An Update on the Genetics of IgA Nephropathy
Abstract
:1. Introduction
2. Linkage Studies
3. Candidate-Gene Association Studies
4. Genome-Wide Association Studies
5. Post-GWAS Studies in IgAN
6. Epigenetic Studies of IgAN
7. Future Perspectives and Challenges
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lai, K.N.; Tang, S.C.; Schena, F.P.; Novak, J.; Tomino, Y.; Fogo, A.B.; Glassock, R.J. IgA nephropathy. Nat. Rev. Dis. Primers 2016, 2, 16001. [Google Scholar] [CrossRef]
- Wakai, K.; Nakai, S.; Matsuo, S.; Kawamura, T.; Hotta, N.; Maeda, K.; Ohno, Y. Risk factors for IgA nephropathy: A case-control study with incident cases in Japan. Nephron 2002, 90, 16–23. [Google Scholar] [CrossRef]
- Barsoum, R.S. Glomerulonephritis in disadvantaged populations. Clin. Nephrol. 2010, 74 (Suppl. 1), S44–S50. [Google Scholar] [CrossRef]
- Kiryluk, K.; Li, Y.; Scolari, F.; Sanna-Cherchi, S.; Choi, M.; Verbitsky, M.; Fasel, D.; Lata, S.; Prakash, S.; Shapiro, S.; et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 2014, 46, 1187–1196. [Google Scholar] [CrossRef]
- Li, M.; Yu, X.-Q. Genetic Determinants of IgA Nephropathy: Eastern Perspective. Semin. Nephrol. 2018, 38, 455–460. [Google Scholar] [CrossRef]
- Neugut, Y.D.; Kiryluk, K. Genetic Determinants of IgA Nephropathy: Western Perspective. Semin. Nephrol. 2018, 38, 443–454. [Google Scholar] [CrossRef]
- Schena, F.P. A retrospective analysis of the natural history of primary IgA nephropathy worldwide. Am. J. Med. 1990, 89, 209–215. [Google Scholar] [CrossRef]
- Julian, B.A.; Quiggins, P.A.; Thompson, J.S.; Woodford, S.Y.; Gleason, K.; Wyatt, R.J. Familial IgA nephropathy. Evidence of an inherited mechanism of disease. N. Engl. J. Med. 1985, 312, 202–208. [Google Scholar] [CrossRef]
- Wyatt, R.J.; Rivas, M.L.; Julian, B.; Quiggins, P.; Woodford, S.Y.; McMorrow, R.G.; Baehler, R.W. Regionalization in hereditary IgA nephropathy. Am. J. Hum. Genet. 1987, 41, 36–50. [Google Scholar]
- Scolari, F.; Amoroso, A.; Savoldi, S.; Prati, E.; Scaini, P.; Manganoni, A.; Borelli, I.; Mazzola, G.; Canale, L.; Sacchi, G.; et al. Familial occurrence of primary glomerulonephritis: Evidence for a role of genetic factors. Nephrol. Dial. Transplant. 1992, 7, 587–596. [Google Scholar] [CrossRef]
- Scolari, F.; Amoroso, A.; Savoldi, S.; Mazzola, G.; Prati, E.; Valzorio, B.; Viola, B.F.; Nicola, B.; Movilli, E.; Sandrini, M.; et al. Familial clustering of IgA nephropathy: Further evidence in an Italian population. Am. J. Kidney Dis. 1999, 33, 857–865. [Google Scholar] [CrossRef]
- Hastings, M.C.; Moldoveanu, Z.; Julian, B.A.; Novak, J.; Sanders, J.T.; McGlothan, K.R.; Gharavi, A.G.; Wyatt, R.J. Galactose-deficient IgA1 in African Americans with IgA nephropathy: Serum levels and heritability. Clin. J. Am. Soc. Nephrol. CJASN 2010, 5, 2069–2074. [Google Scholar] [CrossRef]
- Kiryluk, K.; Moldoveanu, Z.; Sanders, J.T.; Eison, T.M.; Suzuki, H.; Julian, B.A.; Novak, J.; Gharavi, A.G.; Wyatt, R.J. Aberrant glycosylation of IgA1 is inherited in both pediatric IgA nephropathy and Henoch–Schönlein purpura nephritis. Kidney Int. 2011, 80, 79–87. [Google Scholar] [CrossRef]
- van der Harst, P.; de Windt, L.J.; Chambers, J.C. Translational Perspective on Epigenetics in Cardiovascular Disease. J. Am. Coll. Cardiol. 2017, 70, 590–606. [Google Scholar] [CrossRef]
- Gharavi, A.G.; Yan, Y.; Scolari, F.; Schena, F.P.; Frasca, G.M.; Ghiggeri, G.M.; Cooper, K.; Amoroso, A.; Viola, B.F.; Battini, G.; et al. IgA nephropathy, the most common cause of glomerulonephritis, is linked to 6q22-23. Nat. Genet. 2000, 26, 354–357. [Google Scholar] [CrossRef]
