Evaluating the Efficacy of Teleophthalmology in Delivering Ophthalmic Care to Underserved Populations: A Literature Review
Abstract
:1. Introduction
2. Status of Eye Care in Rural Population
3. Teleophthalmology: A Potential Solution
4. Teleophthalmology and Its Effectiveness in Underserved Populations
Authors | Objectives and Region | Key Findings |
---|---|---|
Al-Aswad, L.A. et al. [34] | Feasibility of mobile real-time ophthalmology for screening of eye diseases. USA | 305 (32%) had glaucoma, (14%) had narrow-angle, 124 (13%) had cataracts, 29 had (3%) diabetic retinopathy, 9 (1%) had macular degeneration, and 97 (10%) had other eye diseases. |
Keshvardoost, S. et al. [44] | Accuracy of teleophthalmology system in reducing unnecessary referrals. Iran | The sensitivity and specificity of diagnosis made through digital images were 90% and 97% for diabetic retinopathy while for clinically significant macular edema (CSME) were 93% and 100% compared with the face-to-face visit. |
Host, B.K. et al. [51] | Assessment of patient satisfaction for real-time video consultation. Australia | 69.1% reported the service as very satisfied while 24.5% reported as satisfied |
Markan, A. et al. [52] | Retrospective analysis of demographic data of patients who availed an ophthalmology service (e-Sanjeevni) OPD. India | 56% were females and 44% were males. Commonly diagnosed conditions, dry eyes followed by allergic (21%) conjunctivitis (18%), refractive error (15%), and cataract (14%). |
Ravindran, M. et al. [53] | Evaluation of teleconsultation communicated in a hospital during COVID-19 lockdown. India | The majority of queries (58.93%) were directed to the department of the cornea, (16.26%) to the retina, (13.04%) to cataract, (10.14%) to glaucoma, and (1.61%) to pediatric ophthalmology. Out of 356 pre-term babies screened, 16.01% were diagnosed with retinopathy of prematurity (ROP). |
Das, T. et al. [55]. | Overview of the role of teleophthalmology for DR screening in rural populations. India | Fundus photographs of screened subjects were included. 94 had treatable DR, and images of 32 subjects were not graded due to poor quality |
Nanji, K. et al. [58] | Comparison of teleretinal (TR) with clinical examination for assessment of DR and AMD in diabetic patients. Kenya | The positive predictive value of TR as compared to clinical examination for DR diagnosis was 75% and 27.3% for AMD. The negative predictive value of TR was 97.2% for DR diagnosis and 98.1% for AMD diagnosis. |
Hong, K. et al. [59] | Comparison of referral recommendations after screening by an ophthalmic technologist at a remote site with an ophthalmologist investigating digital images obtained by the portable camera. Nepal | Ophthalmologists recommended 20% more referrals for total screened subjects than technicians. Ophthalmologists agreed with 97% of the referrals by technicians and found 2.8% as a variant of normal eye pathology. |
Li, R. et al. [67] | Evaluation of cost-effectiveness of telemedicine and traditional medicine at the population level for diabetic retinopathy (DR) and age-related muscular degeneration (AMD). China | At the population level, combined screening of AMD and DR is cost-effective for people 50 years and more. |
Bursell, S.-E. et al. [62] | Characterization of DR and diabetic macular edema (DME) in Native Americans (NA) and Alaskan natives (AN) using primary care teleophthalmology. USA | Prevalence of NPDR, PDR, DME, and STR among NA/AN patients was 17.7%, 2.3%, 2.3%, and 4.2%, respectively. The lowest prevalence was in Alaska while the highest was in patients with Hb1Ac greater than or equal to 8% |
Martin, Y.V. et al. [63] | Evaluation of satisfaction level for ophthalmology in patients and doctors. Assessment of prevalence of DR in a diabetic patient in rural population using teleophthalmology. Spain | 29.4% of patients had sight-threatening DR. 93.8% of patients and 70% of professionals were satisfied with teleophthalmology |
Li, Z. et al. [64] | Comparison of cost-effectiveness of telemedicine-based digital retinal imaging assessment with traditional fundus examination of DR in diabetic patients. USA | Out of 611 patients, DR was identified in 166 (27.2%) patients. Telemedicine-based digital retinal imaging assessment was cheaper at USD 49.95 than conventional fundus examination, which was USD 77.80. |
Fonda, S.J. et al. [76] | Estimation of the prevalence of diabetic macular edema (DME) and diabetic retinopathy (DR) in Native Americans and Alaska Natives (AI/AN) using macula-centered, non-mydriatic 200° field of view ultrawide field imaging (UWFI). USA | A high burden of diabetes involving complications was observed in the studied population. DME, DR, and any sight-threatening disease were found in 3.0, 28.6, and 3.0% of the individuals. DR was found to be associated with increasing age, while the chances of DME decreased with age. The observed results suggested the potential of UWFI in identification of early DR. |
Chia, M.A. et al. [77] | Evaluation of the utility of the Melbourne Rapid Fields Screening (MRF-S) i-Pad module for detecting field defects in rural areas. Australia | Study shows the benefit of MRF-S in a non-metropolitan environment. This iPad module can identify patients with mild and moderate field defects while providing good user acceptance and short test duration. |
5. Artificial Intelligence, Recent Technological Advancements and Teleophthalmology: An Overview
6. Advantages of Teleophthalmology
- Reduced transportation costs: It helps reduce transportation costs for rural residents who would otherwise need to travel long distances to visit an eye specialist.
