Diabetes Status, c-Reactive Protein, and Insulin Resistance in Community-Acquired Pneumonia—A Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Laboratory Procedures
2.3.1. Inflammation
2.3.2. Glucose Profile and Insulin
2.3.3. Insulin Resistance
2.4. Definition of Chronic, Acute, and Acute-on-Chronic Hyperglycaemia
2.5. Outcome Measures, Exposures, and Confounders
2.6. Statistical Analyses
3. Results
3.1. Study Population
3.2. Patient Characteristics and Microbiological Findings
3.3. Patient Characteristics According to Chronic Hyperglycaemia
3.4. Insulin Resistance
3.5. Glucocorticoids
3.6. Association between Glycaemic Status, Glucocorticoids, and CRP Levels
3.7. Association between CRP at Admission and Insulin Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Supplementary Statistical Methods
Appendix A.2. Supplementary Tables
Characteristic | Overall, n = 540 1 | Euglycaemia 3, n = 225 1 | Prediabetes 3, n = 195 1 | Unknown Diabetes Mellitus 3, n = 24 1 | Known Diabetes Mellitus 3, n = 96 1 | p-Value 2 |
---|---|---|---|---|---|---|
Charlson comorbidity index | 4 (3, 6) | 4 (2, 6) | 4 (3, 6) | 5 (3.75, 7.00) | 5.00 (4.00, 7.00) | <0.001 |
History of myocardial infarction | 53 (9.8%) | 11 (4.9%) | 25 (13%) | 3 (12%) | 14 (15%) | 0.006 |
Heart failure | 87 (16%) | 26 (12%) | 32 (16%) | 6 (25%) | 23 (24%) | 0.023 |
Peripheral vascular disease | 22 (4.1%) | 4 (1.8%) | 6 (3.1%) | 3 (12%) | 9 (9.4%) | 0.003 |
Previous stroke | 78 (14%) | 27 (12%) | 27 (14%) | 5 (21%) | 19 (20%) | 0.2 |
Dementia | 12 (2.2%) | 6 (2.7%) | 5 (2.6%) | 0 (0%) | 1 (1.0%) | 0.9 |
COPD | 197 (36%) | 72 (32%) | 78 (40%) | 9 (38%) | 38 (40%) | 0.3 |
Connective tissue disease | 32 (5.9%) | 19 (8.4%) | 8 (4.1%) | 1 (4.2%) | 4 (4.2%) | 0.2 |
History of peptic ulcer disease | 46 (8.5%) | 12 (5.3%) | 23 (12%) | 2 (8.3%) | 9 (9.4%) | 0.10 |
Liver disease | 13 (2.4%) | 6 (2.7%) | 4 (2.1%) | 0 (0%) | 3 (3.1%) | 0.9 |
Hemiplegia | 14 (2.6%) | 6 (2.7%) | 5 (2.6%) | 0 (0%) | 3 (3.1%) | >0.9 |
Moderate to severe chronic kidney disease | 17 (3.1%) | 6 (2.7%) | 6 (3.1%) | 0 (0%) | 5 (5.2%) | 0.6 |
Cancer | 104 (19%) | 46 (20%) | 39 (20%) | 8 (33%) | 11 (11%) | 0.064 |
HIV | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | >0.9 |
Bacterial Aetiology | n |
---|---|
Other gram-negative bacterium | 46 |
Haemophilus influenzae | 27 |
Streptococcus pneumoniae | 21 |
Legionella pneumophila | 9 |
Staphyloccocus aureus | 9 |
M. pneumoniae | 5 |
Pseudomonas aeruginosa | 5 |
Streptococcus spp. | 4 |
Moraxella catarrhalis | 3 |
P. aeruginosa & other gram-negative bacterium | 2 |
S. pneumoniae & H. influenzae | 2 |
H. influenzae & L. pneumophila | 1 |
H. influenzae & M. catarrhalis | 1 |
H. influenzae & other gram-negative bacterium | 1 |
H. influenzae & S. aureus | 1 |
Legionella. & S. aureus & other gram-negative bacterium | 1 |
S. aureus & P. aeruginosa & M. catarrhalis & other gram-negative bacterium | 1 |
S. pneumoniae & S. aureus | 1 |
S. aureus & Streptococcus spp. | 1 |
Streptococcus spp. & S. aureus & other gram-negative bacterium | 1 |
