How Early Is Early Multiple Sclerosis?
Abstract
:1. Introduction
2. Methods
3. Evolution of MS Criteria
4. Clinically Isolated Syndrome
5. Radiologically Isolated Syndrome and Subclinical MS
6. MS Prodrome
7. Early Treatment Administration
8. MS Pathology and Biomarkers
8.1. MS Pathology
8.2. Biomarkers
8.2.1. Laboratory Biomarkers
8.2.2. Neuroimaging Biomarkers
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horwitz, N.H. Lectures on the Diseases of the Nervous System. Jean Martin Charcot. Lectures on the Localisation of Cerebral and Spinal Diseases. Jean Martin Charcot. Neurosurgery 1995, 37, 1022–1025. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of Multiple Sclerosis: 2017 Revisions of the McDonald Criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Kavaliunas, A.; Manouchehrinia, A.; Stawiarz, L.; Ramanujam, R.; Agholme, J.; Hedström, A.K.; Beiki, O.; Glaser, A.; Hillert, J. Importance of Early Treatment Initiation in the Clinical Course of Multiple Sclerosis. Mult. Scler. J. 2017, 23, 1233–1240. [Google Scholar] [CrossRef] [PubMed]
- Simonsen, C.S.; Flemmen, H.Ø.; Broch, L.; Brunborg, C.; Berg-Hansen, P.; Moen, S.M.; Celius, E.G. Early High Efficacy Treatment in Multiple Sclerosis Is the Best Predictor of Future Disease Activity Over 1 and 2 Years in a Norwegian Population-Based Registry. Front. Neurol. 2021, 12, 693017. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.; Mowry, E.M.; Newsome, S.D. Early Aggressive Treatment Approaches for Multiple Sclerosis. Curr. Treat. Options Neurol. 2021, 23, 19. [Google Scholar] [CrossRef] [PubMed]
- Förster, M.; Graf, J.; Mares, J.; Aktas, O.; Hartung, H.-P.; Kremer, D. Drug Treatment of Clinically Isolated Syndrome. CNS Drugs 2019, 33, 659–676. [Google Scholar] [CrossRef]
- Lebrun-Frenay, C.; Kantarci, O.; Siva, A.; Sormani, M.P.; Pelletier, D.; Okuda, D.T.; 10-year RISC study group on behalf of SFSEP, OFSEP. Radiologically Isolated Syndrome: 10-Year Risk Estimate of a Clinical Event. Ann. Neurol. 2020, 88, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ayers, M.M.; Catmull, D.V.; Hazelwood, L.J.; Bernard, C.C.A.; Orian, J.M. Astrocyte-associated Axonal Damage in Pre-onset Stages of Experimental Autoimmune Encephalomyelitis. Glia 2005, 51, 235–240. [Google Scholar] [CrossRef]
- Nowacki, P.; Koziarska, D.; Masztalewicz, M. Microglia and Astroglia Proliferation within the Normal Appearing White Matter in Histologically Active and Inactive Multiple Sclerosis. Folia Neuropathol. 2019, 57, 249–257. [Google Scholar] [CrossRef]
- He, J.; Inglese, M.; Li, B.S.Y.; Babb, J.S.; Grossman, R.I.; Gonen, O. Relapsing-Remitting Multiple Sclerosis: Metabolic Abnormality in Nonenhancing Lesions and Normal-Appearing White Matter at MR Imaging: Initial Experience. Radiology 2005, 234, 211–217. [Google Scholar] [CrossRef]
- Ceccarelli, A.; Rocca, M.A.; Falini, A.; Tortorella, P.; Pagani, E.; Rodegher, M.; Comi, G.; Scotti, G.; Filippi, M. Normal-Appearing White and Grey Matter Damage in MS: A Volumetric and Diffusion Tensor MRI Study at 3.0 Tesla. J. Neurol. 2007, 254, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Allison, R.S.; Millar, J.H. Prevalence of Disseminated Sclerosis in Northern Ireland. Ulst. Med. J. 1954, 23, 1–27. [Google Scholar]
- McAlpine, D. Multiple Sclerosis. BMJ 1957, 1, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, G.A.; Beebe, G.; Kibler, R.F.; Kurland, L.T.; Kurtzke, J.F.; Mcdowell, F.; Nagler, B.; Sibley, W.A.; Tourtellotte, W.W.; Willmon, T.L. Problems of Experimental Trials of Therapy in Multiple Sclerosis: Report by the Panel on the Evaluation of Experimental Trials of Therapy in Multiple Sclerosis. Ann. N. Y. Acad. Sci. 1965, 122, 552–568. [Google Scholar] [CrossRef] [PubMed]
- McDonald, W.I.; Halliday, A.M. Diagnosis and Classification of Multiple Sclerosis. Br. Med. Bull. 1977, 33, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Poser, C.M.; Paty, D.W.; Scheinberg, L.; McDonald, W.I.; Davis, F.A.; Ebers, G.C.; Johnson, K.P.; Sibley, W.A.; Silberberg, D.H.; Tourtellotte, W.W. New Diagnostic Criteria for Multiple Sclerosis: Guidelines for Research Protocols. Ann. Neurol. 1983, 13, 227–231. [Google Scholar] [CrossRef] [PubMed]
- McDonald, W.I.; Compston, A.; Edan, G.; Goodkin, D.; Hartung, H.P.; Lublin, F.D.; McFarland, H.F.; Paty, D.W.; Polman, C.H.; Reingold, S.C.; et al. Recommended Diagnostic Criteria for Multiple Sclerosis: Guidelines from the International Panel on the Diagnosis of Multiple Sclerosis. Ann. Neurol. 2001, 50, 121–127. [Google Scholar] [CrossRef]