- Bisceglia, L.; Cerullo, G.; Forabosco, P.; Torres, D.D.; Scolari, F.; Di Perna, M.; Foramitti, M.; Amoroso, A.; Bertok, S.; Floege, J.; et al. Genetic Heterogeneity in Italian Families with IgA Nephropathy: Suggestive Linkage for Two Novel IgA Nephropathy Loci. Am. J. Hum. Genet. 2006, 79, 1130–1134. [Google Scholar] [CrossRef]
- Paterson, A.D.; Liu, X.-Q.; Wang, K.; Magistroni, R.; Song, X.; Kappel, J.; Klassen, J.; Cattran, D.; George-Hyslop, P.S.; Pei, Y. Genome-Wide Linkage Scan of a Large Family with IgA Nephropathy Localizes a Novel Susceptibility Locus to Chromosome 2q36. J. Am. Soc. Nephrol. 2007, 18, 2408–2415. [Google Scholar] [CrossRef]
- Hudson, B.G.; Tryggvason, K.; Sundaramoorthy, M.; Neilson, E.G. Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N. Engl. J. Med. 2003, 348, 2543–2556. [Google Scholar] [CrossRef]
- Savige, J.; Rana, K.; Tonna, S.; Buzza, M.; Dagher, H.; Wang, Y.Y. Thin basement membrane nephropathy. Kidney Int. 2003, 64, 1169–1178. [Google Scholar] [CrossRef]
- Karnib, H.H.; Sanna-Cherchi, S.; Zalloua, P.A.; Medawar, W.; D’Agati, V.D.; Lifton, R.P.; Badr, K.; Gharavi, A.G. Characterization of a large Lebanese family segregating IgA nephropathy. Nephrol. Dial. Transplant. 2007, 22, 772–777. [Google Scholar] [CrossRef]
- Liu, R.; Hu, B.; Li, Q.; Jing, X.; Zhong, C.; Chang, Y.; Liao, Q.; Lam, M.F.; Leung, J.C.; Lai, K.N.; et al. Novel genes and variants associated with IgA nephropathy by co-segregating with the disease phenotypes in 10 IgAN families. Gene 2015, 571, 43–51. [Google Scholar] [CrossRef]
- Milillo, A.; La Carpia, F.; Costanzi, S.; D’Urbano, V.; Martini, M.; Lanuti, P.; Vischini, G.; Larocca, L.M.; Marchisio, M.; Miscia, S.; et al. A SPRY2 mutation leading to MAPK/ERK pathway inhibition is associated with an autosomal dominant form of IgA nephropathy. Eur. J. Hum. Genet. 2015, 23, 1673–1678. [Google Scholar] [CrossRef]
- Cox, S.N.; Pesce, F.; Moustafa, J.E.; Sallustio, F.; Serino, G.; Kkoufou, C.; Giampetruzzi, A.; Ancona, N.; Falchi, M.; Schena, F.P.; et al. Multiple rare genetic variants co-segregating with familial IgA nephropathy all act within a single immune-related network. J. Intern. Med. 2016, 281, 189–205. [Google Scholar] [CrossRef]
- Li, Y.; Groopman, E.E.; D’agati, V.; Prakash, S.; Zhang, J.; Mizerska-Wasiak, M.; Caliskan, Y.; Fasel, D.; Karnib, H.H.; Bono, L.; et al. Type IV Collagen Mutations in Familial IgA Nephropathy. Kidney Int. Rep. 2020, 5, 1075–1078. [Google Scholar] [CrossRef]
- Stapleton, C.P.; Kennedy, C.; Fennelly, N.K.; Murray, S.L.; Connaughton, D.M.; Dorman, A.M.; Doyle, B.; Cavalleri, G.L.; Conlon, P.J. An Exome Sequencing Study of 10 Families with IgA Nephropathy. Nephron 2019, 144, 72–83. [Google Scholar] [CrossRef]
- Tang, S.C.; Lai, K.N. The ubiquitin-proteasome pathway and IgA nephropathy: A novel link? Kidney Int. 2009, 75, 457–459. [Google Scholar] [CrossRef]
- Cox, S.N.; Sallustio, F.; Serino, G.; Pontrelli, P.; Verrienti, R.; Pesce, F.; Torres, D.D.; Ancona, N.; Stifanelli, P.; Zaza, G.; et al. Altered modulation of WNT-beta-catenin and PI3K/Akt pathways in IgA nephropathy. Kidney Int. 2010, 78, 396–407. [Google Scholar] [CrossRef]
- Malone, A.F.; Phelan, P.J.; Hall, G.; Cetincelik, U.; Homstad, A.; Alonso, A.S.; Jiang, R.; Lindsey, T.B.; Wu, G.; Sparks, M.A.; et al. Rare hereditary COL4A3/COL4A4 variants may be mistaken for familial focal segmental glomerulosclerosis. Kidney Int. 2014, 86, 1253–1259. [Google Scholar] [CrossRef]
- Frascá, G.M.; Soverini, L.; Gharavi, A.G.; Lifton, R.P.; Canova, C.; Preda, P.; Vangelista, A.; Stefoni, S. Thin basement membrane disease in patients with familial IgA nephropathy. J. Nephrol. 2004, 17, 778–785. [Google Scholar]
- Yuan, X.; Su, Q.; Wang, H.; Shi, S.; Liu, L.; Lv, J.; Wang, S.; Zhu, L.; Zhang, H. Genetic Variants of the COL4A3, COL4A4, and COL4A5 Genes Contribute to Thinned Glomerular Basement Membrane Lesions in Sporadic IgA Nephropathy Patients. J. Am. Soc. Nephrol. JASN 2023, 34, 132–144. [Google Scholar] [CrossRef]
