR) | 4 (3, 8) | 5 (3, 8) | 0.426 | 5 (3, 8) | <0.001 | 0.002 |
ICU admission, n (%) | 20 (3) | 13 (5) | 0.235 | 10 (3) | 1.000 | 0.135 |
ICU hours (median, IQR) | 45 (28.5, 74.5) | 41 (17, 68) | 0.001 | 70 (43, 87) | <0.001 | <0.001 |
RSI median (IQR) | 0.96 (0.56, 1.56) | 1 (0.58, 1.67) | <0.001 | 0.98 (0.58, 1.60) | <0.001 | <0.001 |
Outcomes of Readmission | Stable Weight | Weight Gain > 5% | p Value 3 | Weight Loss > 5% | p Value 3 | p Value 4 |
---|---|---|---|---|---|---|
LOS 1 median (IQR) | 5 (2, 10) | 6 (3, 10) | 0.001 | 7 (3, 12) | <0.001 | <0.001 |
Inpatient mortality, n (%) | 3 (0) | 5 (2) | 0.188 | 10 (3) | 0.012 | 0.010 |
One-year mortality 2, n (%) | 67 (10) | 22 (9) | 1.000 | 69 (18) | <0.001 | <0.001 |
RR30, n (%) | 145 (22) | 48 (20) | 1.000 | 87 (23) | 1.000 | 0.754 |
RSI (median, IQR) | 0.95 (0.54, 1.89) | 1.01 (0.54, 1.79) | <0.001 | 1.13 (0.60, 2.08) | <0.001 | <0.001 |
ICU admission, n (%) | 31 (5) | 12 (5) | 1.000 | 23 (6) | 0.186 | 0.633 |
ICU hours (median, IQR) | 59 (40, 93) | 80.5 (42, 155) | <0.001 | 95 (63, 167) | <0.001 | <0.001 |
Discharge elsewhere (not home), n (%) | 106 (16) | 44 (18) | 0.068 | 85 (22) | 0.001 | 0.004 |
Outcome/Characteristic | Unadjusted Model | Adjusted Model | ||||
---|---|---|---|---|---|---|
IRR | 95% CI | p Value | IRR | 95% CI | p Value | |
BMI | 1.02 | 1.00, 1.04 | 0.043 | 1.02 | 1.00, 1.04 | 0.031 |
Age | 1.01 | 1.00, 1.01 | 0.029 | 1.01 | 1.00, 1.02 | 0.012 |
CCI | 1.11 | 1.04, 1.17 | 0.001 | 1.09 | 1.03, 1.16 | 0.004 |
LOS | 1.04 | 1.01, 1.08 | 0.009 | 1.04 | 1.00, 1.07 | 0.030 |
ICU hours | 1.51 | 1.37, 1.67 | <0.001 | 1.00 | 0.99, 1.01 | 0.973 |
Outcome | Unadjusted Model | Adjusted Model | ||||
---|---|---|---|---|---|---|
OR/IRR | 95% CI | p Value | OR/IRR | 95% CI | p Value | |
LOS | 1.25 | 1.20, 1.30 | <0.001 | 1.17 | 1.12, 1.22 | <0.001 |
RSI | 2.39 | 2.29, 2.49 | <0.001 | 2.37 | 2.27, 2.47 | <0.001 |
One-year mortality | 2.02 | 1.40, 2.90 | <0.001 | 1.50 | 0.99, 2.26 | 0.055 |
ICU hours | 3.20 | 3.03, 3.37 | <0.001 | 2.80 | 2.65, 2.96 | <0.001 |
ICU admission | 1.31 | 0.75, 2.28 | 0.343 | 1.11 | 0.62, 2.01 | 0.725 |
RR30 | 0.95 | 0.70, 1.28 | 0.725 | 0.96 | 0.70, 1.31 | 0.801 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fusco, K.; Sharma, Y.; Hakendorf, P.; Thompson, C. The Impact of Weight Loss Prior to Hospital Readmission. J. Clin. Med. 2023, 12, 3074. https://doi.org/10.3390/jcm12093074
Fusco K, Sharma Y, Hakendorf P, Thompson C. The Impact of Weight Loss Prior to Hospital Readmission. Journal of Clinical Medicine. 2023; 12(9):3074. https://doi.org/10.3390/jcm12093074
Chicago/Turabian StyleFusco, Kellie, Yogesh Sharma, Paul Hakendorf, and Campbell Thompson. 2023. "The Impact of Weight Loss Prior to Hospital Readmission" Journal of Clinical Medicine 12, no. 9: 3074. https://doi.org/10.3390/jcm12093074
APA StyleFusco, K., Sharma, Y., Hakendorf, P., & Thompson, C. (2023). The Impact of Weight Loss Prior to Hospital Readmission. Journal of Clinical Medicine, 12(9), 3074. https://doi.org/10.3390/jcm12093074