Steady Decline of HBV DNA Load under NAs in Lymphoma Patients and a Higher Level of qAnti-HBc Predict HBV Reactivation
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Patients
2.2. Definition of HBV Reactivation (HBVr)
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Study Population
3.2. HBV DNA Load Declined Steadily by NAs in Lymphoma Patients but Declined Less Than Patients without Lymphoma
3.3. Serum qAnti-HBc Level Decreased Gradually during Chemotherapy in HBsAg-Positive Lymphoma Patients
3.4. Serum HBV RNA and HBcrAg Remained Stable under the Chemotherapy
3.5. Higher Baseline Level of qAnti-HBc and HBV RNA Predicted HBVr in HBsAg−/anti-HBc+ Lymphoma Patients
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheena, B.S.; Hiebert, L.; Han, H.; Ippolito, H.; Abbasi-Kangevari, M.; Abbasi-Kangevari, Z. Global, regional, and national burden of hepatitis B, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Gastroenterol. Hepatol. 2022, 7, 796–829. [Google Scholar] [CrossRef] [PubMed]
- Lucifora, J.; Protzer, U. Attacking hepatitis B virus cccDNA—The holy grail to hepatitis B cure. J. Hepatol. 2016, 64, S41–S48. [Google Scholar] [CrossRef] [PubMed]
- Vittal, A.; Ghany, M.G. WHO Guidelines for Prevention, Care and Treatment of Individuals Infected with HBV: A US Perspective. Clin. Liver Dis. 2019, 23, 417–432. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, J.; Song, Y.; Wang, X.; Mi, L.; Cai, C.; Zhao, D.; Wang, L.; Ma, J.; Zhu, J. Burden of lymphoma in China, 1990–2019: An analysis of the global burden of diseases, injuries, and risk factors study 2019. Aging 2022, 14, 3175–3190. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wang, Y.; Li, P.; Huang, W.; Lu, X.; Lu, H. HBV Reactivation During the Treatment of Non-Hodgkin Lymphoma and Management Strategies. Front. Oncol. 2021, 11, 685706. [Google Scholar] [CrossRef]
- Coluccio, C.; Begini, P.; Marzano, A.; Pellicelli, A.; Imperatrice, B.; Anania, G.; Delle Fave, G.; Marignani, M. Hepatitis B in patients with hematological diseases: An update. World J. Hepatol. 2017, 9, 1043–1053. [Google Scholar] [CrossRef]
- Marcucci, F.; Spada, E.; Mele, A.; Caserta, C.A.; Pulsoni, A. The association of hepatitis B virus infection with B-cell non-Hodgkin lymphoma—A review. Am. J. Blood Res. 2012, 2, 18–28. [Google Scholar]
- Terrault, N.A.; Lok, A.S.F.; McMahon, B.J.; Chang, K.-M.; Hwang, J.P.; Jonas, M.M.; Brown, R.S., Jr.; Bzowej, N.H.; Wong, J.B. Update on prevention, diagnosis, and treatment of chronic hepatitis B: AASLD 2018 hepatitis B guidance. Hepatology 2018, 67, 1560–1599. [Google Scholar] [CrossRef]
- Wang, G.; Duan, Z. Guidelines for Prevention and Treatment of Chronic Hepatitis B. J. Clin. Transl. Hepatol. 2021, 9, 769–791. [Google Scholar] [CrossRef]
- Zhu, J.; Ma, J. Chinese Society of Clinical Oncology (CSCO) diagnosis and treatment guidelines for malignant lymphoma 2021 (English version). Chin. J. Cancer Res. 2021, 33, 289–301. [Google Scholar] [CrossRef] [PubMed]
- Cheung, M.C.; Haynes, A.E.; Meyer, R.M.; Stevens, A.; Imrie, K.R. Rituximab in lymphoma: A systematic review and consensus practice guideline from Cancer Care Ontario. Cancer Treat. Rev. 2007, 33, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Loomba, R.; Liang, T.J. Hepatitis B Reactivation Associated With Immune Suppressive and Biological Modifier Therapies: Current Concepts, Management Strategies, and Future Directions. Gastroenterology 2017, 152, 1297–1309. [Google Scholar] [CrossRef] [PubMed]
- Lok, J.; Dusheiko, G.; Carey, I.; Agarwal, K. Review article: Novel biomarkers in hepatitis B infection. Aliment. Pharmacol. Ther. 2022, 56, 760–776. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Song, L.W.; Fang, Y.Q.; Wu, X.F.; Liu, D.Y.; Xu, C.; Wang, X.M.; Wang, W.; Lv, D.X.; Li, J.; et al. Antibody to hepatitis B core antigen levels in the natural history of chronic hepatitis B: A prospective observational study. Medicine 2014, 93, e322. [Google Scholar] [CrossRef] [PubMed]
- Song, L.W.; Liu, P.G.; Liu, C.J.; Zhang, T.Y.; Cheng, X.D.; Wu, H.L.; Yang, H.C.; Hao, X.K.; Yuan, Q.; Zhang, J.; et al. Quantitative hepatitis B core antibody levels in the natural history of hepatitis B virus infection. Clin. Microbiol. Infect. 2015, 21, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.K.; Seto, W.K.; Cheung, K.S.; Chong, C.K.; Huang, F.Y.; Fung, J.; Lai, C.L.; Yuen, M.F. Hepatitis B virus core-related antigen as a surrogate marker for covalently closed circular DNA. Liver Int. 2017, 37, 995–1001. [Google Scholar] [CrossRef]
- Wang, J.; Shen, T.; Huang, X.; Kumar, G.R.; Chen, X.; Zeng, Z.; Zhang, R.; Chen, R.; Li, T.; Zhang, T.; et al. Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound. J. Hepatol. 2016, 65, 700–710. [Google Scholar] [CrossRef]
- Li, A.; Yuan, Q.; Huang, Z.; Fan, J.; Guo, R.; Lou, B.; Zheng, Q.; Ge, S.; Chen, Y.; Su, Z.; et al. Novel double-antigen sandwich immunoassay for human hepatitis B core antibody. Clin. Vaccine Immunol. 2010, 17, 464–469. [Google Scholar] [CrossRef]
- Yuan, Q.; Song, L.W.; Liu, C.J.; Li, Z.; Liu, P.G.; Huang, C.H.; Yan, Y.; Ge, S.X.; Wang, Y.B.; Peng, C.Y.; et al. Quantitative hepatitis B core antibody level may help predict treatment response in chronic hepatitis B patients. Gut 2013, 62, 182–184. [Google Scholar] [CrossRef]