- Savige, J.; Harraka, P. Pathogenic Variants in the Genes Affected in Alport Syndrome (COL4A3-COL4A5) and Their Association with Other Kidney Conditions: A Review. Am. J. Kidney Dis. 2021, 78, 857–864. [Google Scholar] [CrossRef]
- Amore, A.; Cirina, P.; Conti, G.; Brusa, P.; Peruzzi, L.; Coppo, R. Glycosylation of Circulating IgA in Patients with IgA Nephropathy Modulates Proliferation and Apoptosis of Mesangial Cells. J. Am. Soc. Nephrol. JASN 2001, 12, 1862–1871. [Google Scholar] [CrossRef]
- Smith, A.C.; Feehally, J. New insights into the pathogenesis of IgA nephropathy. Springer Semin. Immunopathol. 2003, 24, 477–493. [Google Scholar] [CrossRef]
- Coppo, R.; Amore, A. Aberrant glycosylation in IgA nephropathy (IgAN). Kidney Int. 2004, 65, 1544–1547. [Google Scholar] [CrossRef]
- Barratt, J.; Feehally, J. IgA nephropathy. J. Am. Soc. Nephrol. JASN 2005, 16, 2088–2097. [Google Scholar] [CrossRef]
- Li, G.-S.; Zhang, H.; Lv, J.-C.; Shen, Y.; Wang, H.-Y. Variants of C1GALT1 gene are associated with the genetic susceptibility to IgA nephropathy. Kidney Int. 2007, 71, 448–453. [Google Scholar] [CrossRef]
- Li, G.-S.; Zhu, L.; Zhang, H.; Lv, J.-C.; Ding, J.-X.; Zhao, M.-H.; Shen, Y.; Wang, H.-Y. Variants of the ST6GALNAC2 promoter influence transcriptional activity and contribute to genetic susceptibility to IgA nephropathy. Hum. Mutat. 2007, 28, 950–957. [Google Scholar] [CrossRef]
- Pirulli, D.; Crovella, S.; Ulivi, S.; Zadro, C.; Bertok, S.; Rendine, S.; Scolari, F.; Foramitti, M.; Ravani, P.; Roccatello, D.; et al. Genetic variant of C1GalT1 contributes to the susceptibility to IgA nephropathy. J. Nephrol. 2009, 22, 152–159. [Google Scholar]
- Bertinetto, F.E.; Calafell, F.; Roggero, S.; Chidichimo, R.; Garino, E.; Marcuccio, C.; Coppo, R.; Scolari, F.; Frascá, G.M.; Savoldi, S.; et al. Search for genetic association between IgA nephropathy and candidate genes selected by function or by gene mapping at loci IGAN2 and IGAN3. Nephrol. Dial. Transplant. 2012, 27, 2328–2337. [Google Scholar] [CrossRef]
- Wang, W.; Sun, Y.; Fu, Y.; Yu, X.; Li, M. Interaction of C1GALT1–IL5RA on the susceptibility to IgA nephropathy in Southern Han Chinese. J. Hum. Genet. 2013, 58, 40–46. [Google Scholar] [CrossRef]
- Zhu, L.; Tang, W.; Li, G.; Lv, J.; Ding, J.; Yu, L.; Zhao, M.; Li, Y.; Zhang, X.; Shen, Y.; et al. Interaction between variants of two glycosyltransferase genes in IgA nephropathy. Kidney Int. 2009, 76, 190–198. [Google Scholar] [CrossRef]
- Feehally, J.; Farrall, M.; Boland, A.; Gale, D.P.; Gut, I.; Heath, S.; Kumar, A.; Peden, J.F.; Maxwell, P.H.; Morris, D.L.; et al. HLA Has Strongest Association with IgA Nephropathy in Genome-Wide Analysis. J. Am. Soc. Nephrol. JASN 2010, 21, 1791–1797. [Google Scholar] [CrossRef]
- Gharavi, A.G.; Kiryluk, K.; Choi, M.; Li, Y.; Hou, P.; Xie, J.; Sanna-Cherchi, S.; Men, C.J.; Julian, B.; Wyatt, R.J.; et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nat. Genet. 2011, 43, 321–327. [Google Scholar] [CrossRef]
- Yu, X.-Q.; Li, M.; Zhang, H.; Low, H.-Q.; Wei, X.; Wang, J.-Q.; Sun, L.-D.; Sim, K.-S.; Li, Y.; Foo, J.-N.; et al. A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy. Nat. Genet. 2011, 44, 178–182. [Google Scholar] [CrossRef]
- Sanchez-Rodriguez, E.; Southard, C.T.; Kiryluk, K. GWAS-Based Discoveries in IgA Nephropathy, Membranous Nephropathy, and Steroid-Sensitive Nephrotic Syndrome. Clin. J. Am. Soc. Nephrol. CJASN 2021, 16, 458–466. [Google Scholar] [CrossRef]
- Li, M.; Foo, J.-N.; Wang, J.-Q.; Low, H.-Q.; Tang, X.-Q.; Toh, K.-Y.; Yin, P.-R.; Khor, C.-C.; Goh, Y.-F.; Irwan, I.D.; et al. Identification of new susceptibility loci for IgA nephropathy in Han Chinese. Nat. Commun. 2015, 6, 7270. [Google Scholar] [CrossRef]
