An Algorithm to Predict the Lack of Pregnancy after Intrauterine Insemination in Infertile Patients
Abstract
:1. Introduction
2. Material and Methods
2.1. Sample Size and Study Design
2.2. Patient Selection and Study Variables
2.3. Semen Sample Collection
2.4. Swim-Up Procedure
2.5. Alkaline and Neutral Comet Assay
2.6. Intrauterine Insemination
2.7. Data Analysis Procedure and Statistical Analysis
3. Results
3.1. Clinical Features and Pregnancy Rates Obtained in Our Cohort
3.2. Male Parameters That were Found to Be Associated with Lack of Pregnancy in IUI Couples
3.3. Female Parameters That were Found to Be Associated with Lack of Pregnancy in IUI Couples
3.4. Generalized Estimating Equation (GEE) Modeling
4. Discussion
Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vander Borght, M.; Wyns, C. Fertility and Infertility: Definition and Epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef]
- Priskorn, Z.S.; Juul, L. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility. Physiol. Rev. 2016, 96, 55–97. [Google Scholar]
- Boivin, J.; Bunting, L.; Collins, J.A.; Nygren, K.G. International Estimates of Infertility Prevalence and Treatment-Seeking: Potential Need and Demand for Infertility Medical Care. Hum. Reprod. 2007, 22, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
- Thoma, M.E.; McLain, A.C.; Louis, J.F.; King, R.B.; Trumble, A.C.; Sundaram, R.; Buck Louis, G.M. Prevalence of Infertility in the United States as Estimated by the Current Duration Approach and a Traditional Constructed Approach. Fertil. Steril. 2013, 99, 1324–1331.e1. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Allamaneni, S.S.R. Sperm DNA Damage Assessment: A Test Whose Time Has Come. Fertil. Steril. 2005, 84, 850–853. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, C.L.; Parrella, A.; Keating, D.; Cheung, S.; Rosenwaks, Z.; Palermo, G.D. A Treatment Algorithm for Couples with Unexplained Infertility Based on Sperm Chromatin Assessment. J. Assist. Reprod. Genet. 2018, 35, 1911–1917. [Google Scholar] [CrossRef] [PubMed]
- Bahadur, G.; Homburg, R. Growing Body of Evidence Supports Intrauterine Insemination as First Line Treatment and Rejects Unfounded Concerns about Its Efficacy, Risks and Cost Effectiveness. J. Bras. Reprod. Assist. 2019, 23, 62–67. [Google Scholar] [CrossRef]
- Bungum, M. Sperm DNA Integrity Assessment: A New Tool in Diagnosis and Treatment of Fertility. Obs. Gynecol. Int. 2012, 2012, 531042. [Google Scholar] [CrossRef]
- Cohlen, B.; Bijkerk, A.; Van Der Poel, S.; Ombelet, W. IUI: Review and Systematic Assessment of the Evidence That Supports Global Recommendations. Hum. Reprod. Update 2018, 24, 300–319. [Google Scholar] [CrossRef]
- Kandavel, V.; Cheong, Y. Does Intra-Uterine Insemination Have a Place in Modern ART Practice? Best Pr. Res. Clin. Obs. Gynaecol. 2018, 53, 3–10. [Google Scholar] [CrossRef]
- Michau, A.; El Hachem, H.; Galey, J.; Le Parco, S.; Perdigao, S.; Guthauser, B.; Rousseau, A.; Dahoun, M.; Guillaume, C.; Tabchouri, N.; et al. Predictive Factors for Pregnancy after Controlled Ovarian Stimulation and Intrauterine Insemination: A Retrospective Analysis of 4146 Cycles. J. Gynecol. Obstet. Hum. Reprod. 2019, 48, 811–815. [Google Scholar] [CrossRef] [PubMed]