Mixed bacterial and viral aetiology | |
S. pneumoniae & rhinovirus | 3 |
S. pneumoniae & parainfluenza A virus | 2 |
H. influenzae & human metapneumovirus | 1 |
H. influenzae & influenza A virus | 1 |
Other gram-negative bacterium & influenza A virus | 1 |
P. aeruginosa & influenza A virus | 1 |
P. aeruginosa & respiratory syncytial virus | 1 |
S. aureus & influenza A virus | 1 |
S. pneumoniae & human metapneumovirus | 1 |
Streptococcus spp. & respiratory syncytial virus | 1 |
S. aureus & influenza A virus | 1 |
Viral aetiology | |
Influenza A virus | 23 |
Respiratory syncytial virus | 5 |
Human metapneumovirus | 4 |
Rhinovirus | 3 |
Parainfluenza A virus | 2 |
Adenovirus | 1 |
Characteristic | No HOMA-IR 1 Available (n = 274) | HOMA-IR Available 1 (n = 266) | p-Value 2 |
---|---|---|---|
Demography | |||
Age, years | 73 (63, 80) | 75 (66, 82) | 0.051 |
Sex, female | 130 (47%) | 127 (48%) | 0.9 |
Comorbidities | |||
Charlson comorbidity index | 4 (3, 6) | 4 (3, 6) | 0.8 |
Chronic hyperglycemia groups 3 | 0.072 | ||
Euglycaemia | 111 (41%) | 114 (43%) | |
Prediabetes | 93 (34%) | 102 (38%) | |
Unknown diabetes mellitus | 10 (3.6%) | 14 (5.3%) | |
Known diabetes mellitus | 60 (22%) | 36 (14%) | |
Chronic obstructive pulmonary disease | 96 (35%) | 101 (38%) | 0.5 |
Glucocorticoid treatment | 87 (32%) | 98 (37%) | 0.2 |
Disease severity | |||
CURB-65 score | 0.8 | ||
Mild (0–1) | 149 (54%) | 138 (52%) | |
Moderate (2) | 90 (33%) | 93 (35%) | |
Severe (3–5) | 35 (13%) | 35 (13%) | |
Glycaemic parameters | |||
HOMA-IR | 2.7 (1.7, 5.6) | - | |
HbA1c (mmol/mol) | 40 (36, 46) | 40 (37, 44) | 0.5 |
Admission glucose (mmol/L) | 7.2 (6.1, 8.5) | 7.2 (6.3, 8.6) | 0.4 |
Glycaemic Gap (mmol/l) | 0.5 (−0.6, 1.8) | 0.5 (−0.3, 1.8) | 0.3 |
BMI kg/m2 | 26 (23, 30) | 26 (22, 29) | 0.6 |
Inflammatory parameters | |||
Admission CRP (mg/l) | 99 (35, 171) | 124 (52, 187) | 0.033 |
Characteristic | No day 3 CRP Measurement, n = 89 1 | Day 3 CRP Measurement Available, n = 451 1 | p-Value 2 |
---|---|---|---|
Age (years) | 73 (60, 79) | 74 (65, 81) | 0.2 |
Sex (female) | 56% | 46% | 0.076 |
Charlson comorbidity index | 4.0 (2.8, 6.00) | 5.0 (3.0, 6.0) | 0.034 |
CURB-65 score, severity | 0.094 | ||
Mild (0–1) | 56 (63%) | 231 (51%) | |
Moderate (2) | 26 (29%) | 157 (35%) | |
Severe (3–5) | 7 (7.9%) | 63 (14%) | |
Admission CRP (mg/l) | 57 (18, 118) | 126 (51, 188) | <0.001 |
Length of stay (days) | 2 (1, 2) | 6 (4, 10) | <0.001 |
Length of stay ≤ 3 days | 85% | 11% | <0.001 |
Died in-hospital | 6.7% | 6.9% | >0.9 |
References
- Torres, A.; Cilloniz, C.; Niederman, M.S.; Menéndez, R.; Chalmers, J.D.; Wunderink, R.G.; van der Poll, T. Pneumonia. Nat. Rev. Dis. Prim. 2021, 7, 1–28. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef] [PubMed]
- Pletz, M.W.; Jensen, A.V.; Bahrs, C.; Davenport, C.; Rupp, J.; Witzenrath, M.; Barten-Neiner, G.; Kolditz, M.; Dettmer, S.; Chalmers, J.D.; et al. Unmet needs in pneumonia research: A comprehensive approach by the CAPNETZ study group. Respir. Res. 2022, 23, 239. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.S.; Baudouin, S.V.; George, R.C.; Hill, A.T.; Jamieson, C.; Jeune, I.L.; Macfarlane, J.T.; Read, R.C.; Roberts, H.J.; Levy, M.L.; et al. BTS guidelines for the management of community acquired pneumonia in adults: Update 2009. Thorax 2009, 64, iii1–iii55. [Google Scholar] [CrossRef] [PubMed]
- Karakioulaki, M.; Stolz, D. Biomarkers in Pneumonia—Beyond Procalcitonin. Int. J. Mol. Sci. 2019, 20, 2004. [Google Scholar] [CrossRef] [PubMed]
- Andersen, S.B.; Baunbæk Egelund, G.; Jensen, A.V.; Petersen, P.T.; Rohde, G.; Ravn, P. Failure of CRP decline within three days of hospitalization is associated with poor prognosis of Community-acquired Pneumonia. Infect. Dis. 2017, 49, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Peetermans, W.E.; Viegi, G.; Blasi, F. Risk factors for community-acquired pneumonia in adults in Europe: A literature review. Thorax 2013, 68, 1057–1065. [Google Scholar] [CrossRef]
- Wang, Z.; Huo, B.; Wu, Q.; Dong, L.; Fu, H.; Wang, S.; Zhang, J. The role of procalcitonin in differential diagnosis between acute radiation pneumonitis and bacterial pneumonia in lung cancer patients receiving thoracic radiotherapy. Sci. Rep. 2020, 10, 2941. [Google Scholar] [CrossRef]
- Grossmann, V.; Schmitt, V.H.; Zeller, T.; Panova-Noeva, M.; Schulz, A.; Laubert-Reh, D.; Juenger, C.; Schnabel, R.B.; Abt, T.G.J.; Laskowski, R.; et al. Profile of the Immune and Inflammatory Response in Individuals With Prediabetes and Type 2 Diabetes. Diabetes Care 2015, 38, 1356–1364. [Google Scholar] [CrossRef]
- Jensen, A.V.; Baunbæk Egelund, G.; Bang Andersen, S.; Petersen, P.T.; Benfield, T.; Witzenrath, M.; Rohde, G.; Ravn, P.; Faurholt-Jepsen, D.; Members of the CAPNETZ study group except the authors. The Glycemic Gap and 90-Day Mortality in Community-acquired Pneumonia. A Prospective Cohort Study. Ann. Am. Thorac. Soc. 2019, 16, 1518–1526. [Google Scholar] [CrossRef]
- Jensen, A.V.; Faurholt-Jepsen, D.; Egelund, G.B.; Andersen, S.B.; Petersen, P.T.; Benfield, T.; Witzenrath, M.; Rohde, G.; Ravn, P. Undiagnosed Diabetes Mellitus in Community-Acquired Pneumonia: A Prospective Cohort Study. Clin. Infect. Dis. 2017, 65, 2091–2098. [Google Scholar] [CrossRef] [PubMed]
- Yende, S.; van der Poll, T.; Lee, M.; Huang, D.T.; Newman, A.B.; Kong, L.; Kellum, J.A.; Harris, T.B.; Bauer, D.; Satterfield, S.; et al. The influence of pre-existing diabetes mellitus on the host immune response and outcome of pneumonia: Analysis of two multicentre cohort studies. Thorax 2010, 65, 870–877. [Google Scholar] [CrossRef]
- Zeng, W.; Huang, X.; Luo, W.; Chen, M. Association of admission blood glucose level and clinical outcomes in elderly community-acquired pneumonia patients with or without diabetes. Clin. Respir. J. 2022, 16, 562–571. [Google Scholar] [CrossRef] [PubMed]
- Schuetz, P.; Friedli, N.; Grolimund, E.; Kutz, A.; Haubitz, S.; Christ-Crain, M.; Thomann, R.; Zimmerli, W.; Hoess, C.; Henzen, C.; et al. Effect of hyperglycaemia on inflammatory and stress responses and clinical outcome of pneumonia in non-critical-care inpatients: Results from an observational cohort study. Diabetologia 2014, 57, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Dungan, K.M.; Braithwaite, S.S.; Preiser, J.C. Stress hyperglycaemia. Lancet 2009, 373, 1798–1807. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Lim, W.S.; van der Eerden, M.M.; Laing, R.; Boersma, W.G.; Karalus, N.; Town, G.I.; Lewis, S.A.; Macfarlane, J.T. Defining community acquired pneumonia severity on presentation to hospital: An international derivation and validation study. Thorax 2003, 58, 377–382. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- Wallace, T.M.; Levy, J.C.; Matthews, D.R. Use and Abuse of HOMA Modeling. Diabetes Care 2004, 27, 1487–1495. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef]
- Friedrich, N.; Thuesen, B.; Jørgensen, T.; Juul, A.; Spielhagen, C.; Wallaschofksi, H.; Linneberg, A. The Association Between IGF-I and Insulin Resistance. Diabetes Care 2012, 35, 768–773. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Standards of Medical Care in Diabetes—2022 Abridged for Primary Care Providers. Clin. Diabetes 2022, 40, 10–38. [Google Scholar] [CrossRef] [PubMed]
- Travlos, A.; Bakakos, A.; Vlachos, K.F.; Rovina, N.; Koulouris, N.; Bakakos, P. C-Reactive Protein as a Predictor of Survival and Length of Hospital Stay in Community-Acquired Pneumonia. J. Pers. Med. 2022, 12, 1710. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Sibila, O.; Ferrer, M.; Polverino, E.; Menendez, R.; Mensa, J.; Gabarrús, A.; Sellarés, J.; Restrepo, M.I.; Anzueto, A.; et al. Effect of Corticosteroids on Treatment Failure Among Hospitalized Patients With Severe Community-Acquired Pneumonia and High Inflammatory Response: A Randomized Clinical Trial. JAMA 2015, 313, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, A.S.; Pedersen-Skovsgaard, T.; Berg, R.M.G.; Svendsen, K.D.; Feldt-Rasmussen, B.; Pedersen, B.K.; Møller, K. Type 2 diabetes mellitus is associated with impaired cytokine response and adhesion molecule expression in human endotoxemia. Intensiv. Care Med. 2010, 36, 1548–1555. [Google Scholar] [CrossRef] [PubMed]
- Khondkaryan, L.; Margaryan, S.; Poghosyan, D.; Manukyan, G. Impaired Inflammatory Response to LPS in Type 2 Diabetes Mellitus. Int. J. Inflamm. 2018, 2018, 2157434. [Google Scholar] [CrossRef] [PubMed]
- Berbudi, A.; Rahmadika, N.; Tjahjadi, A.I.; Ruslami, R. Type 2 Diabetes and its Impact on the Immune System. Curr. Diabetes Rev. 2020, 16, 442–449. [Google Scholar] [CrossRef]
- Fally, M.; Israelsen, S.; Anhøj, J.; Benfield, T.; Tarp, B.; Kolte, L.; Ravn, P. The increasing importance of Haemophilus influenzae in community-acquired pneumonia: Results from a Danish cohort study. Infect. Dis. 2021, 53, 122–130. [Google Scholar] [CrossRef]
- Musher, D.M.; Abers, M.S.; Bartlett, J.G. Evolving Understanding of the Causes of Pneumonia in Adults, With Special Attention to the Role of Pneumococcus. Clin. Infect. Dis. 2017, 65, 1736–1744. [Google Scholar] [CrossRef]
