Immunological Patient Stratification in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Cohort and Sampling Procedure
2.2. Measurement of Disease-Related Parameters
2.3. Statistical Analyses
3. Results
3.1. Evaluation of Pro-Inflammatory Immune Mediators
3.2. Immune Marker Related to Enhanced Mast Cell Activity and Eosinophil Activation
3.3. Biomarker Associated with Mucosal and Intestinal Barrier Integrity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Kit | Manufacturer | Cat. Number |
---|---|---|
Human IL-1-beta Uncoated ELSIA | ThermoFisher Scientific, Waltham, MA, USA | 88-7261 |
Human IL-6 Uncoated ELISA Kit | ThermoFisher Scientific, Waltham, MA, USA | 88-7066 |
Human TNF-alpha Uncoated ELISA | ThermoFisher Scientific, Waltham, MA, USA | 88-7346 |
Human IL-8 Uncoated ELISA Kit | ThermoFisher Scientific, Waltham, MA, USA | 88-8086 |
Human IL-33 ELISA Kit | ThermoFisher Scientific, Waltham, MA, USA | BMS2048 |
Human IFN-gamma Uncoated ELISA | ThermoFisher Scientific, Waltham, MA, USA | 88-7316 |
BD OptEIA Human C4a ELISA Kit | BD Biosciences, Franklin Lakes, NJ, USA | 550947 |
Fibroblast Growth Factor 21 Human ELISA | BioVendor, Brno, Czech Republic | RD191108200R |
Human RNASE3/ECP (Ribonuclease A3/Eosinophil cationic Protein) ELISA Kit | Elabscience, Houston, TX, USA | E-EL-H1379 |
Human EDN (Eosinophil-Derived Neurotoxin) ELISA Kit | Elabscience, Houston, TX, USA | E-EL-H2341 |
Human LBP ELISA Kit | ThermoFisher Scientific, Waltham, MA, USA | EH297RB |
EndoCAb IgG, Human, ELISA Kit | Hycult Biotech, Wayne, NJ, USA | HK504-IGG |
Human CD14 ELISA Kit | ThermoFisher Scientific, Waltham, MA, USA | EHCD14 |
Human FABP-2 (intestinal) ELISA Kit | ThermoFisher Scientific, Waltham, MA, USA | EHFABP2 |
Study Group | ME/CFS + ID | ME/CFS − ID | Healthy |
---|---|---|---|
Parameter (unit ± SD) | |||
TNF-alpha (pg/mL) | 2.76 (±2.56) | 7.03 (±9.08) | 3.63 (±3.68) |
p-value: 0.061 | |||
LOD: 4 pg/mL | |||
IL-33 (pg/mL) | 35.70 (±48.23) | 52.13 (±77.37) | 27.77 (±35.44) |
p-value: 0.897 | |||
LOD: 0.9 pg/mL | |||
FGF21 (pg/mL) | 170.50 (±158.90) | 149.70 (±116.80) | 155.80 (±90.14) |
p-value: 0.634 | |||
LOD: 7 pg/mL | |||
EDN (ng/mL) | 50.11 (±27.60) | 52.29 (±29.19) | 41.03 (±17.78) |
p-value: 0.409 | |||
LOD: 0.63 ng/mL | |||
Endotoxin-Core IgG (MU/mL) | 113.10 (±219.30) | 77.79 (±79.75) | 75.97 (±46.80) |
p-value: 0.570 | |||
LOD: 0.13 MU/mL | |||
sCD14 (µg/mL) | 12.23 (±2.00) | 11.99 (±2.20) | 11.39 (±1.00) |
p-value: 0.439 | |||
LOD: 6 pg/mL | |||
I-FABP (ng/mL) | 7.86 (±17.51) | 3.90 (±7.30) | 11.35 (±20.29) |
p-value: 0.396 | |||
LOD: 25 pg/mL |
References
- Wirth, K.J.; Löhn, M. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Comorbidities: Linked by Vascular Pathomechanisms and Vasoactive Mediators? Medicina 2023, 59, 978. [Google Scholar] [CrossRef] [PubMed]
- Lutz, L.; Rohrhofer, J.; Zehetmayer, S.; Stingl, M.; Untersmayr, E. Evaluation of Immune Dysregulation in an Austrian Patient Cohort Suffering from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Biomolecules 2021, 11, 1359. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.J.; Ahn, Y.C.; Jang, E.S.; Lee, S.W.; Lee, S.H.; Son, C.G. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J. Transl. Med. 2020, 18, 100. [Google Scholar] [CrossRef] [PubMed]