- Seto, W.K.; Chan, T.S.; Hwang, Y.Y.; Wong, D.K.; Fung, J.; Liu, K.S.; Gill, H.; Lam, Y.F.; Lie, A.K.; Lai, C.L.; et al. Hepatitis B reactivation in patients with previous hepatitis B virus exposure undergoing rituximab-containing chemotherapy for lymphoma: A prospective study. J. Clin. Oncol. 2014, 32, 3736–3743. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.T.; Gish, R.G.; de Man, R.; Gadano, A.; Sollano, J.; Chao, Y.C.; Lok, A.S.; Han, K.H.; Goodman, Z.; Zhu, J.; et al. A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N. Engl. J. Med. 2006, 354, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.L.; Shouval, D.; Lok, A.S.; Chang, T.T.; Cheinquer, H.; Goodman, Z.; DeHertogh, D.; Wilber, R.; Zink, R.C.; Cross, A.; et al. Entecavir versus lamivudine for patients with HBeAg-negative chronic hepatitis B. N. Engl. J. Med. 2006, 354, 1011–1020. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Song, L.; Zhao, H.; Yan, L.; Ma, A.; Xie, S.; Zhang, X.; Zhang, D.; Xie, Q.; Zhang, G.; et al. Serum hepatitis B core antibody as a biomarker of hepatic inflammation in chronic hepatitis B patients with normal alanine aminotransferase. Sci. Rep. 2017, 7, 2747. [Google Scholar] [CrossRef] [PubMed]
- Caviglia, G.P.; Abate, M.L.; Tandoi, F.; Ciancio, A.; Amoroso, A.; Salizzoni, M.; Saracco, G.M.; Rizzetto, M.; Romagnoli, R.; Smedile, A. Quantitation of HBV cccDNA in anti-HBc-positive liver donors by droplet digital PCR: A new tool to detect occult infection. J. Hepatol. 2018, 69, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.C.; Tsou, H.H.; Pei, S.N.; Chang, C.S.; Chen, J.H.; Yao, M.; Lin, S.J.; Lin, J.; Yuan, Q.; Xia, N.; et al. Quantification of HBV core antibodies may help predict HBV reactivation in patients with lymphoma and resolved HBV infection. J. Hepatol. 2018, 69, 286–292. [Google Scholar] [CrossRef]
- Lampertico, P.; Agarwal, K.; Berg, T.; Buti, M.; Janssen, H.L.; Papatheodoridis, G. EASL 2017 Clinical Practice Guidelines on the management of hepatitis B virus infection. J. Hepatol. 2017, 67, 370–398. [Google Scholar] [CrossRef]
- Lau, G.; Yu, M.L.; Wong, G.; Thompson, A.; Ghazinian, H.; Hou, J.L.; Piratvisuth, T.; Jia, J.D.; Mizokami, M.; Cheng, G.; et al. APASL clinical practice guideline on hepatitis B reactivation related to the use of immunosuppressive therapy. Hepatol. Int. 2021, 15, 1031–1048. [Google Scholar] [CrossRef]
- Wang, J.; Du, M.; Huang, H.; Chen, R.; Niu, J.; Jiang, J.; Zhuang, H.; Lu, F. Reply to: “Serum HBV pgRNA as a clinical marker for cccDNA activity”: Consistent loss of serum HBV RNA might predict the “para-functional cure” of chronic hepatitis B. J. Hepatol. 2017, 66, 462–463. [Google Scholar] [CrossRef]
- Mak, L.Y.; Seto, W.K.; Fung, J.; Yuen, M.F. New Biomarkers of Chronic Hepatitis B. Gut Liver 2019, 13, 589–595. [Google Scholar] [CrossRef]
- Chen, E.Q.; Feng, S.; Wang, M.L.; Liang, L.B.; Zhou, L.Y.; Du, L.Y.; Yan, L.B.; Tao, C.M.; Tang, H. Serum hepatitis B core-related antigen is a satisfactory surrogate marker of intrahepatic covalently closed circular DNA in chronic hepatitis B. Sci. Rep. 2017, 7, 173. [Google Scholar] [CrossRef] [PubMed]
- Mak, L.Y.; Wong, D.K.; Cheung, K.S.; Seto, W.K.; Lai, C.L.; Yuen, M.F. Review article: Hepatitis B core-related antigen (HBcrAg): An emerging marker for chronic hepatitis B virus infection. Aliment. Pharmacol. Ther. 2018, 47, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Testoni, B.; Lebossé, F.; Scholtes, C.; Berby, F.; Miaglia, C.; Subic, M.; Loglio, A.; Facchetti, F.; Lampertico, P.; Levrero, M.; et al. Serum hepatitis B core-related antigen (HBcrAg) correlates with covalently closed circular DNA transcriptional activity in chronic hepatitis B patients. J. Hepatol. 2019, 70, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Carey, I.; Gersch, J.; Wang, B.; Moigboi, C.; Kuhns, M.; Cloherty, G.; Dusheiko, G.; Agarwal, K. Pregenomic HBV RNA and Hepatitis B Core-Related Antigen Predict Outcomes in Hepatitis B e Antigen-Negative Chronic Hepatitis B Patients Suppressed on Nucleos(T)ide Analogue Therapy. Hepatology 2020, 72, 42–57. [Google Scholar] [CrossRef]
Total | HbsAg+ | HbsAg−/anti-HBc+ | p2 | ||||
---|---|---|---|---|---|---|---|
All | Baseline HBV DNA+ | Baseline HBV DNA− | p1 | ||||
N * | 181 (120) | 114 (53) | 69 (38) | 45 (15) | 67 (67) | ||
Male, n (%) | 103 (56.9%) | 65 (57.0%) | 39 (56.5%) | 26 (57.8%) | 0.895 | 38 (56.8%) | 0.968 |
Age, year | 56.6 ± 12.6 | 53.2 ± 12.0 | 51.9 ± 12.5 | 55.0 ± 11.4 | 0.151 | 62.5 ± 11.5 | 0.000 |
BMI, kg/m2 | 23.9 ± 3.9 | 23.9 ± 4.3 | 23.9 ± 3.9 | 24.0 ± 5.1 | 0.921 | 23.9 ± 3.2 | 0.975 |
Cirrhosis, n (%) | 8 (4.4%) | 8 (7.0%) | 4 (5.8%) | 4 (8.9%) | 0.528 | 0 | 0.027 |
History of HbsAg+, year | 2.0 (0.0–20.0) | 19.5 (5.0–30.0) | 20.0 (10.0–30.0) | 15.0 (4.5–20.0) | 0.167 | 0.0 (0.0–0.0) | 0.000 |
HBV DNA, lg IU/mL | 1.00 (1.00–1.86) | 2.01 (1.00–4.20) | 3.30 (1.88–5.74) | 1.00 (1.00–1.00) | 0.000 | 1.00 (1.00–1.00) | 0.000 |
PLT, ×109/L | 217 ± 85 | 224 ± 88 | 215 ± 85 | 231 ± 90 | 0.200 | 203 ± 78 | 0.113 |
PTA, % | 92.75 ± 16.32 | 91.28 ± 16.40 | 90.04 ± 15.73 | 93.23 ± 17.72 | 0.328 | 95.19 ± 16.03 | 0.131 |
ALB, g/L | 42.2 ± 5.2 | 42.2 ± 5.6 | 42.4 ± 5.8 | 42.2 ± 5.3 | 0.663 | 42.2 ± 4.5 | 0.985 |
ALT, U/L | 16 (12–24) | 16 (13–23) | 20 (14–26) | 13 (11–17) | 0.090 | 15 (11–23) | 0.482 |
AST, U/L | 23 (18–27) | 23 (18–27) | 25 (21–29) | 20 (16–24) | 0.013 | 23 (19–27) | 0.503 |
GGT, U/L | 23 (17–32) | 23 (17–33) | 23 (17–37) | 23 (17–33) | 0.621 | 22 (16–30) | 0.307 |
ALP, U/L | 73.0 (59.0–85.0) | 74.5 (58.2–85.5) | 75.0 (60.0–86.0) | 73.0 (57.0–89.0) | 0.614 | 70.5 (59.0–86.7) | 0.964 |
TbiL, μmol/L | 11.7 (9.1–16.6) | 12.6 (9.2–17.7) | 12.3 (9.1–17.7) | 12.7 (9.5–17.6) | 0.686 | 11.3 (9.0–14.9) | 0.111 |
DbiL, μmol/L | 3.7 (2.8–4.8) | 3.7 (3.1–5.0) | 3.9 (3.1–5.9) | 3.4 (3.1–4.5) | 0.312 | 3.2 (2.3–4.5) | 0.177 |
HbeAg+, n (%) | 22 (12.2%) | 21 (18.4) | 16 (23.2%) | 5 (11.1%) | 0.139 | 1 (1.5%) | 0.000 |
qAnti-HBc, lg IU/mL | 2.20 ± 1.43 | 3.48 ± 0.84 | 3.69 ± 0.84 | 2.93 ± 0.55 | 0.000 | 1.19 ± 0.90 | 0.000 |
HBV RNA, lg copies/mL | 0.00 (0.00–2.33) | 2.34 (0.00–3.96) | 2.39 (1.56–4.95) | 1.40 (0.00–2.70) | 0.004 | 0.00 (0.00–0.00) | 0.000 |
HbcrAg, lg U/mL | 3.38 ± 1.59 | 4.27 ± 1.99 | 4.57 ± 2.13 | 3.50 ± 1.04 | 0.021 | 2.67 ± 0.54 | 0.000 |
IPI score | 1.00 (1.00–3.00) | 1.00 (1.00–2.50) | 1.00 (0.00–3.00) | 1.00 (1.00–3.00) | 0.051 | 1.00 (1.00–3.00) | 0.984 |
First-line chemotherapy cycles | 6.3 ± 1.4 | 6.3 ± 1.4 | 6.5 ± 1.3 | 6.0 ± 1.4 | 0.125 | 6.2 ± 1.3 | 0.702 |
Using Rituximab at baseline, n (%) | 151 (83.4%) | 85 (74.6%) | 42 (60.9%) | 43 (95.6%) | 0.000 | 66 (98.5%) | 0.000 |
Dose of Rituximab, mg | 530 ± 222 | 485 ± 262 | 412 ± 296 | 599 ± 139 | 0.000 | 606 ± 88 | 0.000 |
Dose of Vincristine, mg | 2.8 ± 1.4 | 2.7 ± 1.4 | 2.8 ± 1.4 | 2.6 ± 1.4 | 0.505 | 2.8 ± 1.4 | 0.620 |
Dose of Anthracycline, mg | 67.5 ± 28.8 | 70.1 ± 25.6 | 74.3 ± 24.6 | 63.7 ± 25.9 | 0.029 | 63.0 ± 33.3 | 0.132 |
Dose of CTX, mg | 1182.6 ± 220.18 | 1203.18 ± 212.54 | 1207.97 ± 195.71 | 1195.83 ± 238.19 | 0.767 | 1147.59 ± 229.98 | 0.101 |
First dose of GCs, mg | 50 (0–100) | 50 (0–100) | 30 (0–100) | 60 (30–100) | 0.066 | 60 (30–100) | 0.114 |
Reactivation | Without Reactivation | p’-Value | OR (95%CI) | p-Value | |
---|---|---|---|---|---|
(a) | |||||
N | 6 | 61 | |||
Age, year | 61.5 ± 13.4 | 62.6 ± 11.5 | 0.824 | ||
HBV DNA, lg IU/mL | 1.00 ± 0.00 | 1.02 ± 0.09 | 0.682 | ||
ALT, U/L | 15 (14–20) | 15 (10–24) | 0.701 | ||
qAnti-HBc, lg IU/mL | 1.97 ± 1.20, 1.89 | 1.12 ± 0.84, 1.38 | 0.025 | 6.369 (1.523–26.641) | 0.011 |
HBV RNA, lg copies/mL | 0.86 (0.00–1.94) | 0.00 (0.00–0.00) | 0.082 | 3.299 (1.229–8.854) | 0.018 |
HBcrAg, lg U/mL | 2.52 ± 0.60, 2.39 | 2.68 ± 0.54, 2.70 | 0.492 | ||
IPI score | 1.00 (0.50–2.05) | 1.00 (0.50–3.00) | 0.566 | ||
Using Rituximab at baseline, n (%) | 6 (100) | 60 (98.4) | 1.000 | ||
Dose of Rituximab, mg | 618 ± 73 | 605 ± 90 | 0.739 | ||
Total dose of GCs, mg | 215 (45–800) | 360 (163–600) | 0.926 | ||