- Blum, C.A.; Nigro, N.; Briel, M.; Schuetz, P.; Ullmer, E.; Suter-Widmer, I.; Winzeler, B.; Bingisser, R.; Elsaesser, H.; Drozdov, D.; et al. Adjunct prednisone therapy for patients with community-acquired pneumonia: A multicentre, double-blind, randomised, placebo-controlled trial. Lancet 2015, 385, 1511–1518. [Google Scholar] [CrossRef]
- Lepper, P.M.; Ott, S.; Nuesch, E.; von Eynatten, M.; Schumann, C.; Pletz, M.W.; Mealing, N.M.; Welte, T.; Bauer, T.T.; Suttorp, N.; et al. Serum glucose levels for predicting death in patients admitted to hospital for community acquired pneumonia: Prospective cohort study. BMJ 2012, 344, e3397. [Google Scholar] [CrossRef] [PubMed]
- Esposito, K.; Nappo, F.; Marfella, R.; Giugliano, G.; Giugliano, F.; Ciotola, M.; Quagliaro, L.; Ceriello, A.; Giugliano, D. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: Role of oxidative stress. Circulation 2002, 106, 2067–2072. [Google Scholar] [CrossRef] [PubMed]
- Krogh-Madsen, R.; Møller, K.; Dela, F.; Kronborg, G.; Jauffred, S.; Pedersen, B.K. Effect of hyperglycemia and hyperinsulinemia on the response of IL-6, TNF-alpha, and FFAs to low-dose endotoxemia in humans. Am. J. Physiol. Metab. 2004, 286, E766–E772. [Google Scholar] [CrossRef]
- Rivas, A.M.; Nugent, K. Hyperglycemia, Insulin, and Insulin Resistance in Sepsis. Am. J. Med Sci. 2021, 361, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Agwunobi, A.O.; Reid, C.; Maycock, P.; Little, R.A.; Carlson, G.L. Insulin Resistance and Substrate Utilization in Human Endotoxemia. J. Clin. Endocrinol. Metab. 2000, 85, 3770–3778. [Google Scholar] [CrossRef] [PubMed]
- Farooq, N.; Chuan, B.; Mahmud, H.; El Khoudary, S.R.; Nouraie, S.M.; Evankovich, J.; Yang, L.; Dunlap, D.; Bain, W.; Kitsios, G.; et al. Association of the systemic host immune response with acute hyperglycemia in mechanically ventilated septic patients. PLoS ONE 2021, 16, e0248853. [Google Scholar] [CrossRef]
- Dirks, M.L.; Wall, B.T.; van de Valk, B.; Holloway, T.M.; Holloway, G.P.; Chabowski, A.; Goossens, G.H.; van Loon, L.J.C. One Week of Bed Rest Leads to Substantial Muscle Atrophy and Induces Whole-Body Insulin Resistance in the Absence of Skeletal Muscle Lipid Accumulation. Diabetes 2016, 65, 2862–2875. [Google Scholar] [CrossRef]
- Hughes, R.A.; Heron, J.; Sterne, J.A.C.; Tilling, K. Accounting for missing data in statistical analyses: Multiple imputation is not always the answer. Int. J. Epidemiol. 2019, 48, 1294–1304. [Google Scholar] [CrossRef]
- Schuurman, A.R.; Reijnders, T.D.Y.; van Engelen, T.S.R.; Léopold, V.; de Brabander, J.; van Linge, C.; Schinkel, M.; Pereverzeva, L.; Haak, B.W.; Brands, X.; et al. The host response in different aetiologies of community-acquired pneumonia. EBioMedicine 2022, 81, 104082. [Google Scholar] [CrossRef]
Characteristic | n | Overall n = 540 2 | Euglycaemia n = 225 2 | Prediabetes n = 195 2 | Unknown Diabetes Mellitus n = 24 2 | Known Diabetes Mellitus n = 96 2 | p-Value 3 |
---|---|---|---|---|---|---|---|
Demography | |||||||
Age (years) | 540 | 74 (64, 81) | 73 (62, 81) | 74 (66, 81) | 73 (71, 78) | 73 (66, 79) | 0.6 |
Female sex | 257 (48%) | 116 (52%) | 89 (46%) | 13 (54%) | 39 (41%) | 0.26 | |
Anthropometry | |||||||
BMI2 (kg/m2) | 448 | 26 (22, 30) | 25 (21, 29)# | 26 (22, 30) | 27 (22, 29) | 27 (25, 31) | <0.001 |
Comorbidity | |||||||
Charlson comorbidity index | 540 | 4 (3–6) | 4 (2–6) # | 4 (3–6) # | 5(4–7) | 5 (4–7) | < 0.001 |
Chronic obstructive pulmonary disease | 540 | 197 (36%) | 72 (32%) | 78 (40%) | 9 (38%) | 38 (40%) | 0.33 |
Glucocorticoid treatment | 540 | 185 (35%) | 64 (29%) | 82 (42%) | 8 (33%) | 31 (32%) | 0.034 |
Disease severity | |||||||
CURB-65 score | 540 | 0.10 | |||||
Mild: 0–1 | 287 (53%) | 135 (60%) | 100 (51%) | 9 (38%) | 43 (45%) | ||
Moderate: 2 | 183 (34%) | 67 (30%) | 66 (34%) | 10 (42%) | 40 (42%) | ||
Severe: 3–5 | 70 (13%) | 23 (10%) | 29 (15%) | 5 (21%) | 13 (14%) | ||
Glycaemic parameters | |||||||
HbA1c (mmol/mol) | 540 | 40 (37, 45) | 36 (34, 38) § | 42 (40, 44) § | 51 (49, 53) § | 55 (48, 68) § | <0.001 |
Admission glucose (mmol/L) | 540 | 7.20 (6.22, 8.56) | 6.62 (5.96, 7.57) # | 7.20 (6.31, 8.20) # | 8.54 (7.12, 9.19) | 9.98 (7.62, 13.95) | <0.001 |
Acute hyperglycaemia groups | |||||||
Normal (<6 mmol/L) | 245 (45%) | 140 (62%) | 85 (44%) | 6 (25%) | 14 (15%) | ||
Mild (6–11 mmol/L) | 237 (44%) | 81 (36%) | 102 (52%) | 15 (62%) | 39 (41%) | ||
Severe (≥11.1 mmol/L) | 58 (11%) | 4 (1.8%) | 8 (4.1%) | 3 (12%) | 43 (45%) | ||
Glycaemic Gap (mmol/L) | 540 | 0.5 (−0.4; 1.8) | 0.6 (−0.1; 1.8) #,¤ | 0.3 (−0.6;1.2) | 0.1 (−1.0; 0.9) | 1.3 (−0.8; 3.8) | 0.001 |
HOMA-IR | 266 | 2.7 (1.7, 5.6) | 2.4 (1.6, 3.9) # | 3.0 (1.9, 5.6) | 2.8 (1.6, 4.3) | 4.7 (2.4, 10.7) | 0.013 |
HOMA-IR > 2.5 | 266 | 145 (55%) | 52 (46%) | 59 (58%) | 9 (64%) | 25 (69%) | 0.049 |
Inflammatory parameters | |||||||
Admission CRP (mg/L) | 540 | 109 (44, 181) | 118 (46, 181) | 116 (46, 187) | 123 (55, 178) | 84 (32, 156) | 0.4 |
Peak CRP day 0–3 (mg/L) | 540 | 151 (88, 225) | 151 (101, 223) | 155 (94, 245) | 140 (93, 216) | 149 (75, 204) | 0.7 |
Model 1 1 | Model 2 2 | |||||
---|---|---|---|---|---|---|
Predictors | Estimates (β) | 95% CI | p-Value | Estimates (β) | 95% CI | p-Value |
3 Effect of time | ||||||
Admission day (reference) | ||||||
Day 1 | 1.28 | 1.20–1.36 | <0.001 | 1.28 | 1.20–1.36 | |
Day 2 | 1.01 | 0.95–1.07 | 0.87 | 1.01 | 0.95–1.07 | 0.87 |
Day 3 | 0.71 | 0.66–0.75 | <0.001 | 0.71 | 0.66–0.75 | |
Chronic hyperglycemia models | ||||||
HbA1c (Δ1 mmol/mol) | 1.00 | 0.99–1.01 | 0.87 | 1.00 | 0.99–1.01 | 0.73 |
Glucocorticoid treatment (no)—reference | ||||||
Glucocorticoid treatment (yes) | 0.52 | 0.44–0.61 | < 0.001 | |||
Chronic glycaemia groups 4 | ||||||
Euglycaemia (reference) | ||||||
Known DM | 0.84 | 0.67–1.06 | 0.13 | 0.84 | 0.67–1.05 | 0.13 |
Prediabetes | 0.92 | 0.76–1.10 | 0.36 | 1.00 | 0.84–1.20 | 0.98 |
Unknown DM | 1.01 | 0.67–1.51 | 0.98 | 1.03 | 0.70–1.51 | 0.90 |
Glucocorticoid treatment (no)—reference | ||||||
Glucocorticoid treatment (yes) | 0.51 | 0.44–0.61 | <0.001 | |||
Acute hyperglycaemia models | ||||||
Admission p-glucose (Δ1 mmol/L) | 1.01 | 0.99–1.04 | 0.34 | 1.01 | 0.99–1.04 | 0.28 |
Glucocorticoid treatment (no)—reference | ||||||