- Tschopp, R.; König, R.S.; Rejmer, P.; Paris, D.H. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): A preliminary survey among patients in Switzerland. Heliyon 2023, 9, e15595. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Pablos, M.; Paiva, B.; Montero-Mateo, R.; Garcia, N.; Zabaleta, A. Epstein-Barr Virus and the Origin of Myalgic Encephalomyelitis or Chronic Fatigue Syndrome. Front. Immunol. 2021, 12, 4637. [Google Scholar] [CrossRef] [PubMed]
- Komaroff, A.L.; Bateman, L. Will COVID-19 Lead to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome? Front. Med. 2021, 7, 1132. [Google Scholar] [CrossRef]
- Altmann, D.M.; Whettlock, E.M.; Liu, S.; Arachchillage, D.J.; Boyton, R.J. The immunology of long COVID. Nat. Rev. Immunol. 2023, 23, 618–634. [Google Scholar] [CrossRef]
- Renz-Polster, H.; Scheibenbogen, C. Post-COVID syndrome with fatigue and exercise intolerance: Myalgic encephalomyelitis/chronic fatigue syndrome. Inn. Med. 2022, 63, 830–839. [Google Scholar]
- Jonsjö, M.A.; Olsson, G.L.; Wicksell, R.K.; Alving, K.; Holmström, L.; Andreasson, A. The role of low-grade inflammation in ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome)—Associations with symptoms. Psychoneuroendocrinology 2020, 113, 104578. [Google Scholar] [CrossRef]
- Kedor, C.; Freitag, H.; Meyer-Arndt, L.; Wittke, K.; Hanitsch, L.G.; Zoller, T.; Steinbeis, F.; Haffke, M.; Rudolf, G.; Heidecker, B.; et al. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nat. Commun. 2022, 13, 5104. [Google Scholar] [CrossRef]
- Guenther, S.; Loebel, M.; Mooslechner, A.A.; Knops, M.; Hanitsch, L.G.; Grabowski, P.; Wittke, K.; Meisel, C.; Unterwalder, N.; Volk, H.-D.; et al. Frequent IgG subclass and mannose binding lectin deficiency in patients with chronic fatigue syndrome. Hum. Immunol. 2015, 76, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Jack, D.L.; Read, R.C.; Tenner, A.J.; Frosch, M.; Turner, M.W.; Klein, N.J. Mannose-binding lectin regulates the inflammatory response of human professional phagocytes to Neisseria meningitidis serogroup B. J. Infect. Dis. 2001, 184, 1152–1162. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Gupta, G.S. Status of mannose-binding lectin (MBL) and complement system in COVID-19 patients and therapeutic applications of antiviral plant MBLs. Mol. Cell. Biochem. 2021, 476, 2917–2942. [Google Scholar] [CrossRef] [PubMed]
- Ali, Y.M.; Ferrari, M.; Lynch, N.J.; Yaseen, S.; Dudler, T.; Gragerov, S.; Demopulos, G.; Heeney, J.L.; Schwaeble, W.J. Lectin Pathway Mediates Complement Activation by SARS-CoV-2 Proteins. Front. Immunol. 2021, 12, 714511. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Zhu, L.; Liu, H.; Zhang, X.; Wang, T.; Fu, Y.; Li, H.; Dong, Q.; Hu, Y.; Zhang, Z.; et al. Highly pathogenic coronavirus N protein aggravates inflammation by MASP-2-mediated lectin complement pathway overactivation. Signal Transduct. Target. Ther. 2022, 7, 318. [Google Scholar] [CrossRef] [PubMed]
- Rohrhofer, J.; Graninger, M.; Lettenmaier, L.; Schweighardt, J.; Gentile, S.A.; Koidl, L.; Ret, D.; Stingl, M.; Puchhammer-Stöckl, E.; Untersmayr, E. Association between Epstein-Barr-Virus reactivation and development of Long-COVID fatigue. Allergy 2023, 78, 297–299. [Google Scholar] [CrossRef] [PubMed]
- König, R.S.; Albrich, W.C.; Kahlert, C.R.; Bahr, L.S.; Löber, U.; Vernazza, P.; Scheibenbogen, C.; Forslund, S.K. The Gut Microbiome in Myalgic Encephalomyelitis (ME)/Chronic Fatigue Syndrome (CFS). Front. Immunol. 2021, 12, 628741. [Google Scholar] [CrossRef]