ARDI | 0.43 ± 0.33 | 0.73 ± 0.23 | 0.005 | ||
(b) | |||||
N | 4 | 49 | |||
Age, year | 55.00 ± 15.06 | 52.80 ± 12.45 | 0.738 | ||
HBV DNA, lg IU/mL | 2.20 (1.25–3.87) | 2.01 (1.00–4.44) | 0.603 | ||
HBV DNA > 3.30 lg IU/mL, N (%) | 1 (25.0) | 17 (34.7) | 1.000 | ||
ALT, U/L | 16.00 (11.5–184.75) | 16.00 (13.00–23.00) | 0.430 | ||
qAnti-HBc, lg IU/mL | 2.99 ± 1.53, 2.89 | 3.52 ± 0.77, 3.44 | 0.225 | ||
HBV RNA, lg copies/mL | 3.84 (2.17–6.01) | 2.34 (0.00–3.74) | 0.259 | ||
HBcrAg, lg KU/mL | 5.24 ± 2.14, 4.87 | 4.19 ± 1.98, 3.34 | 0.314 | ||
IPI score | 2.00 (1.50–2.50) | 1.00 (1.00–2.00) | 0.452 | ||
Using Rituximab at baseline, n (%) | 4 (100) | 34 (69.4) | 0.191 | ||
Dose of Rituximab, mg | 600.00 ± 81.65 | 459.18 ± 282.05 | 0.032 | 1.003 (0.996–1.010) | 0.388 |
Total dose of GCs, mg | 245 (60.0–400) | 300 (180–490) | 0.505 |
AUROC | 95% CI | Cut-off | SE | SP | PPV | NPV | |
---|---|---|---|---|---|---|---|
HBsAg+ patients | |||||||
qAnti-HBc | 0.633 | 0.190–1.000 | 2.679 | 0.500 | 0.898 | 0.286 | 0.957 |
HBV RNA | 0.704 | 0.471–0.937 | 3.548 | 0.750 | 0.755 | 0.200 | 0.074 |
HBcrAg | 0.689 | 0.469–0.909 | 4.668 | 0.750 | 0.694 | 0.167 | 0.971 |
HBsAg−/anti-HBc+ patients | |||||||
qAnti-HBc | 0.743 | 0.487–1.000 | 1.604 | 0.833 | 0.672 | 0.200 | 0.976 |
HBV RNA | 0.649 | 0.422–0.876 | 1.477 | 0.500 | 0.852 | 0.250 | 0.945 |
HBcrAg | 0.605 | 0.334–0.877 | 2.540 | 0.667 | 0.639 | 0.154 | 0.951 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Nuersulitan, R.; Zhang, C.; Huo, N.; Li, J.; Song, Y.; Zhu, J.; Liu, W.; Zhao, H. Steady Decline of HBV DNA Load under NAs in Lymphoma Patients and a Higher Level of qAnti-HBc Predict HBV Reactivation. J. Clin. Med. 2024, 13, 23. https://doi.org/10.3390/jcm13010023
Liu Y, Nuersulitan R, Zhang C, Huo N, Li J, Song Y, Zhu J, Liu W, Zhao H. Steady Decline of HBV DNA Load under NAs in Lymphoma Patients and a Higher Level of qAnti-HBc Predict HBV Reactivation. Journal of Clinical Medicine. 2024; 13(1):23. https://doi.org/10.3390/jcm13010023
Chicago/Turabian StyleLiu, Yiqi, Reyizha Nuersulitan, Chi Zhang, Na Huo, Jun Li, Yuqin Song, Jun Zhu, Weiping Liu, and Hong Zhao. 2024. "Steady Decline of HBV DNA Load under NAs in Lymphoma Patients and a Higher Level of qAnti-HBc Predict HBV Reactivation" Journal of Clinical Medicine 13, no. 1: 23. https://doi.org/10.3390/jcm13010023
APA StyleLiu, Y., Nuersulitan, R., Zhang, C., Huo, N., Li, J., Song, Y., Zhu, J., Liu, W., & Zhao, H. (2024). Steady Decline of HBV DNA Load under NAs in Lymphoma Patients and a Higher Level of qAnti-HBc Predict HBV Reactivation. Journal of Clinical Medicine, 13(1), 23. https://doi.org/10.3390/jcm13010023