- Jeong, K.H.; Kim, J.S.; Lee, Y.H.; Kim, Y.G.; Moon, J.Y.; Kim, S.K.; Kang, S.W.; Kim, T.H.; Lee, S.H.; Kim, Y.H.; et al. Genome-wide association study identifies new susceptible loci of IgA nephropathy in Koreans. BMC Med. Genom. 2019, 12, 122. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Shi, D.-C.; Foo, J.-N.; Zhong, Z.; Khor, C.-C.; Lanzani, C.; Citterio, L.; Salvi, E.; Yin, P.-R.; et al. Genome-Wide Meta-Analysis Identifies Three Novel Susceptibility Loci and Reveals Ethnic Heterogeneity of Genetic Susceptibility for IgA Nephropathy. J. Am. Soc. Nephrol. JASN 2020, 31, 2949–2963. [Google Scholar] [CrossRef]
- Zhou, X.-J.; Tsoi, L.C.; Hu, Y.; Patrick, M.T.; He, K.; Berthier, C.C.; Li, Y.; Wang, Y.-N.; Qi, Y.-Y.; Zhang, Y.-M.; et al. Exome Chip Analyses and Genetic Risk for IgA Nephropathy among Han Chinese. Clin. J. Am. Soc. Nephrol. CJASN 2021, 16, 213–224. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.-N.; Wang, L.; Meah, W.-Y.; Shi, D.-C.; Heng, K.-K.; Wang, L.; Khor, C.-C.; Bei, J.-X.; Cheng, C.-Y.; et al. Genome-Wide Association Analysis of Protein-Coding Variants in IgA Nephropathy. J. Am. Soc. Nephrol. JASN 2023, 34, 1900–1913. [Google Scholar] [CrossRef]
- Kiryluk, K.; Sanchez-Rodriguez, E.; Zhou, X.-J.; Zanoni, F.; Liu, L.; Mladkova, N.; Khan, A.; Marasa, M.; Zhang, J.Y.; Balderes, O.; et al. Genome-wide association analyses define pathogenic signaling pathways and prioritize drug targets for IgA nephropathy. Nat. Genet. 2023, 55, 1091–1105. [Google Scholar] [CrossRef]
- Gale, D.P.; Molyneux, K.; Wimbury, D.; Higgins, P.; Levine, A.P.; Caplin, B.; Ferlin, A.; Yin, P.; Nelson, C.P.; Stanescu, H.; et al. Galactosylation of IgA1 Is Associated with Common Variation in C1GALT1. J. Am. Soc. Nephrol. JASN 2017, 28, 2158–2166. [Google Scholar] [CrossRef]
- Kiryluk, K.; Li, Y.; Moldoveanu, Z.; Suzuki, H.; Reily, C.; Hou, P.; Xie, J.; Mladkova, N.; Prakash, S.; Fischman, C.; et al. GWAS for serum galactose-deficient IgA1 implicates critical genes of the O-glycosylation pathway. PLoS Genet. 2017, 13, e1006609. [Google Scholar] [CrossRef]
- Wang, Y.N.; Zhou, X.J.; Chen, P.; Yu, G.Z.; Zhang, X.; Hou, P.; Liu, L.J.; Shi, S.F.; Lv, J.C.; Zhang, H. Interaction between GALNT12 and C1GALT1 Associates with Galactose-Deficient IgA1 and IgA Nephropathy. J. Am. Soc. Nephrol. JASN 2021, 32, 545–552. [Google Scholar] [CrossRef]
- Suzuki, H.; Raska, M.; Yamada, K.; Moldoveanu, Z.; Julian, B.A.; Wyatt, R.J.; Tomino, Y.; Gharavi, A.G.; Novak, J. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. J. Biol. Chem. 2014, 289, 5330–5339. [Google Scholar] [CrossRef]
- Han, S.S.; Yang, S.H.; Choi, M.; Kim, H.-R.; Kim, K.; Lee, S.; Moon, K.C.; Kim, J.Y.; Lee, H.; Lee, J.P.; et al. The Role of TNF Superfamily Member 13 in the Progression of IgA Nephropathy. J. Am. Soc. Nephrol. JASN 2016, 27, 3430–3439. [Google Scholar] [CrossRef]
- Yamada, K.; Huang, Z.-Q.; Raska, M.; Reily, C.; Anderson, J.C.; Suzuki, H.; Ueda, H.; Moldoveanu, Z.; Kiryluk, K.; Suzuki, Y.; et al. Inhibition of STAT3 Signaling Reduces IgA1 Autoantigen Production in IgA Nephropathy. Kidney Int. Rep. 2017, 2, 1194–1207. [Google Scholar] [CrossRef]
- Yamada, K.; Huang, Z.Q.; Raska, M.; Reily, C.; Anderson, J.C.; Suzuki, H.; Kiryluk, K.; Gharavi, A.G.; Julian, B.A.; Willey, C.D.; et al. Leukemia Inhibitory Factor Signaling Enhances Production of Galactose-Deficient IgA1 in IgA Nephropathy. Kidney Dis. 2020, 6, 168–180. [Google Scholar] [CrossRef]
- Lomax-Browne, H.J.; Visconti, A.; Pusey, C.D.; Cook, H.T.; Spector, T.D.; Pickering, M.C.; Falchi, M. IgA1 Glycosylation Is Heritable in Healthy Twins. J. Am. Soc. Nephrol. JASN 2017, 28, 64–68. [Google Scholar] [CrossRef]