- Zollner, A.; Koch, R.; Jukic, A.; Pfister, A.; Meyer, M.; Rössler, A.; Kimpel, J.; Adolph, T.E.; Tilg, H. Postacute COVID-19 is Characterized by Gut Viral Antigen Persistence in Inflammatory Bowel Diseases. Gastroenterology 2022, 163, 495–506.e8. [Google Scholar] [CrossRef]
- Sencio, V.; Gallerand, A.; Machado, M.G.; Deruyter, L.; Heumel, S.; Soulard, D.; Barthelemy, J.; Cuinat, C.; Vieira, A.T.; Barthelemy, A.; et al. Influenza Virus Infection Impairs the Gut’s Barrier Properties and Favors Secondary Enteric Bacterial Infection through Reduced Production of Short-Chain Fatty Acids. Infect. Immun. 2021, 89, e0073420. [Google Scholar] [CrossRef]
- Tugizov, S. Virus-associated disruption of mucosal epithelial tight junctions and its role in viral transmission and spread. Tissue Barriers 2021, 9, 1943274. [Google Scholar] [CrossRef]
- Rowe, K. Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) in Adolescents: Practical Guidance and Management Challenges. Adolesc. Health Med. Ther. 2023, 14, 13–26. [Google Scholar] [CrossRef]
- Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome; Board on the Health of Select Populations; Institute of Medicine. The National Academies Collection: Reports Funded by National Institutes of Health. In Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness; National Academies Press: Washington, DC, USA, 2015. [Google Scholar]
- Carruthers, B.M.; van de Sande, M.I.; De Meirleir, K.L.; Klimas, N.G.; Broderick, G.; Mitchell, T.; Staines, D.; Powles, A.C.P.; Speight, N.; Vallings, R.; et al. Myalgic encephalomyelitis: International Consensus Criteria. J. Intern. Med. 2011, 270, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Galvan-Blasco, P.; Gil-Serrano, J.; Sala-Cunill, A. New Biomarkers in Anaphylaxis (Beyond Tryptase). Curr. Treat. Options Allergy 2022, 9, 303–322. [Google Scholar] [CrossRef] [PubMed]
- Nijs, J.; Van Oosterwijck, J.; Meeus, M.; Lambrecht, L.; Metzger, K.; Frémont, M.; Paul, L. Unravelling the nature of postexertional malaise in myalgic encephalomyelitis/chronic fatigue syndrome: The role of elastase, complement C4a and interleukin-1β. J. Intern. Med. 2010, 267, 418–435. [Google Scholar] [CrossRef] [PubMed]
- Polli, A.; Van Oosterwijck, J.; Meeus, M.; Lambrecht, L.; Nijs, J.; Ickmans, K. Exercise-induce hyperalgesia, complement system and elastase activation in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome—A secondary analysis of experimental comparative studies. Scand. J. Pain 2019, 19, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, B.; Streib, J.E.; Strand, M.; Make, B.; Giclas, P.C.; Fleshner, M.; Jones, J.F. Complement activation in a model of chronic fatigue syndrome. J. Allergy Clin. Immunol. 2003, 112, 397–403. [Google Scholar] [CrossRef]
- Wang, H.; Liu, M. Complement C4, Infections, and Autoimmune Diseases. Front. Immunol. 2021, 12, 694928. [Google Scholar]
- Kitchens, R.L.; Thompson, P.A. Modulatory effects of sCD14 and LBP on LPS-host cell interactions. J. Endotoxin Res. 2005, 11, 225–229. [Google Scholar] [CrossRef]
- Laugerette, F.; Vors, C.; Alligier, M.; Pineau, G.; Drai, J.; Knibbe, C.; Morio, B.; Lambert-Porcheron, S.; Laville, M.; Vidal, H.; et al. Postprandial Endotoxin Transporters LBP and sCD14 Differ in Obese vs. