New Horizons of Cementless Total Knee Arthroplasty
Abstract
:1. Introduction
1.1. Mechanical Characteristics of Cementless TKA
1.2. First Generation of Cementless TKA
1.3. New Materials
1.3.1. Hydroxyapatite
1.3.2. Trabecular Metal
1.3.3. BIOFOAM
1.3.4. Tritanium
1.4. Implant Migration and RSA Analysis
1.5. Implant Loosening in Obese and Young Patients
1.6. Best Biology for Secondary Fixation
1.7. Our Surgical Technique Tips
1.8. Short Term Follow Up of a Novel 3D Printed Cementless TKA
1.9. Cost Analysis
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bourne, M.H.; Miller, T.L.; Mariani, E.M. Cumulative Incidence of Revision for a Balanced Knee System at a Mean 8-Year Follow-Up: A Retrospective Review of 500 Consecutive Total Knee Arthroplasties. Adv. Orthop. 2019, 2019, 9580586. [Google Scholar] [CrossRef]
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Jt. Surg Am. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Franceschetti, E.; Torre, G.; Palumbo, A.; Papalia, R.; Karlsson, J.; Ayeni, O.R.; Samuelsson, K.; Franceschi, F. No difference between cemented and cementless total knee arthroplasty in young patients: A review of the evidence. Knee Surg. Sports Traumatol. Arthrosc. 2017, 25, 1749–1756. [Google Scholar] [CrossRef]
- Gandhi, R.; Tsvetkov, D.; Davey, J.R.; Mahomed, N.N. Survival and clinical function of cemented and uncemented prostheses in total knee replacement: A meta-analysis. J. Bone Jt. Surg. Br. 2009, 91, 889–895. [Google Scholar] [CrossRef]
- Dalury, D.F. Cementless total knee arthroplasty: Current concepts review. Bone Jt. J. 2016, 98, 867–873. [Google Scholar] [CrossRef]
- Miller, A.J.; Stimac, J.D.; Smith, L.S.; Feher, A.W.; Yakkanti, M.R.; Malkani, A.L. Results of Cemented vs Cementless Primary Total Knee Arthroplasty Using the Same Implant Design. J. Arthroplast. 2018, 33, 1089–1093. [Google Scholar] [CrossRef]
- Bassett, R.W. Results of 1000 Performance knees: Cementless versus cemented fixation. J. Arthroplast. 1998, 13, 409–413. [Google Scholar] [CrossRef]
- Duffy, G.P.; Berry, D.J.; Rand, J.A. Cement versus cementless fixation in total knee arthroplasty. Clin. Orthop. Relat. Res. 1998, 356, 66–72. [Google Scholar] [CrossRef]
- Berger, R.A.; Lyon, J.H.; Jacobs, J.J.; Barden, R.M.; Berkson, E.M.; Sheinkop, M.B.; Rosenberg, A.G.; Galante, J.O. Problems with cementless total knee arthroplasty at 11 years followup. Clin. Orthop. Relat. Res. 2001, 392, 196–207. [Google Scholar] [CrossRef]
- Carlson, B.J.; Gerry, A.S.; Hassebrock, J.D.; Christopher, Z.K.; Spangehl, M.J.; Bingham, J.S. Clinical outcomes and survivorship of cementless triathlon total knee arthroplasties: A systematic review. Arthroplasty 2022, 4, 25. [Google Scholar] [CrossRef]
- Hu, B.; Chen, Y.; Zhu, H.; Wu, H.; Yan, S. Cementless Porous Tantalum Monoblock Tibia vs Cemented Modular Tibia in Primary Total Knee Arthroplasty: A Meta-Analysis. J. Arthroplast. 2017, 32, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.A.; Richardson, G.; Hennigar, A.W.; Dunbar, M.J. Continued stabilization of trabecular metal tibial monoblock total knee arthroplasty components at 5 years-measured with radiostereometric analysis. Acta Orthop. 2012, 83, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Henricson, A.; Wojtowicz, R.; Nilsson, K.G.; Crnalic, S. Uncemented or cemented femoral components work equally well in total knee arthroplasty. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Niemeläinen, M.J.; Mäkelä, K.T.; Robertsson, O.; W-Dahl, A.; Furnes, O.; Fenstad, A.M.; Pedersen, A.B.; Schrøder, H.M.; Reito, A.; Eskelinen, A. The effect of fixation type on the survivorship of contemporary total knee arthroplasty in patients younger than 65 years of age: A register-based study of 115,177 knees in the Nordic Arthroplasty Register Association (NARA) 2000–2016. Acta Orthop. 2020, 91, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Julin, J.; Jämsen, E.; Puolakka, T.; Konttinen, Y.T.; Moilanen, T. Younger age increases the risk of early prosthesis failure following primary total knee replacement for osteoarthritis. A follow-up study of 32,019 total knee replacements in the Finnish Arthroplasty Register. Acta Orthop. 2010, 81, 413–419. [Google Scholar] [CrossRef]
- Meehan, J.P.; Danielsen, B.; Kim, S.H.; Jamali, A.A.; White, R.H. Younger age is associated with a higher risk of early periprosthetic joint infection and aseptic mechanical failure after total knee arthroplasty. J. Bone Jt. Surg. Am. 2014, 96, 529–535. [Google Scholar] [CrossRef]
- Kurtz, S.M.; Ong, K.L.; Schmier, J.; Zhao, K.; Mowat, F.; Lau, E. Primary and revision arthroplasty surgery caseloads in the United States from 1990 to 2004. J. Arthroplast. 2009, 24, 195–203. [Google Scholar] [CrossRef]
- Bobyn, J.D.; Pilliar, R.M.; Cameron, H.U.; Weatherly, G.C. The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin. Orthop. Relat. Res. 1980, 150, 263–270. [Google Scholar] [CrossRef]
- Karageorgiou, V.; Kaplan, D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 2005, 26, 5474–5491. [Google Scholar] [CrossRef]
- Huddleston, J.I.; Wiley, J.W.; Scott, R.D. Zone 4 femoral radiolucent lines in hybrid versus cemented total knee arthroplasties: Are they clinically significant? Clin. Orthop. Relat. Res. 2005, 441, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Harrison, A.K.; Gioe, T.J.; Simonelli, C.; Tatman, P.J.; Schoeller, M.C. Do porous tantalum implants help preserve bone?: Evaluation of tibial bone density surrounding tantalum tibial implants in TKA. Clin. Orthop. Relat. Res. 2010, 468, 2739–2745. [Google Scholar] [CrossRef] [PubMed]
- Overgaard, S.; Lind, M.; Glerup, H.; Grundvig, S.; Bünger, C.; Søballe, K. Hydroxyapatite and fluorapatite coatings for fixation of weight loaded implants. Clin. Orthop. Relat. Res. 1997, 336, 286–296. [Google Scholar] [CrossRef]
- Nowak, M.; Kusz, D.; Wojciechowski, P.; Wilk, R. Risk factors for intraoperative periprosthetic femoral fractures during the total hip arthroplasty. Pol. Orthop. Traumatol. 2012, 77, 59–64. [Google Scholar] [PubMed]
- Sikorski, J.M. Alignment in total knee replacement. J. Bone Jt. Surg. Br. 2008, 90, 1121–1127. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, R.S.; Morris, R.W.; Denham, R.A. Coronal alignment after total knee replacement. J. Bone Jt. Surg. Br. 1991, 73, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Berahmani, S.; Janssen, D.; Wolfson, D.; Rivard, K.; de Waal Malefijt, M.; Verdonschot, N. The effect of surface morphology on the primary fixation strength of uncemented femoral knee prosthesis: A cadaveric study. J. Arthroplast. 2015, 30, 300–307. [Google Scholar] [CrossRef]
- Søballe, K.; Hansen, E.S.; Brockstedt-Rasmussen, H.; Bünger, C. Hydroxyapatite coating converts fibrous tissue to bone around loaded implants. J. Bone Jt. Surg. Br. 1993, 75, 270–278. [Google Scholar] [CrossRef]
- Cameron, H.U.; Pilliar, R.M.; MacNab, I. The effect of movement on the bonding of porous metal to bone. J. Biomed. Mater. Res. 1973, 7, 301–311. [Google Scholar] [CrossRef]
- Nam, D.; Lawrie, C.M.; Salih, R.; Nahhas, C.R.; Barrack, R.L.; Nunley, R.M. Cemented Versus Cementless Total Knee Arthroplasty of the Same Modern Design: A Prospective, Randomized Trial. J. Bone Jt. Surg. Am. Vol. 2019, 101, 1185–1192. [Google Scholar] [CrossRef]
- Søballe, K.; Hansen, E.S.; Brockstedt-Rasmussen, H.; Pedersen, C.M.; Bünger, C. Hydroxyapatite coating enhances fixation of porous coated implants: A comparison in dogs between press fit and noninterference fit. Acta Orthop. Scand. 1990, 61, 299–306. [Google Scholar] [CrossRef]
- Onsten, I.; Nordqvist, A.; Carlsson, A.S.; Besjakov, J.; Shott, S. Hydroxyapatite augmentation of the porous coating improves fixation of tibial components. A randomised RSA study in 116 patients. J. Bone Jt. Surg. Br. Vol. 1998, 80, 417–425. [Google Scholar] [CrossRef]
- Cross, M.J.; Parish, E.N. A hydroxyapatite-coated total knee replacement—Prospective analysis of 1000 patients. J. Bone Jt. Surg. Br. Vol. 2005, 87, 1073–1076. [Google Scholar] [CrossRef] [PubMed]
- van der Voort, P.; Nulent ML, K.; Valstar, E.R.; Kaptein, B.L.; Fiocco, M.; Nelissen, R.G. Long-term migration of a cementless stem with different bioactive coatings. Data from a “prime” RSA study: Lessons learned. Acta Orthop. 2020, 91, 660–668. [Google Scholar] [CrossRef]
- Voigt, J.D.; Mosier, M. Hydroxyapatite (HA) coating appears to be of benefit for implant durability of tibial components in primary total knee arthroplasty. Acta Orthop. 2011, 82, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Meneghini, R.M.; de Beaubien, B.C. Early failure of cementless porous tantalum monoblock tibial components. J. Arthroplast. 2013, 28, 1505–1508. [Google Scholar] [CrossRef]
- DeFrancesco, C.J.; Canseco, J.A.; Nelson, C.L.; Israelite, C.L.; Kamath, A.F. Uncemented Tantalum Monoblock Tibial Fixation for Total Knee Arthroplasty in Patients Less Than 60 Years of Age: Mean 10-Year Follow-up. J. Bone Jt. Surg. Am. Vol. 2018, 100, 865–870. [Google Scholar] [CrossRef]
- De Martino, I.; D’Apolito, R.; Sculco, P.K.; Poultsides, L.A.; Gasparini, G. Total Knee Arthroplasty Using Cementless Porous Tantalum Monoblock Tibial Component: A Minimum 10-Year Follow-Up. J. Arthroplast. 2016, 31, 2193–2198. [Google Scholar] [CrossRef]
- Gerscovich, D.; Schwing, C.; Unger, A. Long-term results of a porous tantalum monoblock tibia component: Clinical and radiographic results at follow-up of 10 years. Arthroplast. Today 2017, 3, 192–196. [Google Scholar] [CrossRef]
- Niemeläinen, M.; Skyttä, E.T.; Remes, V.; Mäkelä, K.; Eskelinen, A. Total Knee Arthroplasty with an Uncemented Trabecular Metal Tibial Component A Registry-Based Analysis. J. Arthroplast. 2013, 29, 57–60. [Google Scholar] [CrossRef]
- Dunbar, M.J.; Wilson, D.A.; Hennigar, A.W.; Amirault, J.D.; Gross, M.; Reardon, G.P. Fixation of a trabecular metal knee arthroplasty component. A prospective randomized study. J. Bone Jt. Surg. Am. Vol. 2009, 91, 1578–1586. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Fairen, M.; Hernández-Vaquero, D.; Murcia, A.; Torres, A.; Llopis, R. Trabecular metal in total knee arthroplasty associated with higher knee scores: A randomized controlled trial. Clin. Orthop. Relat. Res. 2013, 471, 3543–3553. [Google Scholar] [CrossRef]
- Pulido, L.; Abdel, M.P.; Lewallen, D.G.; Stuart, M.J.; Sanchez-Sotelo, J.; Hanssen, A.D.; Pagnano, M.W. The Mark Coventry Award: Trabecular metal tibial components were durable and reliable in primary total knee arthroplasty: A randomized clinical trial. Clin. Orthop. Relat. Res. 2015, 473, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Hampton, M.; Mansoor, J.; Getty, J.; Sutton, P.M. Uncemented tantalum metal components versus cemented tibial components in total knee arthroplasty: 11- to 15-year outcomes of a single-blinded randomized controlled trial. Bone Jt. J. 2020, 102, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Fricka, K.B.; Sritulanondha, S.; McAsey, C.J. To cement or not? Two-year results of a prospective, randomized study comparing cemented vs. cementless total knee arthroplasty (TKA). J. Arthroplast. 2015, 30, 55–58. [Google Scholar] [CrossRef] [PubMed]
- Karachalios, T.; Komnos, G.; Amprazis, V.; Antoniou, I.; Athanaselis, S. A 9-Year Outcome Study Comparing Cancellous Titanium-Coated Cementless to Cemented Tibial Components of a Single Knee Arthroplasty Design. J. Arthroplast. 2018, 33, 3672–3677. [Google Scholar] [CrossRef] [PubMed]
- Waddell, D.D.; Sedacki, K.; Yang, Y.; Fitch, D.A. Early radiographic and functional outcomes of a cancellous titanium-coated tibial component for total knee arthroplasty. Musculoskelet. Surg. 2016, 100, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Bhimji, S.; Meneghini, R. Micromotion of Cementless Tibial Baseplates: Keels with Adjuvant Pegs Offer More Stability Than Pegs Alone. J. Arthroplast. 2014, 29, 1503–1506. [Google Scholar] [CrossRef]
- Goh, G.S.; Fillingham, Y.A.; Sutton, R.M.; Small, I.; Courtney, P.M.; Hozack, W.J. Cemented Versus Cementless Total Knee Arthroplasty in Obese Patients with Body Mass Index ≥35 kg/m2: A Contemporary Analysis of 812 Patients. J. Arthroplast. 2022, 37, 688–693.e1. [Google Scholar] [CrossRef]
- Pijls, B.G.; Valstar, E.R.; Kaptein, B.L.; Fiocco, M.; Nelissen, R.G. The beneficial effect of hydroxyapatite lasts: A randomized radiostereometric trial comparing hydroxyapatite-coated, uncoated, and cemented tibial components for up to 16 years. Acta Orthop. 2012, 83, 135–141. [Google Scholar] [CrossRef]
- Laende, E.K.; Richardson, C.G.; Dunbar, M.J. Predictive value of short-term migration in determining long-term stable fixation in cemented and cementless total knee arthroplasties. Bone Jt. J. 2019, 101, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Henricson, A.; Nilsson, K. Trabecular metal tibial knee component still stable at 10 years. Acta Orthop. 2016, 87, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; van Hamersveld, K.T.; Marang-van de Mheen, P.J.; Kaptein, B.L.; Nelissen RG, H.H.; Toksvig-Larsen, S. Migration of a novel 3D-printed cementless versus a cemented total knee arthroplasty: Two-year results of a randomized controlled trial using radiostereometric analysis. Bone Jt. J. 2020, 102, 1016–1024. [Google Scholar] [CrossRef] [PubMed]
- Bagsby, D.T.; Issa, K.; Smith, L.S.; Elmallah, R.K.; Mast, L.E.; Harwin, S.F.; Mont, M.A.; Bhimani, S.J.; Malkani, A.L. Cemented versus cementless total knee arthroplasty in morbidly obese patients. J. Arthroplast. 2016, 31, 1727–1731. [Google Scholar] [CrossRef] [PubMed]
- Whiteside, L.A.; Viganò, R. Young and heavy patients with a cementless TKA do as well as older and lightweight patients. Clin. Orthop. Relat. Res. 2007, 464, 93–98. [Google Scholar] [CrossRef]