- Polman, C.H.; Reingold, S.C.; Banwell, B.; Clanet, M.; Cohen, J.A.; Filippi, M.; Fujihara, K.; Havrdova, E.; Hutchinson, M.; Kappos, L.; et al. Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria. Ann. Neurol. 2011, 69, 292–302. [Google Scholar] [CrossRef]
- Barkhof, F. Comparison of MRI Criteria at First Presentation to Predict Conversion to Clinically Definite Multiple Sclerosis. Brain 1997, 120, 2059–2069. [Google Scholar] [CrossRef]
- Tintoré, M.; Rovira, A.; Martínez, M.J.; Rio, J.; Díaz-Villoslada, P.; Brieva, L.; Borrás, C.; Grivé, E.; Capellades, J.; Montalban, X. Isolated Demyelinating Syndromes: Comparison of Different MR Imaging Criteria to Predict Conversion to Clinically Definite Multiple Sclerosis. AJNR Am. J. Neuroradiol. 2000, 21, 702–706. [Google Scholar]
- Filippi, M.; Rocca, M.A.; Ciccarelli, O.; De Stefano, N.; Evangelou, N.; Kappos, L.; Rovira, A.; Sastre-Garriga, J.; Tintorè, M.; Frederiksen, J.L.; et al. MRI Criteria for the Diagnosis of Multiple Sclerosis: MAGNIMS Consensus Guidelines. Lancet Neurol. 2016, 15, 292–303. [Google Scholar] [CrossRef]
- Brownlee, W.J.; Swanton, J.K.; Altmann, D.R.; Ciccarelli, O.; Miller, D.H. Earlier and More Frequent Diagnosis of Multiple Sclerosis Using the McDonald Criteria: Figure 1. J. Neurol. Neurosurg. Psychiatry 2015, 86, 584–585. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.H.; Chard, D.T.; Ciccarelli, O. Clinically Isolated Syndromes. Lancet Neurol. 2012, 11, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Çinar, B.P.; Özakbaş, S. Prediction of Conversion from Clinically Isolated Syndrome to Multiple Sclerosis According to Baseline Characteristics: A Prospective Study. Noro Psikiyatr. Ars. 2018, 55, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Schwenkenbecher, P.; Wurster, U.; Konen, F.F.; Gingele, S.; Sühs, K.-W.; Wattjes, M.P.; Stangel, M.; Skripuletz, T. Impact of the McDonald Criteria 2017 on Early Diagnosis of Relapsing-Remitting Multiple Sclerosis. Front. Neurol. 2019, 10, 188. [Google Scholar] [CrossRef] [PubMed]
- Kolčava, J.; Kočica, J.; Hulová, M.; Dušek, L.; Horáková, M.; Keřkovský, M.; Stulík, J.; Dostál, M.; Kuhn, M.; Vlčková, E.; et al. Conversion of Clinically Isolated Syndrome to Multiple Sclerosis: A Prospective Study. Mult. Scler. Relat. Disord. 2020, 44, 102262. [Google Scholar] [CrossRef] [PubMed]
- Montalban, X.; Gold, R.; Thompson, A.J.; Otero-Romero, S.; Amato, M.P.; Chandraratna, D.; Clanet, M.; Comi, G.; Derfuss, T.; Fazekas, F.; et al. ECTRIMS/EAN Guideline on the Pharmacological Treatment of People with Multiple Sclerosis. Mult. Scler. 2018, 24, 96–120. [Google Scholar] [CrossRef] [PubMed]
- Okuda, D.T.; Mowry, E.M.; Beheshtian, A.; Waubant, E.; Baranzini, S.E.; Goodin, D.S.; Hauser, S.L.; Pelletier, D. Incidental MRI Anomalies Suggestive of Multiple Sclerosis: The Radiologically Isolated Syndrome. Neurology 2009, 72, 800–805. [Google Scholar] [CrossRef] [PubMed]
- On behalf of the MAGNIMS study group. MAGNIMS Consensus Guidelines on the Use of MRI in Multiple Sclerosis—Establishing Disease Prognosis and Monitoring Patients. Nat. Rev. Neurol. 2015, 11, 597–606. [Google Scholar] [CrossRef]
- De Stefano, N.; Giorgio, A.; Tintoré, M.; Pia Amato, M.; Kappos, L.; Palace, J.; Yousry, T.; Rocca, M.A.; Ciccarelli, O.; Enzinger, C.; et al. Radiologically Isolated Syndrome or Subclinical Multiple Sclerosis: MAGNIMS Consensus Recommendations. Mult. Scler. 2018, 24, 214–221. [Google Scholar] [CrossRef]
- Okuda, D.T.; Siva, A.; Kantarci, O.; Inglese, M.; Katz, I.; Tutuncu, M.; Keegan, B.M.; Donlon, S.; Hua, L.H.; Vidal-Jordana, A.; et al. Radiologically Isolated Syndrome: 5-Year Risk for an Initial Clinical Event. PLoS ONE 2014, 9, e90509. [Google Scholar] [CrossRef] [PubMed]
- Lebrun-Frénay, C.; Rollot, F.; Mondot, L.; Zephir, H.; Louapre, C.; Le Page, E.; Durand-Dubief, F.; Labauge, P.; Bensa, C.; Thouvenot, E.; et al. Risk Factors and Time to Clinical Symptoms of Multiple Sclerosis Among Patients with Radiologically Isolated Syndrome. JAMA Netw. Open 2021, 4, e2128271. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, C. Association between Clinical Conversion to Multiple Sclerosis in Radiologically Isolated Syndrome and Magnetic Resonance Imaging, Cerebrospinal Fluid, and Visual Evoked Potential: Follow-up of 70 Patients. Arch. Neurol. 2009, 66, 841. [Google Scholar] [CrossRef] [PubMed]