- De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Wyns, C.; Mocanu, E.; Motrenko, T.; Scaravelli, G.; Smeenk, J.; Vidakovic, S.; Goossens, V.; et al. ART in Europe, 2015: Results Generated from European Registries by ESHRE. Hum. Reprod. Open 2020, 2020, hoz038. [Google Scholar] [CrossRef] [PubMed]
- Scholten, I.; Van Zijl, M.; Custers, I.M.; Brandes, M.; Gianotten, J.; Linden, P.J.Q. Van Der; Hompes, P.G.A.; Veen, F. Van Der; Mol, B.W.J. European Journal of Obstetrics & Gynecology and Reproductive Biology the Effectiveness of Intrauterine Insemination: A Matched Cohort. Eur. J. Obs. Gynecol. 2017, 212, 91–95. [Google Scholar] [CrossRef]
- Jeyendran, R.S.; Caroppo, E.; Rouen, A.; Anderson, A.; Puscheck, E. Selecting the Most Competent Sperm for Assisted Reproductive Technologies. Fertil. Steril. 2019, 111, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhao, J.Y.; Xue, X.; Zhu, G.X. The Association between Sperm DNA Fragmentation and Reproductive Outcomes Following Intrauterine Insemination, a Meta Analysis. Reprod. Toxicol. 2019, 86, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Thomson, L.K.; Zieschang, J.A.; Clark, A.M. Oxidative Deoxyribonucleic Acid Damage in Sperm Has a Negative Impact on Clinical Pregnancy Rate in Intrauterine Insemination but Not Intracytoplasmic Sperm Injection Cycles. Fertil. Steril. 2011, 96, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Bungum, M.; Humaidan, P.; Axmon, A.; Spano, M.; Bungum, L.; Erenpreiss, J.; Giwercman, A. Sperm DNA Integrity Assessment in Prediction of Assisted Reproduction Technology Outcome. Hum. Reprod. 2007, 22, 174–179. [Google Scholar] [CrossRef]
- Duran, E.H.H.; Morshedi, M.; Taylor, S.; Oehninger, S. Sperm DNA Quality Predicts Intrauterine Insemination Outcome: A Prospective Cohort Study. Hum. Reprod. 2002, 17, 3122–3128. [Google Scholar] [CrossRef]
- Rilcheva, V.; Ayvazova, N.; Ilieva, L.; Ivanova, S.; Konova, E. Sperm DNA Integrity Test and Assisted Reproductive Technology (Art) Outcome. J. Biomed. Clin. Res. 2016, 9, 21–29. [Google Scholar] [CrossRef]
- WHO Laboratory Manual for the Examination and Precesssing of Human Semen, 5th ed.; World Health Organization Press: Geneva, Switzerland, 2010.
- Casanovas, A.; Ribas-Maynou, J.; Lara-Cerrillo, S.; Jimenez-Macedo, A.R.; Hortal, O.; Benet, J.; Carrera, J.; García-Peiró, A. Double-Stranded Sperm DNA Damage Is a Cause of Delay in Embryo Development and Can Impair Implantation Rates. Fertil. Steril. 2019, 111, 699–707.e1. [Google Scholar] [CrossRef]
- Ayeleke, R.O.; Asseler, J.D.; Cohlen, B.J.; Veltman-Verhulst, S.M. Intra-Uterine Insemination for Unexplained Subfertility. Cochrane Database Syst. Rev. 2020, 3, CD001838. [Google Scholar] [CrossRef]
- Liang, K.-Y.; Zeger, S.L. Longitudinal Data Analysis Using GLM. Biometrika 1986, 73, 13–22. [Google Scholar] [CrossRef]
- Zeger, S.L.; Liang, K.-Y.; Albert, P.S. Models for Longitudinal Data: A Generalized Estimating Equation Approach. Biometrics 1988, 44, 1049. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, M.N.; Flaxman, S.R.; Boerma, T.; Vanderpoel, S.; Stevens, G.A. National, Regional, and Global Trends in Infertility Prevalence Since 1990: A Systematic Analysis of 277 Health Surveys. PLoS Med. 2012, 9, e1001356. [Google Scholar] [CrossRef] [PubMed]
- ESHRE Capri Workshop Group Intrauterine Insemination. Hum. Reprod. Update 2009, 15, 265–277. [CrossRef]
- Sociedad Española de Fertilidad Registro Nacional de Actividad 2014—Registro SEF 2014; Spanish Fertility Society: Madrid, Spain, 2014.
- Sugihara, A.; Van Avermaete, F.; Roelant, E.; Punjabi, U.; De Neubourg, D. The Role of Sperm DNA Fragmentation Testing in Predicting Intra-Uterine Insemination Outcome: A Systematic Review and Meta-Analysis. Eur. J. Obs. Gynecol. Reprod. Biol. 2020, 244, 8–15. [Google Scholar] [CrossRef]
- Khodabandelu, S.; Basirat, Z.; Khaleghi, S.; Khafri, S.; Montazery Kordy, H.; Golsorkhtabaramiri, M. Developing Machine Learning-Based Models to Predict Intrauterine Insemination (IUI) Success by Address Modeling Challenges in Imbalanced Data and Providing Modification Solutions for Them. BMC Med. Inform. Decis. Mak. 2022, 22, 1–13. [Google Scholar] [CrossRef]
- Antaki, R.; Dean, N.L.; Lapensée, L.; Racicot, M.H.; Ménard, S.; Kadoch, I.J. An Algorithm Combining Ultrasound Monitoring and Urinary Luteinizing Hormone Testing: A Novel Approach for Intrauterine Insemination Timing. J. Obs. Gynaecol. Can. 2011, 33, 1248–1252. [Google Scholar] [CrossRef]
- Valiuškaitė, V.; Raudonis, V.; Maskeliūnas, R.; Damaševičius, R.; Krilavičius, T. Deep Learning Based Evaluation of Spermatozoid Motility for Artificial Insemination. Sensors 2020, 21, 72. [Google Scholar] [CrossRef]
- Phillips, N.; Taylor, L.; Bachmann, G. Maternal, Infant and Childhood Risks Associated with Advanced Paternal Age: The Need for Comprehensive Counseling for Men. Maturitas 2019, 125, 81–84. [Google Scholar] [CrossRef]
- Matorras, R.; Expósito, A. Decline in Human Fertility Rates with Male Age: A Consequence of a Decrease in Male Fecundity with Aging? Gynecol. Obstet. Investig. 2011, 71, 229–235. [Google Scholar] [CrossRef]
- Horta, F.; Vollenhoven, B.; Healey, M.; Busija, L.; Catt, S. Male Ageing Is Negatively Associated with the Chance of Live Birth in IVF/ICSI Cycles for Idiopathic Infertility. Hum. Reprod. 2019, 34, 2523–2532. [Google Scholar] [CrossRef] [PubMed]
- Wyrobek, A.J.; Eskenazi, B.; Young, S.; Arnheim, N.; Tiemann-Boege, I.; Jabs, E.W.; Glaser, R.L.; Pearson, F.S.; Evenson, D. Advancing Age Has Differential Effects on DNA Damage, Chromatin Integrity, Gene Mutations, and Aneuploidies in Sperm. Proc. Natl. Acad. Sci. USA 2006, 103, 9601–9606. [Google Scholar] [CrossRef] [PubMed]
- Bellver, J.; Garrido, N.; Remohí, J.; Pellicer, A.; Meseguer, M. Influence of Paternal Age on Assisted Reproduction Outcome. Reprod. Biomed. Online 2008, 17, 595–604. [Google Scholar] [CrossRef]
- Belloc, S.; Hazout, A.; Zini, A.; Merviel, P.; Cabry, R.; Chahine, H.; Copin, H.; Benkhalifa, M. How to Overcome Male Infertility after 40: Influence of Paternal Age on Fertility. Maturitas 2014, 78, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Ombelet, W.; Dhont, N.; Thijssen, A.; Bosmans, E.; Kruger, T. Semen Quality and Prediction of IUI Success in Male Subfertility: A Systematic Review. Reprod. Biomed. Online 2014, 28, 300–309. [Google Scholar] [CrossRef]