- Sinicrope, B.J.; Feher, A.W.; Bhimani, S.J.; Smith, L.S.; Harwin, S.F.; Yakkanti, M.R.; Malkani, A.L. Increased Survivorship of Cementless versus Cemented TKA in the Morbidly Obese. A Minimum 5-Year Follow-Up. J. Arthroplast. 2019, 34, 309–314. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Park, J.W.; Lim, H.M.; Park, E.S. Cementless and cemented total knee arthroplasty in patients younger than fifty five years. Which is better? Int. Orthop. 2014, 38, 297–303. [Google Scholar] [CrossRef]
- Kim, Y.H.; Park, J.W.; Jang, Y.S. The 22 to 25-Year Survival of Cemented and Cementless Total Knee Arthroplasty in Young Patients. J. Arthroplast. 2021, 36, 566–572. [Google Scholar] [CrossRef]
- Vertullo, C.J.; Zbrojkiewicz, D.; Vizesi, F.; Walsh, W.R. Thermal Analysis of the Tibial Cement Interface with Modern Cementing Technique. Open Orthop. J. 2016, 10, 19–25. [Google Scholar] [CrossRef]
- Tawy, G.F.; Rowe, P.J.; Riches, P.E. Thermal Damage Done to Bone by Burring and Sawing with and without Irrigation in Knee Arthroplasty. J. Arthroplast. 2016, 31, 1102–1108. [Google Scholar] [CrossRef]
- Dolan, E.B.; Haugh, M.G.; Tallon, D.; Casey, C.; McNamara, L.M. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting. J. R. Soc. Interface 2012, 9, 3503–3513. [Google Scholar] [CrossRef]
- Navathe, A.S.; Troxel, A.B.; Liao, J.M.; Nan, N.; Zhu, J.; Zhong, W.; Emanuel, E.J. Cost of Joint Replacement Using Bundled Payment Models. JAMA Intern. Med. 2017, 177, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Lawrie, C.M.; Schwabe, M.; Pierce, A.; Nunley, R.M.; Barrack, R.L. The cost of implanting a cemented versus cementless total knee arthroplasty. Bone Jt. J. 2019, 101, 61–63. [Google Scholar] [CrossRef] [PubMed]
- Yayac, M.; Harrer, S.; Hozack, W.J.; Parvizi, J.; Courtney, P.M. The Use of Cementless Components Does Not Significantly Increase Procedural Costs in Total Knee Arthroplasty. J. Arthroplast. 2020, 35, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Gwam, C.U.; George, N.E.; Etcheson, J.I.; Rosas, S.; Plate, J.F.; Delanois, R.E. Cementless versus Cemented Fixation in Total Knee Arthroplasty: Usage, Costs, and Complications during the Inpatient Period. J. Knee Surg. 2019, 32, 1081–1087. [Google Scholar] [CrossRef]
- Quispel, C.R.; Duivenvoorden, T.; Beekhuizen, S.R.; Verburg, H.; Spekenbrink-Spooren, A.; Van Steenbergen, L.N.; Pasma, J.H.; De Ridder, R. Comparable mid-term revision rates of primary cemented and cementless total knee arthroplasties in 201,211 cases in the Dutch Arthroplasty Register (2007–2017). Knee Surg. Sports Traumatol. Arthrosc. Off. J. ESSKA 2021, 29, 3400–3408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polizzotti, G.; Lamberti, A.; Mancino, F.; Baldini, A. New Horizons of Cementless Total Knee Arthroplasty. J. Clin. Med. 2024, 13, 233. https://doi.org/10.3390/jcm13010233
Polizzotti G, Lamberti A, Mancino F, Baldini A. New Horizons of Cementless Total Knee Arthroplasty. Journal of Clinical Medicine. 2024; 13(1):233. https://doi.org/10.3390/jcm13010233
Chicago/Turabian StylePolizzotti, Giuseppe, Alfredo Lamberti, Fabio Mancino, and Andrea Baldini. 2024. "New Horizons of Cementless Total Knee Arthroplasty" Journal of Clinical Medicine 13, no. 1: 233. https://doi.org/10.3390/jcm13010233
APA StylePolizzotti, G., Lamberti, A., Mancino, F., & Baldini, A. (2024). New Horizons of Cementless Total Knee Arthroplasty. Journal of Clinical Medicine, 13(1), 233. https://doi.org/10.3390/jcm13010233