- Yamout, B.; Al Khawajah, M. Radiologically Isolated Syndrome and Multiple Sclerosis. Mult. Scler. Relat. Disord. 2017, 17, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Lebrun-Frénay, C.; Siva, A.; Sormani, M.P.; Landes-Chateau, C.; Mondot, L.; Bovis, F.; Vermersch, P.; Papeix, C.; Thouvenot, E.; Labauge, P.; et al. Teriflunomide and Time to Clinical Multiple Sclerosis in Patients with Radiologically Isolated Syndrome: The TERIS Randomized Clinical Trial. JAMA Neurol. 2023, 80, 1080. [Google Scholar] [CrossRef] [PubMed]
- Okuda, D.T.; Kantarci, O.; Lebrun-Frénay, C.; Sormani, M.P.; Azevedo, C.J.; Bovis, F.; Hua, L.H.; Amezcua, L.; Mowry, E.M.; Hotermans, C.; et al. Dimethyl Fumarate Delays Multiple Sclerosis in Radiologically Isolated Syndrome. Ann. Neurol. 2023, 93, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Tornatore, C.; Phillips, J.T.; Khan, O.; Miller, A.E.; Hughes, M. Consensus Opinion of US Neurologists on Practice Patterns in RIS, CIS, and RRMS: Evolution of Treatment Practices. Neurol. Clin. Pract. 2016, 6, 329–338. [Google Scholar] [CrossRef]
- Makhani, N.; Tremlett, H. The Multiple Sclerosis Prodrome. Nat. Rev. Neurol. 2021, 17, 515–521. [Google Scholar] [CrossRef]
- Harding, K.; Williams, O.; Willis, M.; Hrastelj, J.; Rimmer, A.; Joseph, F.; Tomassini, V.; Wardle, M.; Pickersgill, T.; Robertson, N.; et al. Clinical Outcomes of Escalation vs Early Intensive Disease-Modifying Therapy in Patients with Multiple Sclerosis. JAMA Neurol. 2019, 76, 536. [Google Scholar] [CrossRef]
- Scalfari, A.; Neuhaus, A.; Degenhardt, A.; Rice, G.P.; Muraro, P.A.; Daumer, M.; Ebers, G.C. The Natural History of Multiple Sclerosis, a Geographically Based Study 10: Relapses and Long-Term Disability. Brain 2010, 133, 1914–1929. [Google Scholar] [CrossRef]
- Leray, E.; Yaouanq, J.; Le Page, E.; Coustans, M.; Laplaud, D.; Oger, J.; Edan, G. Evidence for a Two-Stage Disability Progression in Multiple Sclerosis. Brain 2010, 133, 1900–1913. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.W.L.; Coles, A.; Horakova, D.; Havrdova, E.; Izquierdo, G.; Prat, A.; Girard, M.; Duquette, P.; Trojano, M.; Lugaresi, A.; et al. Association of Initial Disease-Modifying Therapy with Later Conversion to Secondary Progressive Multiple Sclerosis. JAMA 2019, 321, 175. [Google Scholar] [CrossRef] [PubMed]
- Fernández, Ó. Is There a Change of Paradigm towards More Effective Treatment Early in the Course of Apparent High-Risk MS? Mult. Scler. Relat. Disord. 2017, 17, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, G.; Butzkueven, H.; Dhib-Jalbut, S.; Hobart, J.; Kobelt, G.; Pepper, G.; Sormani, M.P.; Thalheim, C.; Traboulsee, A.; Vollmer, T. Brain Health: Time Matters in Multiple Sclerosis. Mult. Scler. Relat. Disord. 2016, 9 (Suppl. S1), S5–S48. [Google Scholar] [CrossRef] [PubMed]
- Ghezzi, A. European and American Guidelines for Multiple Sclerosis Treatment. Neurol. Ther. 2018, 7, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Leray, E.; Moreau, T.; Fromont, A.; Edan, G. Epidemiology of Multiple Sclerosis. Rev. Neurol. 2016, 172, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple Sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Giovannoni, G. Multiple Sclerosis—A Review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef]
- Arteaga-Noriega, A.; Castro-Álvarez, J.F.; Benjumea-Bedoya, D.; Gutiérrez-Vargas, J.; Segura-Cardona, A.; González-Gómez, D.; Zapata-Berruecos, J. Factores Asociados Con El Tiempo de Progresión de La Discapacidad En Pacientes Con Esclerosis Múltiple. Rev. Peru Med. Exp. Salud Publica 2022, 39, 442–449. [Google Scholar] [CrossRef]
- Ferraro, D.; Guicciardi, C.; De Biasi, S.; Pinti, M.; Bedin, R.; Camera, V.; Vitetta, F.; Nasi, M.; Meletti, S.; Sola, P. Plasma Neurofilaments Correlate with Disability in Progressive Multiple Sclerosis Patients. Acta Neurol. Scand. 2020, 141, 16–21. [Google Scholar] [CrossRef]
- Pauwels, A.; Van Schependom, J.; Devolder, L.; Van Remoortel, A.; Nagels, G.; Bjerke, M.; D’hooghe, M.B. Plasma Glial Fibrillary Acidic Protein and Neurofilament Light Chain in Relation to Disability Worsening in Multiple Sclerosis. Mult. Scler. 2022, 28, 1685–1696. [Google Scholar] [CrossRef]
- Kalb, R.; Brown, T.R.; Coote, S.; Costello, K.; Dalgas, U.; Garmon, E.; Giesser, B.; Halper, J.; Karpatkin, H.; Keller, J.; et al. Exercise and Lifestyle Physical Activity Recommendations for People with Multiple Sclerosis throughout the Disease Course. Mult. Scler. 2020, 26, 1459–1469. [Google Scholar] [CrossRef] [PubMed]
- Etoom, M.; Khraiwesh, Y.; Lena, F.; Hawamdeh, M.; Hawamdeh, Z.; Centonze, D.; Foti, C. Effectiveness of Physiotherapy Interventions on Spasticity in People with Multiple Sclerosis: A Systematic Review and Meta-Analysis. Am. J. Phys. Med. Rehabil. 2018, 97, 793–807. [Google Scholar] [CrossRef]
- Amatya, B.; Khan, F.; Galea, M. Rehabilitation for People with Multiple Sclerosis: An Overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2019, 2019, CD012732. [Google Scholar] [CrossRef] [PubMed]
- Vilou, I.; Bakirtzis, C.; Artemiadis, A.; Ioannidis, P.; Papadimitriou, M.; Konstantinopoulou, E.; Arteouli, E.; Messinis, L.; Nasisos, G.; Dardiotis, E.; et al. Computerized Cognitive Rehabilitation for Treatment of Cognitive Impairment in Multiple Sclerosis: An Explorative Study. J. Integr. Neurosci. 2020, 19, 341. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.A.; Mhizha-Murira, J.R.; Smith, L.; Potter, K.-J.; Wong, D.; Evangelou, N.; Lincoln, N.B.; Das Nair, R. Memory Rehabilitation for People with Multiple Sclerosis. Cochrane Database Syst. Rev. 2021, 2021, CD008754. [Google Scholar] [CrossRef]
- Marotta, N.; De Sire, A.; Marinaro, C.; Moggio, L.; Inzitari, M.T.; Russo, I.; Tasselli, A.; Paolucci, T.; Valentino, P.; Ammendolia, A. Efficacy of Transcranial Direct Current Stimulation (tDCS) on Balance and Gait in Multiple Sclerosis Patients: A Machine Learning Approach. J. Clin. Med. 2022, 11, 3505. [Google Scholar] [CrossRef] [PubMed]
- De Sire, A.; Bigoni, M.; Priano, L.; Baudo, S.; Solaro, C.; Mauro, A. Constraint-Induced Movement Therapy in Multiple Sclerosis: Safety and Three-Dimensional Kinematic Analysis of Upper Limb Activity. A Randomized Single-Blind Pilot Study. NeuroRehabilitation 2019, 45, 247–254. [Google Scholar] [CrossRef] [PubMed]
- McGinley, M.P.; Goldschmidt, C.H.; Rae-Grant, A.D. Diagnosis and Treatment of Multiple Sclerosis: A Review. JAMA 2021, 325, 765. [Google Scholar] [CrossRef]
- Rival, M.; Galoppin, M.; Thouvenot, E. Biological Markers in Early Multiple Sclerosis: The Paved Way for Radiologically Isolated Syndrome. Front. Immunol. 2022, 13, 866092. [Google Scholar] [CrossRef]
- Bennett, F.C.; Sloan, S.A. Glia in Neurodegeneration. Neurobiol. Dis. 2021, 151, 105260. [Google Scholar] [CrossRef] [PubMed]
- Ramagopalan, S.V.; Dobson, R.; Meier, U.C.; Giovannoni, G. Multiple Sclerosis: Risk Factors, Prodromes, and Potential Causal Pathways. Lancet Neurol. 2010, 9, 727–739. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Bar-Or, A.; Lassmann, H.; Uccelli, A.; Hartung, H.-P.; Montalban, X.; Sørensen, P.S.; Hohlfeld, R.; Hauser, S.L.; Expert Panel of the 27th Annual Meeting of the European Charcot Foundation. Role of B Cells in Multiple Sclerosis and Related Disorders. Ann. Neurol. 2021, 89, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Coutinho Costa, V.G.; Araújo, S.E.-S.; Alves-Leon, S.V.; Gomes, F.C.A. Central Nervous System Demyelinating Diseases: Glial Cells at the Hub of Pathology. Front. Immunol. 2023, 14, 1135540. [Google Scholar] [CrossRef]
- Zrzavy, T.; Hametner, S.; Wimmer, I.; Butovsky, O.; Weiner, H.L.; Lassmann, H. Loss of ‘Homeostatic’ Microglia and Patterns of Their Activation in Active Multiple Sclerosis. Brain 2017, 140, 1900–1913. [Google Scholar] [CrossRef] [PubMed]
- Ponath, G.; Ramanan, S.; Mubarak, M.; Housley, W.; Lee, S.; Sahinkaya, F.R.; Vortmeyer, A.; Raine, C.S.; Pitt, D. Myelin Phagocytosis by Astrocytes after Myelin Damage Promotes Lesion Pathology. Brain 2017, 140, 399–413. [Google Scholar] [CrossRef]
- Wheeler, M.A.; Quintana, F.J. Regulation of Astrocyte Functions in Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2019, 9, a029009. [Google Scholar] [CrossRef] [PubMed]
- Lampron, A.; Larochelle, A.; Laflamme, N.; Préfontaine, P.; Plante, M.-M.; Sánchez, M.G.; Yong, V.W.; Stys, P.K.; Tremblay, M.-È.; Rivest, S. Inefficient Clearance of Myelin Debris by Microglia Impairs Remyelinating Processes. J. Exp. Med. 2015, 212, 481–495. [Google Scholar] [CrossRef]
- Faissner, S.; Plemel, J.R.; Gold, R.; Yong, V.W. Progressive Multiple Sclerosis: From Pathophysiology to Therapeutic Strategies. Nat. Rev. Drug Discov. 2019, 18, 905–922. [Google Scholar] [CrossRef]
- Voet, S.; Mc Guire, C.; Hagemeyer, N.; Martens, A.; Schroeder, A.; Wieghofer, P.; Daems, C.; Staszewski, O.; Vande Walle, L.; Jordao, M.J.C.; et al. A20 Critically Controls Microglia Activation and Inhibits Inflammasome-Dependent Neuroinflammation. Nat. Commun. 2018, 9, 2036. [Google Scholar] [CrossRef]
- Disanto, G.; Morahan, J.M.; Barnett, M.H.; Giovannoni, G.; Ramagopalan, S.V. The Evidence for a Role of B Cells in Multiple Sclerosis. Neurology 2012, 78, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Ramagopalan, S.; Davis, A.; Giovannoni, G. Cerebrospinal Fluid Oligoclonal Bands in Multiple Sclerosis and Clinically Isolated Syndromes: A Meta-Analysis of Prevalence, Prognosis and Effect of Latitude. J. Neurol. Neurosurg. Psychiatry 2013, 84, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Matute-Blanch, C.; Villar, L.M.; Álvarez-Cermeño, J.C.; Rejdak, K.; Evdoshenko, E.; Makshakov, G.; Nazarov, V.; Lapin, S.; Midaglia, L.; Vidal-Jordana, A.; et al. Neurofilament Light Chain and Oligoclonal Bands Are Prognostic Biomarkers in Radiologically Isolated Syndrome. Brain 2018, 141, 1085–1093. [Google Scholar] [CrossRef] [PubMed]
- Presslauer, S.; Milosavljevic, D.; Huebl, W.; Parigger, S.; Schneider-Koch, G.; Bruecke, T. Kappa Free Light Chains: Diagnostic and Prognostic Relevance in MS and CIS. PLoS ONE 2014, 9, e89945. [Google Scholar] [CrossRef] [PubMed]
- Senel, M.; Tumani, H.; Lauda, F.; Presslauer, S.; Mojib-Yezdani, R.; Otto, M.; Brettschneider, J. Cerebrospinal Fluid Immunoglobulin Kappa Light Chain in Clinically Isolated Syndrome and Multiple Sclerosis. PLoS ONE 2014, 9, e88680. [Google Scholar] [CrossRef] [PubMed]
- Villar, L.M.; Masjuan, J.; González-Porqué, P.; Plaza, J.; Sádaba, M.C.; Roldán, E.; Bootello, A.; Alvarez-Cermeño, J.C. Intrathecal IgM Synthesis Is a Prognostic Factor in Multiple Sclerosis. Ann. Neurol. 2003, 53, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Rosenstein, I.; Rasch, S.; Axelsson, M.; Novakova, L.; Blennow, K.; Zetterberg, H.; Lycke, J. Kappa Free Light Chain Index as a Diagnostic Biomarker in Multiple Sclerosis: A Real-world Investigation. J. Neurochem. 2021, 159, 618–628. [Google Scholar] [CrossRef] [PubMed]
- Villar, L.M.; Casanova, B.; Ouamara, N.; Comabella, M.; Jalili, F.; Leppert, D.; De Andrés, C.; Izquierdo, G.; Arroyo, R.; Avşar, T.; et al. Immunoglobulin M Oligoclonal Bands: Biomarker of Targetable Inflammation in Primary Progressive Multiple Sclerosis. Ann. Neurol. 2014, 76, 231–240. [Google Scholar] [CrossRef]
- Guerrier, T.; Labalette, M.; Launay, D.; Lee-Chang, C.; Outteryck, O.; Lefèvre, G.; Vermersch, P.; Dubucquoi, S.; Zéphir, H. Proinflammatory B-Cell Profile in the Early Phases of MS Predicts an Active Disease. Neurol. Neuroimmunol. Neuroinflamm. 2018, 5, e431. [Google Scholar] [CrossRef]
- Gafson, A.R.; Barthélemy, N.R.; Bomont, P.; Carare, R.O.; Durham, H.D.; Julien, J.-P.; Kuhle, J.; Leppert, D.; Nixon, R.A.; Weller, R.O.; et al. Neurofilaments: Neurobiological Foundations for Biomarker Applications. Brain 2020, 143, 1975–1998. [Google Scholar] [CrossRef]
- Håkansson, I.; Tisell, A.; Cassel, P.; Blennow, K.; Zetterberg, H.; Lundberg, P.; Dahle, C.; Vrethem, M.; Ernerudh, J. Neurofilament Light Chain in Cerebrospinal Fluid and Prediction of Disease Activity in Clinically Isolated Syndrome and Relapsing–Remitting Multiple Sclerosis. Eur. J. Neurol. 2017, 24, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Pawlitzki, M.; Sweeney-Reed, C.M.; Bittner, D.; Lux, A.; Vielhaber, S.; Schreiber, S.; Paul, F.; Neumann, J. CSF-Progranulin and Neurofilament Light Chain Levels in Patients with Radiologically Isolated Syndrome—Sign of Inflammation. Front. Neurol. 2018, 9, 1075. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, J.; Barro, C.; Andreasson, U.; Derfuss, T.; Lindberg, R.; Sandelius, Å.; Liman, V.; Norgren, N.; Blennow, K.; Zetterberg, H. Comparison of Three Analytical Platforms for Quantification of the Neurofilament Light Chain in Blood Samples: ELISA, Electrochemiluminescence Immunoassay and Simoa. Clin. Chem. Lab. Med. 2016, 54, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Gauthier, A.; Viel, S.; Perret, M.; Brocard, G.; Casey, R.; Lombard, C.; Laurent-Chabalier, S.; Debouverie, M.; Edan, G.; Vukusic, S.; et al. Comparison of Simoa TM and Ella TM to Assess Serum Neurofilament-light Chain in Multiple Sclerosis. Ann. Clin. Transl. Neurol. 2021, 8, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, J.; Kropshofer, H.; Haering, D.A.; Kundu, U.; Meinert, R.; Barro, C.; Dahlke, F.; Tomic, D.; Leppert, D.; Kappos, L. Blood Neurofilament Light Chain as a Biomarker of MS Disease Activity and Treatment Response. Neurology 2019, 92, e1007–e1015. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, J.; Plavina, T.; Barro, C.; Disanto, G.; Sangurdekar, D.; Singh, C.M.; De Moor, C.; Engle, B.; Kieseier, B.C.; Fisher, E.; et al. Neurofilament Light Levels Are Associated with Long-Term Outcomes in Multiple Sclerosis. Mult. Scler. 2020, 26, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- Sellebjerg, F.; Royen, L.; Soelberg Sørensen, P.; Oturai, A.B.; Jensen, P.E.H. Prognostic Value of Cerebrospinal Fluid Neurofilament Light Chain and Chitinase-3-like-1 in Newly Diagnosed Patients with Multiple Sclerosis. Mult. Scler. 2019, 25, 1444–1451. [Google Scholar] [CrossRef] [PubMed]
- Dalla Costa, G.; Martinelli, V.; Sangalli, F.; Moiola, L.; Colombo, B.; Radaelli, M.; Leocani, L.; Furlan, R.; Comi, G. Prognostic Value of Serum Neurofilaments in Patients with Clinically Isolated Syndromes. Neurology 2019, 92, e733–e741. [Google Scholar] [CrossRef]
- Bjornevik, K.; Munger, K.L.; Cortese, M.; Barro, C.; Healy, B.C.; Niebuhr, D.W.; Scher, A.I.; Kuhle, J.; Ascherio, A. Serum Neurofilament Light Chain Levels in Patients with Presymptomatic Multiple Sclerosis. JAMA Neurol. 2020, 77, 58. [Google Scholar] [CrossRef]
- Sun, M.; Liu, N.; Xie, Q.; Li, X.; Sun, J.; Wang, H.; Wang, M. A Candidate Biomarker of Glial Fibrillary Acidic Protein in CSF and Blood in Differentiating Multiple Sclerosis and Its Subtypes: A Systematic Review and Meta-Analysis. Mult. Scler. Relat. Disord. 2021, 51, 102870. [Google Scholar] [CrossRef]
- Abdelhak, A.; Hottenrott, T.; Morenas-Rodríguez, E.; Suárez-Calvet, M.; Zettl, U.K.; Haass, C.; Meuth, S.G.; Rauer, S.; Otto, M.; Tumani, H.; et al. Glial Activation Markers in CSF and Serum from Patients with Primary Progressive Multiple Sclerosis: Potential of Serum GFAP as Disease Severity Marker? Front. Neurol. 2019, 10, 280. [Google Scholar] [CrossRef] [PubMed]
- Högel, H.; Rissanen, E.; Barro, C.; Matilainen, M.; Nylund, M.; Kuhle, J.; Airas, L. Serum Glial Fibrillary Acidic Protein Correlates with Multiple Sclerosis Disease Severity. Mult. Scler. 2020, 26, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Ayrignac, X.; Le Bars, E.; Duflos, C.; Hirtz, C.; Maleska Maceski, A.; Carra-Dallière, C.; Charif, M.; Pinna, F.; Prin, P.; Menjot De Champfleur, N.; et al. Serum GFAP in Multiple Sclerosis: Correlation with Disease Type and MRI Markers of Disease Severity. Sci. Rep. 2020, 10, 10923. [Google Scholar] [CrossRef]
- Hinsinger, G.; Galéotti, N.; Nabholz, N.; Urbach, S.; Rigau, V.; Demattei, C.; Lehmann, S.; Camu, W.; Labauge, P.; Castelnovo, G.; et al. Chitinase 3-like Proteins as Diagnostic and Prognostic Biomarkers of Multiple Sclerosis. Mult. Scler. 2015, 21, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Bonneh-Barkay, D.; Bissel, S.J.; Kofler, J.; Starkey, A.; Wang, G.; Wiley, C.A. Astrocyte and Macrophage Regulation of YKL-40 Expression and Cellular Response in Neuroinflammation. Brain Pathol. 2012, 22, 530–546. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-San Martín, M.; Torras, S.; Robles-Cedeño, R.; Buxó, M.; Gomez, I.; Matute-Blanch, C.; Comabella, M.; Villar, L.M.; Perkal, H.; Quintana, E.; et al. Radiologically Isolated Syndrome: Targeting miRNAs as Prognostic Biomarkers. Epigenomics 2020, 12, 2065–2076. [Google Scholar] [CrossRef] [PubMed]
- Thouvenot, E. Multiple Sclerosis Biomarkers: Helping the Diagnosis? Rev. Neurol. 2018, 174, 364–371. [Google Scholar] [CrossRef]
- Cantó, E.; Tintoré, M.; Villar, L.M.; Costa, C.; Nurtdinov, R.; Álvarez-Cermeño, J.C.; Arrambide, G.; Reverter, F.; Deisenhammer, F.; Hegen, H.; et al. Chitinase 3-like 1: Prognostic Biomarker in Clinically Isolated Syndromes. Brain 2015, 138, 918–931. [Google Scholar] [CrossRef]
- Cubas-Núñez, L.; Gil-Perotín, S.; Castillo-Villalba, J.; López, V.; Solís Tarazona, L.; Gasqué-Rubio, R.; Carratalá-Boscá, S.; Alcalá-Vicente, C.; Pérez-Miralles, F.; Lassmann, H.; et al. Potential Role of CHI3L1+ Astrocytes in Progression in MS. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e972. [Google Scholar] [CrossRef]
- Pérez-Miralles, F.; Prefasi, D.; García-Merino, A.; Gascón-Giménez, F.; Medrano, N.; Castillo-Villalba, J.; Cubas, L.; Alcalá, C.; Gil-Perotín, S.; Gómez-Ballesteros, R.; et al. CSF Chitinase 3-like-1 Association with Disability of Primary Progressive MS. Neurol. Neuroimmunol. Neuroinflamm. 2020, 7, e815. [Google Scholar] [CrossRef]
- Møllgaard, M.; Degn, M.; Sellebjerg, F.; Frederiksen, J.L.; Modvig, S. Cerebrospinal Fluid Chitinase-3-like 2 and Chitotriosidase Are Potential Prognostic Biomarkers in Early Multiple Sclerosis. Eur. J. Neurol. 2016, 23, 898–905. [Google Scholar] [CrossRef]
- Comabella, M.; Sastre-Garriga, J.; Borras, E.; Villar, L.M.; Saiz, A.; Martínez-Yélamos, S.; García-Merino, J.A.; Pinteac, R.; Fissolo, N.; Sánchez López, A.J.; et al. CSF Chitinase 3–Like 2 Is Associated with Long-Term Disability Progression in Patients with Progressive Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2021, 8, e1082. [Google Scholar] [CrossRef] [PubMed]
- Bielekova, B.; Komori, M.; Xu, Q.; Reich, D.S.; Wu, T. Cerebrospinal Fluid IL-12p40, CXCL13 and IL-8 as a Combinatorial Biomarker of Active Intrathecal Inflammation. PLoS ONE 2012, 7, e48370. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.; Motta, C.; Studer, V.; Macchiarulo, G.; Germani, G.; Finardi, A.; Furlan, R.; Martino, G.; Centonze, D. Subclinical Central Inflammation Is Risk for RIS and CIS Conversion to MS. Mult. Scler. 2015, 21, 1443–1452. [Google Scholar] [CrossRef] [PubMed]
- Lebrun, C.; Cohen, M.; Pignolet, B.; Seitz-Polski, B.; Bucciarelli, F.; Benzaken, S.; Kantarci, O.; Siva, A.; Okuda, D.; Pelletier, D.; et al. Interleukin 17 Alone Is Not a Discriminant Biomarker in Early Demyelinating Spectrum Disorders. J. Neurol. Sci. 2016, 368, 334–336. [Google Scholar] [CrossRef] [PubMed]
- Rostami, A.; Ciric, B. Role of Th17 Cells in the Pathogenesis of CNS Inflammatory Demyelination. J. Neurol. Sci. 2013, 333, 76–87. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Suthiphosuwan, S.; Sati, P.; Absinta, M.; Dewey, B.; Guenette, M.; Selchen, D.; Bharatha, A.; Donaldson, E.; Reich, D.S.; et al. Cognitive Impairment, the Central Vein Sign, and Paramagnetic Rim Lesions in RIS. Mult. Scler. 2021, 27, 2199–2208. [Google Scholar] [CrossRef] [PubMed]
- Oh, J. Diagnosis of Multiple Sclerosis. Contin. Lifelong Learn. Neurol. 2022, 28, 1006–1024. [Google Scholar] [CrossRef]
- Sinnecker, T.; Clarke, M.A.; Meier, D.; Enzinger, C.; Calabrese, M.; De Stefano, N.; Pitiot, A.; Giorgio, A.; Schoonheim, M.M.; Paul, F.; et al. Evaluation of the Central Vein Sign as a Diagnostic Imaging Biomarker in Multiple Sclerosis. JAMA Neurol. 2019, 76, 1446. [Google Scholar] [CrossRef]
- Ontaneda, D.; Sati, P.; Raza, P.; Kilbane, M.; Gombos, E.; Alvarez, E.; Azevedo, C.; Calabresi, P.; Cohen, J.A.; Freeman, L.; et al. Central Vein Sign: A Diagnostic Biomarker in Multiple Sclerosis (CAVS-MS) Study Protocol for a Prospective Multicenter Trial. NeuroImage Clin. 2021, 32, 102834. [Google Scholar] [CrossRef]
- Suthiphosuwan, S.; Sati, P.; Guenette, M.; Montalban, X.; Reich, D.S.; Bharatha, A.; Oh, J. The Central Vein Sign in Radiologically Isolated Syndrome. Am. J. Neuroradiol. 2019, 40, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Abou Mrad, T.; Naja, K.; Khoury, S.J.; Hannoun, S. Central Vein Sign and Paramagnetic Rim Sign: From Radiologically Isolated Syndrome to Multiple Sclerosis. Eur. J. Neurol. 2023, 30, 2912–2918. [Google Scholar] [CrossRef] [PubMed]
- Ramaglia, V.; Sheikh-Mohamed, S.; Legg, K.; Park, C.; Rojas, O.L.; Zandee, S.; Fu, F.; Ornatsky, O.; Swanson, E.C.; Pitt, D.; et al. Multiplexed Imaging of Immune Cells in Staged Multiple Sclerosis Lesions by Mass Cytometry. eLife 2019, 8, e48051. [Google Scholar] [CrossRef] [PubMed]
- Hemond, C.C.; Reich, D.S.; Dundamadappa, S.K. Paramagnetic Rim Lesions in Multiple Sclerosis: Comparison of Visualization at 1.5-T and 3-T MRI. Am. J. Roentgenol. 2022, 219, 120–131. [Google Scholar] [CrossRef] [PubMed]
- La Rosa, F.; Wynen, M.; Al-Louzi, O.; Beck, E.S.; Huelnhagen, T.; Maggi, P.; Thiran, J.-P.; Kober, T.; Shinohara, R.T.; Sati, P.; et al. Cortical Lesions, Central Vein Sign, and Paramagnetic Rim Lesions in Multiple Sclerosis: Emerging Machine Learning Techniques and Future Avenues. NeuroImage Clin. 2022, 36, 103205. [Google Scholar] [CrossRef] [PubMed]
- Suthiphosuwan, S.; Sati, P.; Absinta, M.; Guenette, M.; Reich, D.S.; Bharatha, A.; Oh, J. Paramagnetic Rim Sign in Radiologically Isolated Syndrome. JAMA Neurol. 2020, 77, 653. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Luo, D.; Zheng, Q.; Peng, Y.; Han, Y.; Luo, Q.; Zhu, Q.; Luo, T.; Li, Y. Enlarged Choroid Plexus Related to Cortical Atrophy in Multiple Sclerosis. Eur. Radiol. 2022, 33, 2916–2926. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Q.; Yan, Z.; Shi, Z.; Xu, Y.; Liu, Y.; Li, Y. Enlarged Choroid Plexus Related to Iron Rim Lesions and Deep Gray Matter Atrophy in Relapsing-Remitting Multiple Sclerosis. Mult. Scler. Relat. Disord. 2023, 75, 104740. [Google Scholar] [CrossRef]
- Reboldi, A.; Coisne, C.; Baumjohann, D.; Benvenuto, F.; Bottinelli, D.; Lira, S.; Uccelli, A.; Lanzavecchia, A.; Engelhardt, B.; Sallusto, F. C-C Chemokine Receptor 6–Regulated Entry of TH-17 Cells into the CNS through the Choroid Plexus Is Required for the Initiation of EAE. Nat. Immunol. 2009, 10, 514–523. [Google Scholar] [CrossRef]
- Ricigliano, V.A.G.; Louapre, C.; Poirion, E.; Colombi, A.; Yazdan Panah, A.; Lazzarotto, A.; Morena, E.; Martin, E.; Bottlaender, M.; Bodini, B.; et al. Imaging Characteristics of Choroid Plexuses in Presymptomatic Multiple Sclerosis: A Retrospective Study. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e200026. [Google Scholar] [CrossRef]
- Novakova Martinkova, J.; Ferretti, M.T.; Ferrari, A.; Lerch, O.; Matuskova, V.; Secnik, J.; Hort, J. Longitudinal Progression of Choroid Plexus Enlargement Is Associated with Female Sex, Cognitive Decline and ApoE E4 Homozygote Status. Front. Psychiatry 2023, 14, 1039239. [Google Scholar] [CrossRef]
- Althubaity, N.; Schubert, J.; Martins, D.; Yousaf, T.; Nettis, M.A.; Mondelli, V.; Pariante, C.; Harrison, N.A.; Bullmore, E.T.; Dima, D.; et al. Choroid Plexus Enlargement Is Associated with Neuroinflammation and Reduction of Blood Brain Barrier Permeability in Depression. NeuroImage Clin. 2022, 33, 102926. [Google Scholar] [CrossRef]
- Zhou, Y.-F.; Huang, J.-C.; Zhang, P.; Fan, F.-M.; Chen, S.; Fan, H.-Z.; Cui, Y.-M.; Luo, X.-G.; Tan, S.-P.; Wang, Z.-R.; et al. Choroid Plexus Enlargement and Allostatic Load in Schizophrenia. Schizophr. Bull. 2020, 46, 722–731. [Google Scholar] [CrossRef]
- Zamecnik, C.R.; Sowa, G.M.; Abdelhak, A.; Dandekar, R.; Bair, R.D.; Wade, K.J.; Bartley, C.M.; Tubati, A.; Gomez, R.; Fouassier, C.; et al. A Predictive Autoantibody Signature in Multiple Sclerosis. medRxiv 2023. [Google Scholar] [CrossRef]
Biomarker | Examination | Predictive Value for RIS Conversion to MS |
---|---|---|
OCBs | CSF analysis | Promising results |
kFLC | CSF analysis | Mixed results |
Intrathecal IgM | CSF analysis | Not assessed yet |
B cell profile | Peripheral blood analysis | Not assessed yet |
NfL | CSF analysis | Mixed results |
Serum analysis | Not assessed yet | |
GFAP | CSF analysis | Not assessed yet |
Serum analysis | Not assessed yet | |
CHI3L1 | CSF analysis | Negative results |
CHI3L2 | CSF analysis | Not assessed yet |
Chitotriosidase | CSF analysis | Not assessed yet |
IL-8 | CSF analysis | Promising results |
IL-17 | CSF analysis | Negative results |
CVS | MRI | Not assessed yet |
PRS | MRI | Not assessed yet |
CP enlargement | MRI | Mixed results |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stavropoulou De Lorenzo, S.; Bakirtzis, C.; Konstantinidou, N.; Kesidou, E.; Parissis, D.; Evangelopoulos, M.E.; Elsayed, D.; Hamdy, E.; Said, S.; Grigoriadis, N. How Early Is Early Multiple Sclerosis? J. Clin. Med. 2024, 13, 214. https://doi.org/10.3390/jcm13010214
Stavropoulou De Lorenzo S, Bakirtzis C, Konstantinidou N, Kesidou E, Parissis D, Evangelopoulos ME, Elsayed D, Hamdy E, Said S, Grigoriadis N. How Early Is Early Multiple Sclerosis? Journal of Clinical Medicine. 2024; 13(1):214. https://doi.org/10.3390/jcm13010214
Chicago/Turabian StyleStavropoulou De Lorenzo, Sotiria, Christos Bakirtzis, Natalia Konstantinidou, Evangelia Kesidou, Dimitrios Parissis, Maria Eleptheria Evangelopoulos, Dina Elsayed, Eman Hamdy, Sameh Said, and Nikolaos Grigoriadis. 2024. "How Early Is Early Multiple Sclerosis?" Journal of Clinical Medicine 13, no. 1: 214. https://doi.org/10.3390/jcm13010214
APA StyleStavropoulou De Lorenzo, S., Bakirtzis, C., Konstantinidou, N., Kesidou, E., Parissis, D., Evangelopoulos, M. E., Elsayed, D., Hamdy, E., Said, S., & Grigoriadis, N. (2024). How Early Is Early Multiple Sclerosis? Journal of Clinical Medicine, 13(1), 214. https://doi.org/10.3390/jcm13010214