- Farias, F.H.; Benitez, B.A.; Cruchaga, C. Quantitative endophenotypes as an alternative approach to understanding genetic risk in neurodegenerative diseases. Neurobiol. Dis. 2021, 151, 105247. [Google Scholar] [CrossRef]
- Sanders, S.J.; Neale, B.M.; Huang, H.; Werling, D.M.; An, J.Y.; Dong, S. Whole genome sequencing in psychiatric disorders: The WGSPD consortium. Nat. Neurosci. 2017, 20, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Keramati, A.R.; Chen, M.-H.; Rodriguez, B.A.T.; Yanek, L.R.; Bhan, A.; Gaynor, B.J.; Ryan, K.; Brody, J.A.; Zhong, X.; Wei, Q.; et al. Genome sequencing unveils a regulatory landscape of platelet reactivity. Nat. Commun. 2021, 12, 3626. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, M.S.; Li, X.; Li, Z.; Pampana, A.; Zhang, D.Y.; Park, J.; Aslibekyan, S.; Bis, J.C.; Brody, J.A.; Cade, B.E.; et al. Whole genome sequence analysis of blood lipid levels in >66,000 individuals. Nat. Commun. 2022, 13, 5995. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Kiryluk, K.; Li, Y.; Mladkova, N.; Zhu, L.; Hou, P.; Ren, H.; Wang, W.; Zhang, H.; Chen, N.; et al. Fine Mapping Implicates a Deletion of CFHR1 and CFHR3 in Protection from IgA Nephropathy in Han Chinese. J. Am. Soc. Nephrol. JASN 2016, 27, 3187–3194. [Google Scholar] [CrossRef] [PubMed]
- Ai, Z.; Li, M.; Liu, W.; Foo, J.-N.; Mansouri, O.; Yin, P.; Zhou, Q.; Tang, X.; Dong, X.; Feng, S.; et al. Low α-defensin gene copy number increases the risk for IgA nephropathy and renal dysfunction. Sci. Transl. Med. 2016, 8, 345ra88. [Google Scholar] [CrossRef] [PubMed]
- Feenstra, B.; Bager, P.; Liu, X.; Hjalgrim, H.; Nohr, E.; Hougaard, D.M.; Geller, F.; Melbye, M. Genome-wide association study identifies variants in HORMAD2 associated with tonsillectomy. J. Med. Genet. 2017, 54, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Hromatka, B.S.; Kiefer, A.K.; Eriksson, N.; Noble, S.M.; Tung, J.Y.; Hinds, D.A. Genome-wide association and HLA region fine-mapping studies identify susceptibility loci for multiple common infections. Nat. Commun. 2017, 8, 599. [Google Scholar] [CrossRef]
- Liu, L.; Khan, A.; Sanchez-Rodriguez, E.; Zanoni, F.; Li, Y.; Steers, N.; Balderes, O.; Zhang, J.; Krithivasan, P.; LeDesma, R.A.; et al. Genetic regulation of serum IgA levels and susceptibility to common immune, infectious, kidney, and cardio-metabolic traits. Nat. Commun. 2022, 13, 6859. [Google Scholar] [CrossRef]
- Wang, Y.-N.; Gan, T.; Qu, S.; Xu, L.-L.; Hu, Y.; Liu, L.-J.; Shi, S.-F.; Lv, J.-C.; Tsoi, L.C.; Patrick, M.T.; et al. MTMR3 risk alleles enhance Toll Like Receptor 9-induced IgA immunity in IgA nephropathy. Kidney Int. 2023, 104, 562–576. [Google Scholar] [CrossRef]
- Albert, F.W.; Kruglyak, L. The role of regulatory variation in complex traits and disease. Nat. Rev. Genet. 2015, 16, 197–212. [Google Scholar] [CrossRef]
- Gallagher, M.D.; Chen-Plotkin, A.S. The Post-GWAS Era: From Association to Function. Am. J. Hum. Genet. 2018, 102, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, R.H.; Hardy, J.; Ryten, M.; Taliun, S.A.G. Informing disease modelling with brain-relevant functional genomic annotations. Brain 2019, 142, 3694–3712. [Google Scholar] [CrossRef] [PubMed]
- Ghoussaini, M.; Mountjoy, E.; Carmona, M.; Peat, G.; Schmidt, E.M.; Hercules, A.; Fumis, L.; Miranda, A.; Carvalho-Silva, D.; Buniello, A.; et al. Open Targets Genetics: Systematic identification of trait-associated genes using large-scale genetics and functional genomics. Nucleic Acids Res. 2021, 49, D1311–D1320. [Google Scholar] [CrossRef] [PubMed]
- Javierre, B.M.; Burren, O.; Wilder, S.P.; Kreuzhuber, R.; Hill, S.; Sewitz, S.; Cairns, J.; Wingett, S.W.; Várnai, C.; Thiecke, M.J.; et al. Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters. Cell 2016, 167, 1369–1384.e19. [Google Scholar] [CrossRef] [PubMed]
- Bird, A. Perceptions of epigenetics. Nature 2007, 447, 396–398. [Google Scholar] [CrossRef]
- Sallustio, F.; Serino, G.; Cox, S.N.; Gassa, A.D.; Curci, C.; De Palma, G.; Banelli, B.; Zaza, G.; Romani, M.; Schena, F.P. Aberrantly methylated DNA regions lead to low activation of CD4+ T-cells in IgA nephropathy. Clin. Sci. 2016, 130, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Yin, P.; Zhu, Z.; Peng, Y.; Li, M.; Li, J.; Liang, L.; Yu, X. Epigenome-wide association study and network analysis for IgA Nephropathy from CD19+ B-cell in Chinese Population. Epigenetics 2021, 16, 1283–1294. [Google Scholar] [CrossRef]
- Piletič, K.; Kunej, T. MicroRNA epigenetic signatures in human disease. Arch. Toxicol. 2016, 90, 2405–2419. [Google Scholar] [CrossRef]
- Szeto, C.-C.; Li, P.K.-T. MicroRNAs in IgA nephropathy. Nat. Rev. Nephrol. 2014, 10, 249–256. [Google Scholar] [CrossRef]
- Yao, X.; Zhai, Y.; An, H.; Gao, J.; Chen, Y.; Zhang, W.; Zhao, Z. MicroRNAs in IgA nephropathy. Ren. Fail. 2021, 43, 1298–1310. [Google Scholar] [CrossRef]
- Serino, G.; Sallustio, F.; Cox, S.N.; Pesce, F.; Schena, F.P. Abnormal miR-148b Expression Promotes Aberrant Glycosylation of IgA1 in IgA Nephropathy. J. Am. Soc. Nephrol. JASN 2012, 23, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Serino, G.; Sallustio, F.; Curci, C.; Cox, S.N.; Pesce, F.; De Palma, G.; Schena, F.P. Role of let-7b in the regulation of N-acetylgalactosaminyltransferase 2 in IgA nephropathy. Nephrol. Dial. Transplant. 2015, 30, 1132–1139. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhang, X.; Peng, W.; Wei, M.; Qin, W. MicroRNA-155-induced T lymphocyte subgroup drifting in IgA nephropathy. Int. Urol. Nephrol. 2016, 49, 353–361. [Google Scholar]
- Li, C.; Shi, J.; Zhao, Y. MiR-320 promotes B cell proliferation and the production of aberrant glycosylated IgA1 in IgA nephropathy. J. Cell. Biochem. 2018, 119, 4607–4614. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Bao, H.; Xu, X.; Zhou, X.; Qin, W.; Zeng, C.; Liu, Z. Increased miR-374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy. FEBS Lett. 2015, 589, 4019–4025. [Google Scholar] [CrossRef]
- Jin, L.-W.; Ye, H.-Y.; Xu, X.-Y.; Zheng, Y.; Chen, Y. MiR-133a/133b inhibits Treg differentiation in IgA nephropathy through targeting FOXP3. Biomed. Pharmacother. 2018, 101, 195–200. [Google Scholar] [CrossRef]
- Xu, B.-Y.; Meng, S.-J.; Shi, S.-F.; Liu, L.-J.; Lv, J.-C.; Zhu, L.; Zhang, H. MicroRNA-21-5p participates in IgA nephropathy by driving T helper cell polarization. J. Nephrol. 2020, 33, 551–560. [Google Scholar] [CrossRef]
- Hennino, M.-F.; Buob, D.; Van der Hauwaert, C.; Gnemmi, V.; Jomaa, Z.; Pottier, N.; Savary, G.; Drumez, E.; Noël, C.; Cauffiez, C.; et al. miR-21-5p renal expression is associated with fibrosis and renal survival in patients with IgA nephropathy. Sci. Rep. 2016, 6, 27209. [Google Scholar] [CrossRef]
- Fan, Q.; Lu, R.; Zhu, M.; Yan, Y.; Guo, X.; Qian, Y.; Zhang, L.; Dai, H.; Ni, Z.; Gu, L. Serum miR-192 Is Related to Tubulointerstitial Lesion and Short-Term Disease Progression in IgA Nephropathy. Nephron 2019, 142, 195–207. [Google Scholar] [CrossRef]
- Pawluczyk, I.Z.; Didangelos, A.; Barbour, S.J.; Er, L.; Becker, J.U.; Martin, R.; Taylor, S.; Bhachu, J.S.; Lyons, E.G.; Jenkins, R.H.; et al. Differential expression of microRNA miR-150-5p in IgA nephropathy as a potential mediator and marker of disease progression. Kidney Int. 2021, 99, 1127–1139. [Google Scholar] [CrossRef]
- Wang, G.; Kwan, B.C.; Lai, F.M.; Chow, K.M.; Li, P.K.; Szeto, C.C. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis. Markers 2011, 30, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Ichii, O.; Otsuka, S.; Sasaki, N.; Namiki, Y.; Hashimoto, Y.; Kon, Y. Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int. 2012, 81, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhao, G.; Tang, L.; Zhang, J.; Li, T.; Liu, Z. MiR-100-3p and miR-877-3p regulate overproduction of IL-8 and IL-1β in mesangial cells activated by secretory IgA from IgA nephropathy patients. Exp. Cell Res. 2016, 347, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Chen, Z.; Chen, W.; Li, J.; Liu, Y.; Ma, H.; Shi, M.; Sun, X.; Yao, X.; Li, Z.; et al. MicroRNA-23b-3p Deletion Induces an IgA Nephropathy-like Disease Associated with Dysregulated Mucosal IgA Synthesis. J. Am. Soc. Nephrol. JASN 2021, 32, 2561–2578. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, H.; Wang, W.; Zhu, M.; Qi, L.-W.; Wang, T.; Cheng, W.; Zhu, J.; Shan, X.; Huang, Z.; et al. Plasma microRNA signature of patients with IgA nephropathy. Gene 2018, 649, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Lettre, G. Rare and low-frequency variants in human common diseases and other complex traits. J. Med. Genet. 2014, 51, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Bandrés-Ciga, S.; Ruz, C.; Barrero, F.J.; Escamilla-Sevilla, F.; Pelegrina, J.; Vives, F.; Duran, R. Structural genomic variations and Parkinson’s disease. Minerva Medica 2017, 108, 438–447. [Google Scholar] [CrossRef]
- Perrone, F.; Cacace, R.; van der Zee, J.; Van Broeckhoven, C. Emerging genetic complexity and rare genetic variants in neurodegenerative brain diseases. Genome Med. 2021, 13, 59. [Google Scholar] [CrossRef]
- Lv, J.; Wong, M.G.; Hladunewich, M.A.; Jha, V.; Hooi, L.S.; Monaghan, H.; Zhao, M.; Barbour, S.; Jardine, M.J.; Reich, H.N.; et al. Effect of Oral Methylprednisolone on Decline in Kidney Function or Kidney Failure in Patients With IgA Nephropathy: The TESTING Randomized Clinical Trial. JAMA 2022, 327, 1888–1898. [Google Scholar] [CrossRef]
- Schmeling, H.; Horneff, G.; Benseler, S.M.; Fritzler, M.J. Pharmacogenetics: Can genes determine treatment efficacy and safety in JIA? Nat. Rev. Rheumatol. 2014, 10, 682–690. [Google Scholar] [CrossRef]
- Zhou, K.; Pedersen, H.K.; Dawed, A.Y.; Pearson, E.R. Pharmacogenomics in diabetes mellitus: Insights into drug action and drug discovery. Nat. Rev. Endocrinol. 2016, 12, 337–346. [Google Scholar] [CrossRef] [PubMed]
Study | Published Date | Ancestry | GWAS Population | Genome-Wide Significant Loci (Candidate Gene) |
---|---|---|---|---|
Susceptibility to IgA nephropathy | ||||
Feehally et al. [42] | 2010 | European ancestry | 244 cases and 4980 healthy controls | 6p21 (HLA) |
Gharavi et al. [43] | 2011 | Chinese and European ancestry | 3144 cases and 2822 healthy controls | 6p21 (HL-DQB1/DRB1; PSMB9/TAP1; HLA-DPA1/DPB2), 1q32 (CFHR3/R1), 22q12 (HORMAD2) |
Yu et al. [44] | 2011 | Chinese ancestry | 1434 cases and 4270 healthy controls | 6p21 (HLA), 8p23 (DEFAs), 17p13 (TNFSF13), 22q12 (MTMR3) |
Kiryluk et al. [4] | 2014 | European and East Asian ancestry | 7658 cases and 12,954 healthy controls | 6p21 (HLA-DQ-HLA-DR; TAP1-PSMB8; HLA-DP),1p13 (VAV3), 1q32 (CFHR3-CFHR1 deletion), 8p23 (DEFAs), 9q34 (CARD9), 16p11 (ITGAM-ITGAX), 17p13 (TNFSF13), 22q12 (HORMAD2) |
Li et al. [46] | 2015 | Chinese ancestry | 1434 cases and 10,661 healthy controls | 6p21 (HLA), 3q27 (ST6GAL1), 8p23 (DEFA), 8q22 (ODF1-KLF10), 11p11 (ACCS), 16p11 (ITGAX-ITGAM), 22q12 (HORMAD2) |
Jeong et al. [47] | 2019 | Korean ancestry | 188 cases and 455 healthy controls | 10p15 (ANKRD16) (p = 0.0045) |
Li et al. [48] | 2020 | Chinese and European ancestry | 2628 cases and 11,563 healthy controls | 6p21 (HLA), 1q23 (FCRL3), 1p36 (PADI4), 6p25 (DUSP22/IRF4), 8p23 (DEFA), 16p11 (ITGAX-ITGAM), 17p13 (TNFSF12-TNFSF13), 22q12 (MTMR3/HORMAD2) |
Zhou et al. [49] | 2021 | Chinese ancestry | 601 cases and 4076 healthy controls | 6p21 (GABBR1), suggestive genes (TGFB1, CCR6, STAT3, CFB) |
Li et al. [50] | 2023 | Chinese ancestry | 2378 cases and 15,642 healthy controls | 6p21 (HLA), 6p21.1 (VEGFA), 16q22.2 (PKD1L3), 17p13 (TNFSF13) |
Kiryluk et al. [51] | 2023 | European and East Asian ancestry | 10,146 cases and 28,751 healthy controls | 6p21 (HLA), 8 known non-HLA loci (CFH, FCRL3, IRF4/DUSP22, DEFA1/4, CARD9, ITGAM/ITGAX, TNFSF13/12, MTMR3/HORMAD2/LIF/OSM), 16 new non-HLA loci (TNFSF4/18, CD28, REL, PF4V1, LY86, LYN, ANXA13, TNFSF8/15, ZMIZ1, REEP3, OVOL1/RELA, ETS1, IGH, IRF8, TNFRSF13B, and FCAR), CCR6 (only in the East Asian cohorts) |
Serum Gd-IgA1 levels | ||||
Gale et al. [52] | 2017 | European and Chinese ancestry | 513 subjects | 7p21 (C1GALT1) |
Kiryluk et al. [53] | 2017 | European and East Asian ancestry | 2633 subjects | 7p21 (C1GALT1), Xq24 (C1GALT1C1) |
Wang et al. [54] | 2021 | Chinese ancestry | 1127 patients with IgAN | 7p22 (C1GALT1), 9q22 (GALNT12) |
Chr. | Position (hg19) | SNP | Candidate Gene | pQTL | sQTL | eQTL | PCHi-C (Javierre, 2016) | VEP (Ensembl) |
---|---|---|---|---|---|---|---|---|
1 | 157542162 | rs849815 | FCRL3 | downstream gene variant | ||||
1 | 173146357 | rs4916312 | TNFSF4 | upstream gene variant | ||||
1 | 196603302 | rs12029571 | F13B | intergenic variant | ||||
1 | 196686918 | rs6677604 | CFH | intron variant | ||||
2 | 61092678 | rs842638 | PUS10 | intron variant | ||||
2 | 204584759 | rs3769684 | CD28 | intron variant | ||||
4 | 74725320 | rs6828610 | PF4V1 | regulatory region variant | ||||
6 | 249571 | rs12201499 | IRF4 | intergenic variant | ||||
6 | 7214676 | rs12530084 | RREB1 | non coding transcript exon variant | ||||
6 | 32389305 | rs9268557 | HLA-DQA2 | intergenic variant | ||||
6 | 32599999 | rs9272105 | HLA-DQA | intron variant | ||||
6 | 32667829 | rs9275355 | HLA-DQA2 | intergenic variant | ||||
6 | 32681631 | rs9275596 | HLA-DQA2 | upstream gene variant | ||||
6 | 33074288 | rs3128927 | HLA-DPB1 | intron variant | ||||
8 | 6808722 | rs2075836 | DEFA3 | intron variant | ||||
8 | 56852496 | rs75413466 | LYN | intron variant | ||||
8 | 124765474 | rs34354351 | FAM91A1 | intergenic variant | ||||
9 | 117643362 | rs13300483 | TNFSF8 | intergenic variant | ||||
9 | 139266496 | rs4077515 | CARD9 | missense variant | ||||
10 | 65363048 | rs57917667 | NRBF2 | intron variant | ||||
10 | 81043743 | rs1108618 | ZMIZ1 | intron variant | ||||
11 | 65555524 | rs10896045 | CFL1 | intron variant | ||||
11 | 128487069 | rs7121743 | ETS1 | intron variant | ||||
14 | 107222014 | rs751081288 | IGH | upstream gene variant | ||||
16 | 31357760 | rs11150612 | ITGAX | intergenic variant | ||||
16 | 86017715 | rs1879210 | IRF8 | intron variant | ||||
17 | 7462969 | rs3803800 | TNFSF13 | missense variant | ||||
17 | 16851450 | rs57382045 | COPS3 | intron variant | ||||
19 | 55397217 | rs1865097 | FCAR | intron variant | ||||
22 | 30512478 | rs4823074 | ASCC2 | intron variant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.-L.; Zhou, X.-J.; Zhang, H. An Update on the Genetics of IgA Nephropathy. J. Clin. Med. 2024, 13, 123. https://doi.org/10.3390/jcm13010123
Xu L-L, Zhou X-J, Zhang H. An Update on the Genetics of IgA Nephropathy. Journal of Clinical Medicine. 2024; 13(1):123. https://doi.org/10.3390/jcm13010123
Chicago/Turabian StyleXu, Lin-Lin, Xu-Jie Zhou, and Hong Zhang. 2024. "An Update on the Genetics of IgA Nephropathy" Journal of Clinical Medicine 13, no. 1: 123. https://doi.org/10.3390/jcm13010123
APA StyleXu, L.-L., Zhou, X.-J., & Zhang, H. (2024). An Update on the Genetics of IgA Nephropathy. Journal of Clinical Medicine, 13(1), 123. https://doi.org/10.3390/jcm13010123