- Benefits for the elderly: Teleophthalmology is particularly advantageous for older individuals who have limited mobility and a higher risk of eye diseases [33].
- Increased access to ophthalmologists: Teleophthalmology allows a single ophthalmologist to serve a larger number of patients, saving time and reducing the duration of patient visits from 2–3 h to 20–30 min. This convenience can also help reduce the number of lost follow-ups [34].
7. Limitations
8. Discussion
- Large-scale government-funded screening programs would help identify patients with DR, AMD, and other ocular diseases at early stages.
- Efforts should be made to familiarize and acclimate people with teleophthalmology [93].
- Comprehensive training with uniform standards is necessary for health professionals in this field [120].
- Consensus on image grading and agreement among health professionals is essential [121].
- Establishing a regulatory body could ensure the provision of teleophthalmology equipment to countries with higher-risk underserved populations and limited government resources.
- Further research is needed to develop policies regarding medico-legal liability for medical prescriptions and treating professionals, informed consent, and consultation payments [93].
- Addressing the willingness to pay (WTP) for teleophthalmology in underserved populations is a concern; people should be educated about this [121].
- Special training courses for staff and technicians responsible for capturing images and performing other tasks should be implemented.
- Webinars and online sessions can help train ophthalmologists from countries with low medical literacy, with experts in the field providing guidance.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grisolia, A.B.; Abalem, M.F.; Lu, Y.; Aoki, L.; Matayoshi, S. Teleophthalmology: Where are we now? Arq. Bras. Oftalmol. 2017, 80, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Anthony, C.M.; Altman, A.H.; Otte, B.; Mines, M.J.; Mazzoli, R.A.; Lappan, C.M.; Legault, G.L. Teleophthalmology in the United States Army: A review from 2004 through 2018. Mili. Med. 2023, 188, e182–e189. [Google Scholar] [CrossRef] [PubMed]
- Dunn, E.V.; Conrath, D.W.; Bloor, W.G.; Tranquada, B. An evaluation of four Telemedicine systems for primary care. Health Ser. Res. 1977, 12, 19. [Google Scholar]
- Bashshur, R.L. Telemedicine and health care. Telemed. J. E-Health 2002, 8, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Staub, F.J. OR consultation by Telemedicine. AORN J. 1977, 25, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Shoge, R.Y.; Ervin, A.M.; Contreras, M.; Harewood, J.; Aguwa, U.T.; Olivier, M.M. Improving access to eye care: A systematic review of the literature. Ophthalmology 2022, 129, e114–e126. [Google Scholar] [CrossRef] [PubMed]
- Fierson, W.M.; Chiang, M.F.; Good, W.; Phelps, D.; Reynolds, J.; Robbins, S.L.; Karr, D.J.; Bradford, G.E.; Nischal, K.; Roarty, J.; et al. Screening examination of premature infants for retinopathy of prematurity. Pediatrics 2013, 131, 189–195. [Google Scholar]
- Kandasamy, Y.; Smith, R.; Wright, I.; Hartley, L. Use of digital retinal imaging in screening for retinopathy of prematurity. J. Paed. Child Health 2013, 49, E1–E5. [Google Scholar] [CrossRef]
- Rudnisky, C.J.; Tennant, M.T.; Weis, E.; Ting, A.; Hinz, B.J.; Greve, M.D. Web-based grading of compressed stereoscopic digital photography versus standard slide film photography for the diagnosis of diabetic retinopathy. Ophthalmology 2007, 114, 1748–1754. [Google Scholar]
- Taylor, C.R.; Merin, L.M.; Salunga, A.M.; Hepworth, J.T.; Crutcher, T.D.; O’Day, D.M.; Pilon, B.A. Improving diabetic retinopathy screening ratios using Telemedicine-based digital retinal imaging technology: The Vine Hill study. Diab. Care 2007, 30, 574–578. [Google Scholar] [CrossRef]
- Caffery, L.J.; Farjian, M.; Smith, A.C. Telehealth interventions for reducing waiting lists and waiting times for specialist outpatient services: A scoping review. J. Telemed. Telecare 2016, 22, 504–512. [Google Scholar] [CrossRef] [PubMed]
- Liddy, C.; Rowan, M.S.; Afkham, A.; Maranger, J.; Keely, E. Building access to specialist care through e-consultation. Open Med. 2013, 7, e1. [Google Scholar]
- Kim, J.; Driver, D.D. Teleophthalmology for first nations clients at risk of diabetic retinopathy: A mixed methods evaluation. JMIR Med. Inform. 2015, 3, e3872. [Google Scholar] [CrossRef] [PubMed]
- Vinekar, A.; Jayadev, C.; Mangalesh, S.; Shetty, B.; Vidyasagar, D. Role of tele-medicine in retinopathy of prematurity screening in rural outreach centers in India–a report of 20,214 imaging sessions in the KIDROP program. Sem. Fet. Neonat. Med. 2015, 20, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Weaver, D.T.; Murdock, T.J. Telemedicine detection of type 1 ROP in a distant neonatal intensive care unit. J. Am Assoc. Ped. Ophthal. Strab. 2012, 16, 229–233. [Google Scholar] [CrossRef]
- Pérez, G.M.; Swart, W.; Munyenyembe, J.K.; Saranchuk, P. Barriers to pilot mobile teleophthalmology in a rural hospital in Southern Malawi. Pan Afr. Med. J. 2014, 19, 136. [Google Scholar] [CrossRef]
- Hautala, N.; Hyytinen, P.; Saarela, V.; Hägg, P.; Kurikka, A.; Runtti, M.; Tuulonen, A. A mobile eye unit for screening of diabetic retinopathy and follow-up of glaucoma in remote locations in northern Finland. Acta. Ophthal. 2009, 87, 912–913. [Google Scholar] [CrossRef]
- Rao, G.N. The Barrie Jones Lecture—Eye care for the neglected population: Challenges and solutions. Eye 2015, 29, 30–45. [Google Scholar] [CrossRef]
- Woodward, M.A.; Jeganathan, V.S.; Guo, W.; Cederna, J.; Newman-Casey, P.A. Barriers to attending eye appointments among underserved adults. J. Ophthal. Vis. Res. 2017, 12, 449. [Google Scholar]
- Sommer, A.; Tielsch, J.M.; Katz, J.; Quigley, H.A.; Gottsch, J.D.; Javitt, J.C.; Martone, J.F.; Royall, R.M.; Witt, K.A.; Ezrine, S. Racial differences in the cause-specific prevalence of blindness in east Baltimore. N. Eng. J. Med. 1991, 325, 1412–1417. [Google Scholar] [CrossRef]
- Ko, F.; Vitale, S.; Chou, C.F.; Cotch, M.F.; Saaddine, J.; Friedman, D.S. Prevalence of non-refractive visual impairment in US adults and associated risk factors, 1999–2002 and 2005–2008. JAMA 2012, 308, 2361–2368. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cotch, M.F.; Ryskulova, A.; Primo, S.A.; Nair, P.; Chou, C.F.; Geiss, L.S.; Barker, L.E.; Elliott, A.F.; Crews, J.E.; et al. Vision health disparities in the United States by race/ethnicity, education, and economic status: Findings from two nationally representative surveys. Am. J. Ophthal. 2012, 154, S53–S62. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Visual impairment and use of eye-care services and protective eyewear among children—United States, 2002. MMWR Morb. Mortal. Wkly. Rep. 2005, 54, 425–429. [Google Scholar]
- Sedarous, F.; Dimaras, H.; Isaac, M.; Lichter, M.; Tehrani, N.N. Identifying the ophthalmic needs of families living in Toronto shelters. Can. J. Ophthal. 2018, 53, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Noel, C.W.; Srivastava, R.; Lo, R.; Berger, A.; Tehrani, N.; Lichter, M. Unmet eye care needs among a homeless youth population. Can. J. Ophthal. 2016, 51, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Noel, C.W.; Fung, H.; Srivastava, R.; Lebovic, G.; Hwang, S.W.; Berger, A.; Lichter, M. Visual impairment and unmet eye care needs among homeless adults in a Canadian city. JAMA Ophthal. 2015, 133, 455–460. [Google Scholar] [CrossRef]
- Institute of Medicine (US)—Committee on the Consequences of Uninsurance. Care without Coverage: Too Little, Too Late; National Academies Press: Washington, DC, USA, 2002. [Google Scholar]
- McDaniel, J.T.; Albright, D.L.; Wallace, J.P.; Jenkins, W.D. Vision loss in older veterans is greater in rural than urban areas. Eye Rep. 2020, 6, 24–29. [Google Scholar] [CrossRef]
- Kilmer, G.; Bynum, L.; Balamurugan, A. Access to and use of eye care services in rural Arkansas. J. Rur. Health 2010, 26, 30–35. [Google Scholar] [CrossRef]
- Hale, N.L.; Bennett, K.J.; Probst, J.C. Diabetes care and outcomes: Disparities across rural America. J. Community Health 2010, 35, 365–374. [Google Scholar] [CrossRef]
- Verma, A.; Schulz, M.R.; Quandt, S.A.; Robinson, E.N.; Grzywacz, J.G.; Chen, H.; Arcury, T.A. Eye health and safety among Latino farmworkers. J. AgroMed. 2011, 16, 143–152. [Google Scholar] [CrossRef]
- Al-Aswad, L.A.; Rakitina, E. Transformation of Eye Care Through Innovations. Asia-Pac. J. Ophthal. 2023, 12, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Fatehi, F.; Jahedi, F.; Tay-Kearney, M.L.; Kanagasingam, Y. Teleophthalmology for the elderly population: A review of the literature. Int. J. Med. Inform. 2020, 136, 104089. [Google Scholar] [CrossRef] [PubMed]
- Al-Aswad, L.A.; Elgin, C.Y.; Patel, V.; Popplewell, D.; Gopal, K.; Gong, D.; Thomas, Z.; Joiner, D.; Chu, C.K.; Walters, S.; et al. Real-time mobile teleophthalmology for the detection of eye disease in minorities and low socioeconomics at-risk populations. Asia-Pac. J. Ophthal. 2021, 10, 461. [Google Scholar] [CrossRef] [PubMed]
- Reza, S.; Marjan, G.; Abbas, S.; Marzieh, S. Locating of Rural Health Centers Equipped with Telehealth using GIS: A Case Study on Khorramabad City, Iran. Amb. Sci. 2016, 3, 85–88. [Google Scholar] [CrossRef]
- Afshari, H.; Peng, Q. Challenges and solutions for location of healthcare facilities. Ind. Eng. Manag. 2014, 3, 1–2. [Google Scholar]
- Taylor, D.M.; Yeager, V.A.; Ouimet, C.; Menachemi, N. On Linkages; Using GIS for Administrative Decision-Making in a Local Public Health Setting. Pub. Health Rep. 2012, 127, 347–353. [Google Scholar] [CrossRef]
- Ayatollahi, H.; Nourani, A.; Khodaveisi, T.; Aghaei, H.; Mohammadpour, M. Teleophthalmology in practice: Lessons learned from a pilot project. Open Med. Inform. J. 2017, 11, 20–28. [Google Scholar]
- Mohammadi, S.F.; Saeedi-Anari, G.; Alinia, C.; Ashrafi, E.; Daneshvar, R.; Sommer, A. Is screening for glaucoma necessary? A policy guide and analysis. J. Ophthal. Vis. Res. 2014, 9, 3. [Google Scholar]
- Chavooshi, B.; Mohammadkhani, P.; Dolatshahee, B. Telemedicine vs. in-person delivery of intensive short-term dynamic psychotherapy for patients with medically unexplained pain: A 12-month randomized, controlled trial. J. Telemed. Telecare 2017, 23, 133–141. [Google Scholar] [CrossRef]
- Ayatollahi, H.; Hasannezhad, M.; Ford, H.S.; Haghighi, M.K. Type 1 diabetes self-management: Developing a web-based Telemedicine application. Health Inform. Manag. J. 2016, 45, 16–26. [Google Scholar] [CrossRef]
- Mireskandari, M.; Kayser, G.; Hufnagl, P.; Schrader, T.; Kayser, K. Teleconsultation in diagnostic pathology: Experience from Iran and Germany with the use of two European telepathology servers. J. Telemed. Telecare 2004, 10, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Khodaie, M.; Askari, A.; Bahaadinbeigy, K. Evaluation of a very low-cost and simple teleradiology technique. J. Digit. Imaging 2015, 28, 295–301. [Google Scholar] [CrossRef] [PubMed]
- Keshvardoost, S.; Bahaadinibeigy, K.; Shadman, H.; Tafreshi, A.G.; Baneshi, M.R. Design, development, and evaluation of a teleophthalmology system using a low-cost fundus camera. Acta Inform. Med. 2020, 28, 12. [Google Scholar] [CrossRef] [PubMed]
- Kiburg, K.V.; Turner, A.; He, M. Telemedicine and delivery of ophthalmic care in rural and remote communities: Drawing from Australian experience. Clin. Exper. Ophtha. 2022, 50, 793–800. [Google Scholar] [CrossRef]
- Walsh, L.; Hong, S.C.; Chalakkal, R.J.; Ogbuehi, K.C. A systematic review of current teleophthalmology services in New Zealand compared to the four comparable countries of the United Kingdom, Australia, United States of America (USA) and Canada. Clin. Ophthal. 2021, 15, 4015–4027. [Google Scholar] [CrossRef]
- Yogesan, K.; Henderson, C.; Barry, C.J.; Constable, I.J. Online eye care in prisons in Western Australia. J. Telemed. Telecare 2001, 7, 63–64. [Google Scholar] [CrossRef]
- Barry, C.J.; Henderson, C.; Kanagasingam, Y.; Constable, I.J. Working toward a portable tele-ophthalmic system for use in maximum-security prisons: A pilot study. Telemed. J. E-Health 2001, 7, 261–265. [Google Scholar] [CrossRef]
- Rosengren, D.; Blackwell, N.; Kelly, G.; Lenton, L.; Glastonbury, J. The use of Telemedicine to treat ophthalmological emergencies in rural Australia. J. Telemed. Telecare 1998, 4, 97–99. [Google Scholar] [CrossRef]
- Blackwell, N.A.; Kelly, G.J.; Lenton, L.M. Telemedicine ophthalmology consultation in remote Queensland. Med. J. Aus. 1997, 167, 583–586. [Google Scholar] [CrossRef]
- Host, B.K.; Turner, A.W.; Muir, J. Real-time teleophthalmology video consultation: An analysis of patient satisfaction in rural Western Australia. Clin. Exper. Optom. 2018, 101, 129–134. [Google Scholar] [CrossRef]
- Markan, A.; Kishore, A.; Agarwal, A.; Akella, M.; Singh, A.; Goyal, S.; Roy, M.; Singh, M.; Singh, M. Demographic profile of patients seeking teleophthalmology consultations through e-Sanjeevani: Retrospective analysis of 5138 patients from North India. Ind. J. Ophthal. 2022, 70, 4238–4243. [Google Scholar]
- Ravindran, M.; Segi, A.; Mohideen, S.; Allapitchai, F.; Rengappa, R. Impact of teleophthalmology during COVID-19 lockdown in a tertiary care center in South India. Ind. J. Ophthal. 2021, 69, 714. [Google Scholar]
- Siregar, S.R.; Ardiani, L.S.; Chua, A.; Chong, B.Y.Q.; Tan, D.T.H. Establishing a Virtual Corneal Clinic: A Real-Time Teleophthalmology Approach. Cornea 2023, 42, 376–382. [Google Scholar] [CrossRef] [PubMed]
- Das, T.; Pappuru, R.R. Telemedicine in diabetic retinopathy: Access to rural India. Ind. J. Ophthal. 2016, 64, 84. [Google Scholar] [CrossRef]
- Prathiba, V.; Rema, M. Teleophthalmology: A model for eye care delivery in rural and underserved areas of India. Int. J. Fam. Med. 2011, 2011, 1–4. [Google Scholar] [CrossRef]
- Bai, V.T.; Murali, V.; Kim, R.; Srivatsa, S.K. Teleophthalmology-based rural eye care in India. Telemed. E-Health 2007, 13, 313–321. [Google Scholar] [CrossRef]
- Nanji, K.; Kherani, I.N.; Damji, K.F.; Nyenze, M.; Kiage, D.; Tennant, M.T. The muranga teleophthalmology study: A comparison of virtual (teleretina) assessment with in-person clinical examination to diagnose diabetic retinopathy and age-related macular degeneration in Kenya. Mid. East Afr. J. Ophthal. 2020, 27, 91. [Google Scholar] [CrossRef]
- Hong, K.; Collon, S.; Chang, D.; Thakalli, S.; Welling, J.; Oliva, M.; Peralta, E.; Gurung, R.; Ruit, S.; Tabin, G.; et al. Teleophthalmology through handheld mobile devices: A pilot study in rural Nepal. J. Mob. Tech. Med. 2019, 8, 1–16. [Google Scholar] [CrossRef]
- Myung, D.; Jais, A.; He, L.; Blumenkranz, M.S.; Chang, R.T. 3D printed smartphone indirect lens adapter for rapid, high quality retinal imaging. J. Mob. Tech. Med. 2014, 13, 9–15. [Google Scholar] [CrossRef]
- Myung, D.; Jais, A.; He, L.; Chang, R.T. Simple, low-cost smartphone adapter for rapid, high quality ocular anterior segment imaging: A photo diary. J. Mob. Tech. Med. 2014, 3, 2–8. [Google Scholar] [CrossRef]
- Bursell, S.-E.; Fonda, S.J.; Lewis, D.G.; Horton, M.B. Prevalence of diabetic retinopathy and diabetic macular edema in a primary care-based teleophthalmology program for American Indians and Alaskan Natives. PLoS ONE 2018, 13, e0198551. [Google Scholar] [CrossRef] [PubMed]
- Martin, Y.V.; Callirgos, G.E.; Martin, T.M.; Veloso, M.P.; Santamaría, S.H.; Gálvez, M.I. Satisfaction of patients and primary care professionals with a teleophthalmology-based screening programme for diabetic retinopathy in a rural area in Castilla y León, Spain. Rur. Remo. Health 2020, 20, 5180. [Google Scholar]
- Li, Z.; Wu, C.; Olayiwola, J.N.; Hilaire, D.S.; Huang, J.J. Telemedicine-based digital retinal imaging vs standard ophthalmologic evaluation for the assessment of diabetic retinopathy. Conn. Med. 2012, 76, 85–90. [Google Scholar] [PubMed]
- Shih, K.C.; Wong, J.K.W.; Lian, J.X.; Lam, C.L.K.; Lai, J.S.M. Diagnostic accuracy of tele-ophthalmology versus face-to-face consultation: Abridged secondary. Hong Kong Med. J. 2023, 29 (Suppl. S1), 18–21. [Google Scholar] [PubMed]
- Sharafeldin, N.; Kawaguchi, A.; Sundaram, A.; Campbell, S.; Rudnisky, C.; Weis, E.; Tennant, M.T.; Damji, K.F. Review of economic evaluations of teleophthalmology as a screening strategy for chronic eye disease in adults. Br. J. Ophthalmol 2018, 102, 1485–1491. [Google Scholar] [CrossRef]
- Li, R.; Yang, Z.; Zhang, Y.; Bai, W.; Du, Y.; Sun, R.; Tang, J.; Wang, N.; Liu, H. Cost-effectiveness and cost-utility of traditional and Telemedicine combined population-based age-related macular degeneration and diabetic retinopathy screening in rural and urban China. Lancet Reg. Health-West Paci. 2022, 23, 100435. [Google Scholar] [CrossRef]
- Aoki, N.; Dunn, K.; Fukui, T.; Beck, J.R.; Schull, W.J.; Li, H.K. Cost-effectiveness analysis of Telemedicine to evaluate diabetic retinopathy in a prison population. Diabetes Care 2004, 27, 1095–1101. [Google Scholar] [CrossRef]
- Rachapelle, S.; Legood, R.; Alavi, Y.; Lindfield, R.; Sharma, T.; Kuper, H.; Polack, S. The cost–utility of Telemedicine to screen for diabetic retinopathy in India. Ophthalmology 2013, 120, 566–573. [Google Scholar] [CrossRef]
- Thomas, S.; Hodge, W.; Malvankar-Mehta, M. The Cost-Effectiveness Analysis of Teleglaucoma Screening Device. PLoS ONE 2015, 10, e0137913. [Google Scholar] [CrossRef]
- Kanjee, R.; Dookeran, R.I.; Mathen, M.K.; Stockl, F.A.; Leicht, R. Six-year prevalence and incidence of diabetic retinopathy and cost-effectiveness of tele-ophthalmology in Manitoba. Can. J. Ophthalmol. 2017, 52, S15–S18. [Google Scholar] [CrossRef]
- Muqri, H.; Shrivastava, A.; Muhtadi, R.; Chuck, R.S.; Mian, U.K. The Cost-Effectiveness of a Telemedicine Screening Program for Diabetic Retinopathy in New York City. Clin. Ophthalmol. 2022, 16, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Tan, I.J.; Dobson, L.P.; Bartnik, S.; Muir, J.; Turner, A.W. Real-time teleophthalmology versus face-to-face consultation: A systematic review. J. Telemed. Telecare 2017, 23, 629–638. [Google Scholar] [CrossRef] [PubMed]
- Meshkin, R.S.; Armstrong, G.W.; Hall, N.E.; Rossin, E.J.; Hymowitz, M.B.; Lorch, A.C. Effectiveness of a Telemedicine program for triage and diagnosis of emergent ophthalmic conditions. Eye 2023, 37, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.G.; Rodrigues, R.A.; Guerreiro, A.M.; Regatieri, C.V. A teleophthalmology system for the diagnosis of ocular urgency in remote areas of Brazil. Arq. Bras. Oftalmol. 2014, 77, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Fonda, S.J.; Bursell, S.-E.; Lewis, D.G.; Clary, D.; Shahon, D.; Silva, P.S. Prevalence of Diabetic Eye Diseases in American Indians and Alaska Natives (AI/AN) as Identified by the Indian Health Service’s National Teleophthalmology Program Using Ultrawide Field Imaging (UWFI). Ophthalmic Epidemiol. 2022, 29, 672–680. [Google Scholar] [CrossRef]
- Chia, M.A.; Trang, E.; Agar, A.; Vingrys, A.J.; Hepschke, J.; Kong, G.Y.; Turner, A.W. Screening for Glaucomatous Visual Field Defects in Rural Australia with an iPad. J. Curr. Glaucoma. Pract. 2021, 15, 125–131. [Google Scholar]
- Uzunova, S.; Kilova, K. Telemedicine in Ophthalmology: Lessons from the COVID-19 Era and Beyond. Acta. Med. Bulg. 2023, 50, 72–76. [Google Scholar] [CrossRef]
- Liu, H.; Li, L.; Wormstone, I.M.; Qiao, C.; Zhang, C.; Liu, P.; Li, S.; Wang, H.; Mou, D.; Pang, R.; et al. Development and validation of a deep learning system to detect glaucomatous optic neuropathy using fundus photographs. JAMA Ophthalmol. 2019, 137, 1353–1360. [Google Scholar] [CrossRef]
- Ruamviboonsuk, P.; Krause, J.; Chotcomwongse, P.; Sayres, R.; Raman, R.; Widner, K.; Campana, B.J.; Phene, S.; Hemarat, K.; Tadarati, M.; et al. Deep learning versus human graders for classifying diabetic retinopathy severity in a nationwide screening program. NPJ Digit. Med. 2019, 2, 25. [Google Scholar]
- Brown, J.M.; Campbell, J.P.; Beers, A.; Chang, K.; Ostmo, S.; Chan, R.P.; Dy, J.; Erdogmus, D.; Ioannidis, S.; Kalpathy-Cramer, J.; et al. Automated diagnosis of plus disease in retinopathy of prematurity using deep convolutional neural networks. JAMA Ophthalmol. 2018, 136, 803–810. [Google Scholar] [CrossRef]
- Grassmann, F.; Mengelkamp, J.; Brandl, C.; Harsch, S.; Zimmermann, M.E.; Linkohr, B.; Peters, A.; Heid, I.M.; Palm, C.; Weber, B.H. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 2018, 125, 1410–1420. [Google Scholar] [CrossRef] [PubMed]
- Nagiel, A.; Lalane, R.A.; Sadda, S.R.; Schwartz, S.D. Ultra-widefield fundus imaging: A review of clinical applications and future trends. Retina 2016, 36, 660–678. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Guo, C.; Nie, D.; Lin, D.; Zhu, Y.; Chen, C.; Xiang, Y.; Xu, F.; Jin, C.; Zhang, X.; et al. Development and evaluation of a deep learning system for screening retinal hemorrhage based on ultra-widefield fundus images. Transl. Vis. Sci. Technol. 2020, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Wintergerst, M.W.; Petrak, M.; Li, J.Q.; Larsen, P.P.; Berger, M.; Holz, F.G.; Finger, R.P.; Krohne, T.U. Non-contact smartphone-based fundus imaging compared to conventional fundus imaging: A low-cost alternative for retinopathy of prematurity screening and documentation. Sci. Rep. 2019, 9, 19711. [Google Scholar] [CrossRef]
- Xiao, D.; Vignarajan, J.; Chen, T.; Ye, T.; Xiao, B.; Congdon, N.; Kanagasingam, Y. Content design and system implementation of a teleophthalmology system for eye disease diagnosis and treatment and its preliminary practice in Guangdong, China. Telemed. E-Health 2017, 23, 964–975. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; Keel, S.; Meng, W.; Chang, R.T.; He, M. Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs. Ophthalmology 2018, 125, 1199–1206. [Google Scholar] [CrossRef]