Glucocorticoid treatment (yes) | 0.52 | 0.44–0.61 | <0.001 | |||
Admission p-glucose groups | ||||||
p-glucose <6 mmol/l (reference) | ||||||
p-glucose > 6 & <11 mmol/L | 1.04 | 0.87–1.23 | 0.68 | 1.09 | 0.93–1.29 | 0.30 |
p-glucose > 11 mmol/L | 0.97 | 0.73–1.27 | 0.80 | 1.03 | 0.79–1.34 | 0.81 |
Glucocorticoid treatment (no)—reference | ||||||
Glucocorticoid treatment (yes) | 0.51 | 0.44–0.60 | <0.001 | |||
Acute-on-chronic hyperglycaemia models | ||||||
Glycaemic gap (Δ1 mmol/L) | 1.02 | 0.99–1.06 | 0.17 | 1.03 | 1.00–1.06 | 0.10 |
Glucocorticoid treatment (no)—reference | ||||||
Glucocorticoid treatment (yes) | 0.51 | 0.44–0.60 | <0.001 | |||
Glycaemic gap quartiles 5 | ||||||
1st quartile (reference) | ||||||
2nd quartile | 1.09 | 0.86–1.37 | 0.49 | 1.18 | 0.95–1.48 | 0.14 |
3rd quartile | 1.16 | 0.92–1.46 | 0.22 | 1.20 | 0.96–1.50 | 0.11 |
4th quartiles | 1.16 | 0.92–1.46 | 0.20 | 1.19 | 0.95–1.47 | 0.12 |
Glucocorticoid treatment (no)—reference | ||||||
Glucocorticoid treatment (yes) | 0.51 | 0.44–0.60 | < 0.001 |
Unadjusted Model | Adjusted Model | |||||
---|---|---|---|---|---|---|
Predictors | Estimates (β) | 95% CI | p-Value | Estimates (β) | 95% CI | p-Value |
CRP at admission (Δ50 mg/L) | 1.03 | 0.98–1.08 | 0.29 | 1.07 | 1.01–1.14 | 0.019 |
Age (Δ1 year) | 0.99 | 0.98–1.00 | 0.19 | |||
Sex (female)—reference | ||||||
Sex (male) | 1.11 | 0.88–1.39 | 0.39 | |||
HbA1c (Δ1 mmol/mol) | 1.00 | 0.99–1.01 | 0.99 | |||
Glucocorticoid treatment (no)—reference | ||||||
Glucocorticoid treatment (yes) | 1.65 | 1.29–2.12 | <0.001 | |||
BMI (Δ1 kg/m2) | 1.06 | 1.05–1.09 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dungu, A.M.; Ryrsø, C.K.; Hegelund, M.H.; Jensen, A.V.; Kristensen, P.L.; Krogh-Madsen, R.; Ritz, C.; Faurholt-Jepsen, D.; Lindegaard, B. Diabetes Status, c-Reactive Protein, and Insulin Resistance in Community-Acquired Pneumonia—A Prospective Cohort Study. J. Clin. Med. 2024, 13, 245. https://doi.org/10.3390/jcm13010245
Dungu AM, Ryrsø CK, Hegelund MH, Jensen AV, Kristensen PL, Krogh-Madsen R, Ritz C, Faurholt-Jepsen D, Lindegaard B. Diabetes Status, c-Reactive Protein, and Insulin Resistance in Community-Acquired Pneumonia—A Prospective Cohort Study. Journal of Clinical Medicine. 2024; 13(1):245. https://doi.org/10.3390/jcm13010245
Chicago/Turabian StyleDungu, Arnold Matovu, Camilla Koch Ryrsø, Maria Hein Hegelund, Andreas Vestergaard Jensen, Peter Lommer Kristensen, Rikke Krogh-Madsen, Christian Ritz, Daniel Faurholt-Jepsen, and Birgitte Lindegaard. 2024. "Diabetes Status, c-Reactive Protein, and Insulin Resistance in Community-Acquired Pneumonia—A Prospective Cohort Study" Journal of Clinical Medicine 13, no. 1: 245. https://doi.org/10.3390/jcm13010245
APA StyleDungu, A. M., Ryrsø, C. K., Hegelund, M. H., Jensen, A. V., Kristensen, P. L., Krogh-Madsen, R., Ritz, C., Faurholt-Jepsen, D., & Lindegaard, B. (2024). Diabetes Status, c-Reactive Protein, and Insulin Resistance in Community-Acquired Pneumonia—A Prospective Cohort Study. Journal of Clinical Medicine, 13(1), 245. https://doi.org/10.3390/jcm13010245