- Merviel, P.; Heraud, M.H.; Grenier, N.; Lourdel, E.; Sanguinet, P.; Copin, H. Predictive Factors for Pregnancy after Intrauterine Insemination (IUI): An Analysis of 1038 Cycles and a Review of the Literature. Fertil. Steril. 2010, 93, 79–88. [Google Scholar] [CrossRef]
- Lemmens, L.; Kos, S.; Beijer, C.; Brinkman, J.W.; van der Horst, F.A.L.; van den Hoven, L.; Kieslinger, D.C.; van Trooyen-van Vrouwerff, N.J.; Wolthuis, A.; Hendriks, J.C.M.; et al. Predictive Value of Sperm Morphology and Progressively Motile Sperm Count for Pregnancy Outcomes in Intrauterine Insemination. Fertil. Steril. 2016, 105, 1462–1468. [Google Scholar] [CrossRef]
- Mankus, E.B.; Holden, A.E.; Seeker, P.M.; Kampschmidt, J.C.; McLaughlin, J.E.; Schenken, R.S.; Knudtson, J.F. Prewash Total Motile Count Is a Poor Predictor of Live Birth in Intrauterine Insemination Cycles. Fertil. Steril. 2019, 111, 708–713. [Google Scholar] [CrossRef]
- Kohn, T.P.; Kohn, J.R.; Ramasamy, R. Effect of Sperm Morphology on Pregnancy Success via Intrauterine Insemination: A Systematic Review and Meta-Analysis. J. Urol. 2018, 199, 812–822. [Google Scholar] [CrossRef]
- Thijssen, A.; Creemers, A.; Van der Elst, W.; Creemers, E.; Vandormael, E.; Dhont, N.; Ombelet, W. Predictive Value of Different Covariates Influencing Pregnancy Rate Following Intrauterine Insemination with Homologous Semen: A Prospective Cohort Study. Reprod. Biomed. Online 2017, 34, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Alkhayal, A.; San Gabriel, M.; Zeidan, K.; Alrabeeah, K.; Noel, D.; McGraw, R.; Bissonnette, F.; Kadoch, I.J.; Zini, A. Sperm DNA and Chromatin Integrity in Semen Samples Used for Intrauterine Insemination. J. Assist. Reprod. Genet. 2013, 30, 1519–1524. [Google Scholar] [CrossRef] [PubMed]
- Irvine, D.S.; Twigg, J.P.; Gordon, E.L.; Fulton, N.; Milne, P.A.; Aitken, R.J. DNA Integrity in Human Spermatozoa: Relationships with Semen Quality. J. Androl. 2000, 21, 33–44. [Google Scholar] [PubMed]
- Bungum, M.; Humaidan, P.; Spano, M.; Jepson, K.; Bungum, L.; Giwercman, A. The Predictive Value of Sperm Chromatin Structure Assay (SCSA) Parameters for the Outcome of Intrauterine Insemination, IVF and ICSI. Hum. Reprod. 2004, 19, 1401–1408. [Google Scholar] [CrossRef]
- Yavuz, A.; Demirci, O.; Sözen, H.; Uludoǧan, M. Predictive Factors Influencing Pregnancy Rates after Intrauterine Insemination. Iran. J. Reprod. Med. 2013, 11, 227–234. [Google Scholar]
- Aydin, Y.; Hassa, H.; Oge, T.; Tokgoz, V.Y. Factors Predictive of Clinical Pregnancy in the First Intrauterine Insemination Cycle of 306 Couples with Favourable Female Patient Characteristics. Hum. Fertil. 2013, 16, 286–290. [Google Scholar] [CrossRef]
- Soria, M.; Pradillo, G.; García, J.; Ramón, P.; Castillo, A.; Jordana, C.; Paricio, P. Pregnancy Predictors after Intrauterine Insemination: Analysis of 3012 Cycles in 1201 Couples. J. Reprod. Infertil. 2012, 13, 158–166. [Google Scholar]
- Isa, A.M.; Abu-Rafea, B.; Alasiri, S.A.; Binsaleh, S.; Ismail, K.H.; Vilos, G.A. Age, Body Mass Index, and Number of Previous Trials: Are They Prognosticators of Intra-Uterine-Insemination for Infertility Treatment? Int. J. Fertil. Steril. 2014, 8, 255–260. [Google Scholar]
- Huyghe, S.; Verest, A.; Thijssen, A.; Ombelet, W. Influence of BMI and Smoking on IUI Outcome with Partner and Donor Sperm. Facts Views Vis. Obgyn. 2017, 9, 93–100. [Google Scholar]
- Dodson, W.C.; Kunselman, A.R.; Legro, R.S. Association of Obesity with Treatment Outcomes in Ovulatory Infertile Women Undergoing Superovulation and Intrauterine Insemination. Fertil. Steril. 2006, 86, 642–646. [Google Scholar] [CrossRef]
- Souter, I.; Baltagi, L.M.; Kuleta, D.; Meeker, J.D.; Petrozza, J.C. Women, Weight, and Fertility: The Effect of Body Mass Index on the Outcome of Superovulation/Intrauterine Insemination Cycles. Fertil. Steril. 2011, 95, 1042–1047. [Google Scholar] [CrossRef] [PubMed]
- Hunault, C.C.; Habbema, J.D.F.; Eijkemans, M.J.C.; Collins, J.A.; Evers, J.L.H.; te Velde, E.R. Two New Prediction Rules for Spontaneous Pregnancy Leading to Live Birth among Subfertile Couple, Based on the Synthesis of Three Previous Models. Hum. Reprod. 2004, 19, 2019–2026. [Google Scholar] [CrossRef]
- McLernon, D.J.; Lee, A.J.; Maheshwari, A.; Van Eekelen, R.; Van Geloven, N.; Putter, H.; Eijkemans, M.J.; Van Der Steeg, J.W.; Van Der Veen, F.; Steyerberg, E.W.; et al. Predicting the Chances of Having a Baby with or without Treatment at Different Time Points in Couples with Unexplained Subfertility. Hum. Reprod. 2019, 34, 1126–1138. [Google Scholar] [CrossRef] [PubMed]
- Ejzenberg, D.; Gomes, T.J.O.; Monteleone, P.A.A.; Serafini, P.C.; Baracat, J.M.S.E.C. Prognostic Factors for Pregnancy after Intrauterine Insemination. Int. J. Gynecol. Obstet. 2019, 147, 65–72. [Google Scholar] [CrossRef]
- Lee, J.E.; Yoon, S.H.; Kim, H.O.; Min, E.G. Correlation between the Serum Luteinizing Hormone to Folliclestimulating Hormone Ratio and the Anti-Müllerian Hormone Levels in Normo-Ovulatory Women. J. Korean Med. Sci. 2015, 30, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.; Schiffner, J.; Freundl, G.; Bachmann, N.; Gnoth, C. Luteinising Hormone Profiles in Conception and Non-Conception Natural Cycles. Eur. J. Contracept. Reprod. Health Care 2019, 24, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Lyu, S.W.; Kim, J.W.; Choi, C.H.; Seok, H.H.; Yoon, T.K.; Kim, A. Impact of High Basal FSH/LH Ratio in Women with Normal FSH Levels on in Vitro Fertilization Outcomes. Gynecol. Endocrinol. 2013, 29, 424–429. [Google Scholar] [CrossRef]
- Chang, M.Y.; Chiang, C.H.; Chiu, T.H.; Hsieh, T.T.A.; Soong, Y.K. The Antral Follicle Count Predicts the Outcome of Pregnancy in a Controlled Ovarian Hyperstimulation/Intrauterine Insemination Program. J. Assist. Reprod. Genet. 1998, 15, 12–17. [Google Scholar] [CrossRef]
- Li, H.W.R.; Yeung, W.S.B.; Lau, E.Y.L.; Ho, P.C.; Ng, E.H.Y. Evaluating the Performance of Serum Antimullerian Hormone Concentration in Predicting the Live Birth Rate of Controlled Ovarian Stimulation and Intrauterine Insemination. Fertil. Steril. 2010, 94, 2177–2181. [Google Scholar] [CrossRef]
- Fauque, P.; Lehert, P.; Lamotte, M. Clinical Success of Intrauterine Insemination Cycles Is Affected by the Sperm Preparation Time. Fertil. Steril. 2014, 101, 1618–1623. [Google Scholar] [CrossRef]
Ejaculate | Post Swim-up | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | ± | Standard Deviation | Min | Max | Mean | ± | Standard Deviation | Min | Max | |
Male age | 34.99 | ± | 4.46 | 26.00 | 44.00 | |||||
Volume (mL) | 3.69 | ± | 1.62 | 0.50 | 8.00 | |||||
Concentration (106 sperm/mL) | 93.67 | ± | 64.87 | 4.00 | 439.00 | 85.70 | ± | 69.99 | 1.19 | 395.95 |
Total sperm count (106) | 315.27 | ± | 233.75 | 12.50 | 1223.00 | 34.85 | ± | 28.11 | 0.48 | 158.38 |
Progressive motility (%a + b) | 46.01 | ± | 18.31 | 5.00 | 86.00 | 72.87 | ± | 19.33 | 10.00 | 98.00 |
Immotile sperm (%d) | 32.07 | ± | 19.60 | 1.00 | 86.00 | 13.75 | ± | 15.79 | 0.00 | 81.00 |
Total motile sperm | 164.52 | ± | 159.72 | 2.50 | 819.00 | 25.27 | ± | 21.72 | 0.26 | 125.12 |
Morphology (% Normal forms) | 6.19 | ± | 4.14 | 1.00 | 18.00 | |||||
Alkaline Comet (% affected sperm) | 47.04 | ± | 12.88 | 22.00 | 82.00 | 42.27 | ± | 11.92 | 20.00 | 75.00 |
Neutral Comet (% affected sperm) | 56.21 | ± | 17.05 | 23.00 | 91.00 | 52.47 | ± | 16.33 | 17.00 | 91.00 |
Ejaculate | Post Swim-up | |||||||
---|---|---|---|---|---|---|---|---|
No Pregnancy | Pregnancy | No Pregnancy | Pregnancy | |||||
Min | Max | Min | Max | Min | Max | Min | Max | |
Male age | 26.00 | 44.00 | 26.00 | 41.00 * | ||||
Volume (mL) | 0.5 | 8 | 1.5 | 7.5 | ||||
Concentration (106 sperm/mL) | 4.00 | 439.00 | 10.36 * | 243.99 | 1.19 | 267.00 | 9.68 | 395.95 |
Total sperm count (106) | 12.50 | 1223.00 | 51.79 * | 1105.34 | 0.48 | 106.90 | 3.87 | 158.38 |
Progressive motility (%a + b) | 5.00 | 86.00 | 18.00 * | 74.00 | 10.00 | 98.00 | 38 * | 93.00 |
Immotile sperm (%d) | 1.00 | 86.00 | 2.00 | 62.00* | 0.00 | 81.00 | 1.00 | 45.00 * |
Total motile sperm | 2.50 | 819.00 | 14.50 * | 722.21 | 0.26 | 90.60 | 1.68 | 125.12 |
Morphology (% Normal forms) | 1.00 | 18.00 | 2.00* | 15.00 | ||||
Alkaline Comet (% affected sperm) | 22.00 | 82.00 | 25.00 | 72.00 * | 20.00 | 75.00 | 22.00 | 59.00 * |
Neutral Comet (% affected sperm) | 23.00 | 90.00 | 33.00 | 90.00 | 17.00 | 91.00 | 26.00 | 82.00 * |
Ejaculate | Post Swim-up | |||
---|---|---|---|---|
Min | Max | Min | Max | |
Male age | 25.00 | 41.00 * | ||
Volume (mL) | 1.60 | 7.30 | ||
Concentration (106 sperm/mL) | 14.26 * | 270.65 | 9.17 | 263.18 |
Total sperm count (106) | 68.50 * | 984.00 | 3.67 | 105.27 |
Progressive motility (%a + b) | 6.00 | 79.00 | 36.00 | 94.00 |
Immotile sperm (%d) | 2.00 | 75.00 | 1.00 | 40.00 * |
Total motile sperm | 8.20 | 777.00 | 1.72 | 76.00 |
Morphology (% Normal forms) | 0.00 | 6.00 | ||
Alkaline Comet (% affected sperm) | 25.00 | 67.00 * | 21.00 | 54.00 * |
Neutral Comet (% affected sperm) | 20.00 | 91.00 | 22.00 | 65.00 * |
Mean | ± | Standard Deviation | Min | Max | |
---|---|---|---|---|---|
Female age (years) | 32.54 | ± | 4.39 | 21 | 40 |
BMI (kg/m2) | 24.84 | ± | 6.14 | 17.24 | 45 |
Time of sterility (months) | 25.64 | ± | 19.74 | 5 | 120 |
FSH levels | 6.73 | ± | 1.74 | 1.58 | 11,4 |
LH levels | 6.4 | ± | 3.91 | 0.54 | 27.28 |
Estradiol | 52.3 | ± | 47.65 | 6 | 450 |
Prolactin | 14.91 | ± | 8.9 | 3.18 | 77.82 |
Antral follicle count | 14.01 | ± | 6.85 | 3 | 30 |
No Pregnancy | Pregnancy | |||
---|---|---|---|---|
Min | Max | Min | Max | |
Female age (years) | 21 | 39 * | 24 | 38 |
BMI (kg/m2) | 18 | 45 * | 18 | 40 |
Time of sterility (months) | 5 | 120 * | 6 | 48 |
FSH levels | 2.59 | 10.8 | 4.47 | 11.4 |
LH levels | 2.22 | 27.28 * | 2.58 | 17.81 |
Estradiol | 10 * | 450 | 21 | 87.4 |
Prolactin | 4.76 | 58 | 4.76 | 42.57 |
Antral follicle count | 3 * | 27 | 6 | 30 |
No Pregnancy | Pregnancy | |||
---|---|---|---|---|
Min | Max | Min | Max | |
Female age (years) | 23 | 40 | 26 | 39 |
BMI (kg/m2) | 17.24 | 45 * | 17.24 | 35.7 |
Time of sterility (months) | 6 | 84 * | 12 | 48 |
FSH levels | 1.58 | 10.49 | 1.58 | 11.4 |
LH levels | 0.54 | 26.72 * | 0.54 | 18.63 |
Estradiol | 6 | 384 | 8 | 85 |
Prolactin | 3.18 | 77.82 | 4.32 | 77.82 |
Antral follicle count | 4 * | 26 | 4 | 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Grau, E.; Oliveira, M.; Amengual, M.J.; Rodriguez-Sanchez, E.; Veraguas-Imbernon, A.; Costa, L.; Benet, J.; Ribas-Maynou, J. An Algorithm to Predict the Lack of Pregnancy after Intrauterine Insemination in Infertile Patients. J. Clin. Med. 2023, 12, 3225. https://doi.org/10.3390/jcm12093225
Garcia-Grau E, Oliveira M, Amengual MJ, Rodriguez-Sanchez E, Veraguas-Imbernon A, Costa L, Benet J, Ribas-Maynou J. An Algorithm to Predict the Lack of Pregnancy after Intrauterine Insemination in Infertile Patients. Journal of Clinical Medicine. 2023; 12(9):3225. https://doi.org/10.3390/jcm12093225
Chicago/Turabian StyleGarcia-Grau, Emma, Mario Oliveira, Maria José Amengual, Encarna Rodriguez-Sanchez, Ana Veraguas-Imbernon, Laura Costa, Jordi Benet, and Jordi Ribas-Maynou. 2023. "An Algorithm to Predict the Lack of Pregnancy after Intrauterine Insemination in Infertile Patients" Journal of Clinical Medicine 12, no. 9: 3225. https://doi.org/10.3390/jcm12093225
APA StyleGarcia-Grau, E., Oliveira, M., Amengual, M. J., Rodriguez-Sanchez, E., Veraguas-Imbernon, A., Costa, L., Benet, J., & Ribas-Maynou, J. (2023). An Algorithm to Predict the Lack of Pregnancy after Intrauterine Insemination in Infertile Patients. Journal of Clinical Medicine, 12(9), 3225. https://doi.org/10.3390/jcm12093225