- Zheng, C.; Xie, X.; Huang, L.; Chen, B.; Yang, J.; Lu, J.; Qiao, T.; Fan, Z.; Zhang, M. Detecting glaucoma based on spectral domain optical coherence tomography imaging of peripapillary retinal nerve fiber layer: A comparison study between hand-crafted features and deep learning model. Graefe's Arc. Clin. Exp. Ophthalmol. 2020, 258, 577–585. [Google Scholar] [CrossRef]
- Jin, K.; Lu, H.; Su, Z.; Cheng, C.; Ye, J.; Qian, D. Telemedicine screening of retinal diseases with a handheld portable non-mydriatic fundus camera. BMC Ophthalmol. 2017, 17, 1–7. [Google Scholar] [CrossRef]
- Alabi, R.O.; Ansin, A.; Clover, J.; Wilkins, J.; Rao, N.K.; Terry, M.A.; Tran, K.D.; Sales, C.S. Novel use of Telemedicine for corneal tissue evaluation in eye banking: Establishing a standardized approach for the remote evaluation of donor corneas for transplantation. Cornea 2019, 38, 509. [Google Scholar] [CrossRef]
- Tanya, S.M.; Nguyen, A.X.; Buchanan, S.; Jackman, C.S. Development of a Cloud-Based Clinical Decision Support System for Ophthalmology Triage Using Decision Tree Artificial Intelligence. Ophthalmol. Sci. 2023, 3, 100231. [Google Scholar] [CrossRef]
- Nuzzi, R.; Boscia, G.; Marolo, P.; Ricardi, F. The impact of artificial intelligence and deep learning in eye diseases: A review. Front. Med. 2021, 8, 710329. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidou, A.; Tsaousis, K.T. Teleophthalmology and artificial intelligence as game changers in ophthalmic care after the COVID-19 pandemic. Cureus 2021, 13, 16392. [Google Scholar] [CrossRef] [PubMed]
- Bastawrous, A.; Giardini, M.E.; Jordan, S.; Peek Collaboration. Peek: Portable Eye Examination Kit. The Smartphone Ophthalmoscope. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1612. [Google Scholar]
- Chiong, H.S.; Fang, J.L.; Wilson, G. Tele-manufactured affordable smartphone anterior segment microscope. Clin. Exp. Optom. 2016, 99, 580–582. [Google Scholar] [CrossRef]
- Russo, A.; Mapham, W.; Turano, R.; Costagliola, C.; Morescalchi, F.; Scaroni, N.; Semeraro, F. Comparison of smartphone ophthalmoscopy with slit-lamp biomicroscopy for grading vertical cup-to-disc ratio. J. Glaucoma. 2016, 25, e777–e781. [Google Scholar] [CrossRef] [PubMed]
- Maamari, R.N.; Keenan, J.D.; Fletcher, D.A.; Margolis, T.P. A mobile phone-based retinal camera for portable wide field imaging. Br. J. Ophthalmol. 2014, 98, 438–441. [Google Scholar] [CrossRef]
- Fletcher, D.; Maamari, R.; Switz, N.; Margolis, T. Retinal Cellscope Apparatus. U.S. Patent Application No. 15,094,750, 8 April 2016. [Google Scholar]
- Sanguansak, T.; Morley, K.; Morley, M.; Kusakul, S.; Lee, R.; Shieh, E.; Yospaiboon, Y.; Bhoomibunchoo, C.; Chai-Ear, S.; Joseph, A.; et al. Comparing smartphone camera adapters in imaging post-operative cataract patients. J. Telemed. Telecare 2017, 23, 36–43. [Google Scholar] [CrossRef]
- Russo, A.; Morescalchi, F.; Costagliola, C.; Delcassi, L.; Semeraro, F. A novel device to exploit the smartphone camera for fundus photography. J. Ophthalmol. 2015, 2015, 1–5. [Google Scholar] [CrossRef]
- Prea, S.; Guymer, R.; Kong, G.; Vingrys, A. Performance of a Smart Device over 12-Months for Home Monitoring of Patients with Intermediate Age-Related Macular Degeneration. J. Clin. Med. 2023, 12, 2530. [Google Scholar] [CrossRef]
- Prea, S.M.; Vingrys, A.J.; Kong, G.Y.X. Test Reliability and Compliance to a Twelve-Month Visual Field Telemedicine Study in Glaucoma Patients. J. Clin. Med. 2022, 11, 4317. [Google Scholar] [CrossRef]
- Jones, L.; Callaghan, T.; Campbell, P.; Jones, P.R.; Taylor, D.J.; Asfaw, D.S.; Edgar, D.F.; Crabb, D.P. Acceptability of a home-based visual field test (Eyecatcher) for glaucoma home monitoring: A qualitative study of patients’ views and experiences. BMJ Open 2021, 11, e043130. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.R.; Campbell, P.; Callaghan, T.; Jones, L.; Asfaw, D.S.; Edgar, D.F.; Crabb, D.P. Glaucoma Home Monitoring Using a Tablet-Based Visual Field Test (Eyecatcher): An Assessment of Accuracy and Adherence Over 6 Months. Am. J. Ophthalmol. 2021, 223, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Takagi, D.; Sawada, A.; Yamamoto, T. Evaluation of a New Rebound Self-tonometer, Icare HOME. J. Glaucoma. 2017, 26, 613–618. [Google Scholar] [CrossRef]
- Bitner, D.P.; Freedman, S.F. Long-term home monitoring of intraocular pressure in pediatric glaucoma. J. AAPOS 2016, 20, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Kiage, D.; Kherani, I.N.; Gichuhi, S.; Damji, K.F.; Nyenze, M. The Muranga teleophthalmology study: Comparison of virtual (teleglaucoma) with in-person clinical assessment to diagnose glaucoma. Mid-East Afr. J. Ophthal. 2013, 20, 150–157. [Google Scholar]
- Gonzalez, F.; Iglesias, R.; Suarez, A.; Gomez-Ulla, F.; Perez, R. Teleophthalmology link between a primary health care centre and a reference hospital. Med. Inform. Int. Med. 2001, 26, 251–263. [Google Scholar] [CrossRef]
- Weaver, D.T. Use of Telemedicine in retinopathy of prematurity. Int. Ophthal. Clin. 2014, 54, 9–20. [Google Scholar] [CrossRef]
- Boucher, M.C.; Desroches, G.; Garcia-Salinas, R.; Kherani, A.; Maberley, D.; Olivier, S.; Oh, M.; Stockl, F. Teleophthalmology screening for diabetic retinopathy through mobile imaging units within Canada. Can. J. Ophthal. 2008, 43, 658–668. [Google Scholar] [CrossRef]
- Mair, F.; Whitten, P. Systematic review of studies of patient satisfaction with Telemedicine. BMJ 2000, 320, 1517–1520. [Google Scholar] [CrossRef]
- Kumar, S.; Tay-Kearney, M.L.; Constable, I.J.; Yogesan, K. Internet based ophthalmology service: Impact assessment. Br. J. Ophthal. 2005, 89, 1382–1383. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Du, Y.E.; Coki, O.; Flynn, J.T.; Starren, J.; Chiang, M.F. Parental perceptions toward digital imaging and Telemedicine for retinopathy of prematurity management. Graefe's Arch. Clin. Exp. Ophthal. 2010, 248, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Court, J.H.; Austin, M.W. Virtual glaucoma clinics: Patient acceptance and quality of patient education compared to standard clinics. Clin. Ophthal. 2015, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Kurji, K.; Kiage, D.; Rudnisky, C.J.; Damji, K.F. Improving diabetic retinopathy screening in Africa: Patient satisfaction with teleophthalmology versus ophthalmologist-based screening. Mid-East Afr. J. Ophthal. 2013, 20, 56. [Google Scholar]
- Gupta, A.; Cavallerano, J.; Sun, J.K.; Silva, P.S. Evidence for Telemedicine for diabetic retinal disease. Semi. Ophthalmic 2017, 32, 22–28. [Google Scholar] [CrossRef]
- Mansberger, S.L.; Gleitsmann, K.; Gardiner, S.; Sheppler, C.; Demirel, S.; Wooten, K.; Becker, T.M. Comparing the effectiveness of Telemedicine and traditional surveillance in providing diabetic retinopathy screening examinations: A randomized controlled trial. Telemed. E-Health 2013, 19, 942–948. [Google Scholar] [CrossRef]
- Verma, M.; Raman, R.; Mohan, R.E. Application of tele-ophthalmology in remote diagnosis and management of adnexal and orbital diseases. Ind. J. Ophthal. 2009, 57, 381. [Google Scholar]
- Wedekind, L.; Sainani, K.; Pershing, S. Supply and perceived demand for teleophthalmology in triage and consultations in California emergency departments. JAMA Ophthal. 2016, 134, 537–543. [Google Scholar] [CrossRef]
- Avendaño-Veloso, A.; Parada-Hernández, F.; González-Ramos, R.; Dougnac-Osses, C.; Carrasco-Sáez, J.L.; Scanlon, P.H. Teleophthalmology: A strategy for timely diagnosis of sight-threatening diabetic retinopathy in primary care, Concepción, Chile. Int. J. Ophthal. 2019, 12, 1474. [Google Scholar] [CrossRef]
- Ramchandran, R.S.; Yilmaz, S.; Greaux, E.; Dozier, A. Patient perceived value of teleophthalmology in an urban, low income US population with diabetes. PLoS ONE 2020, 15, e0225300. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolar-Szczasny, J.; Barańska, A.; Rejdak, R. Evaluating the Efficacy of Teleophthalmology in Delivering Ophthalmic Care to Underserved Populations: A Literature Review. J. Clin. Med. 2023, 12, 3161. https://doi.org/10.3390/jcm12093161
Dolar-Szczasny J, Barańska A, Rejdak R. Evaluating the Efficacy of Teleophthalmology in Delivering Ophthalmic Care to Underserved Populations: A Literature Review. Journal of Clinical Medicine. 2023; 12(9):3161. https://doi.org/10.3390/jcm12093161
Chicago/Turabian StyleDolar-Szczasny, Joanna, Agnieszka Barańska, and Robert Rejdak. 2023. "Evaluating the Efficacy of Teleophthalmology in Delivering Ophthalmic Care to Underserved Populations: A Literature Review" Journal of Clinical Medicine 12, no. 9: 3161. https://doi.org/10.3390/jcm12093161
APA StyleDolar-Szczasny, J., Barańska, A., & Rejdak, R. (2023). Evaluating the Efficacy of Teleophthalmology in Delivering Ophthalmic Care to Underserved Populations: A Literature Review. Journal of Clinical Medicine, 12(9), 3161. https://doi.org/10.3390/jcm12093161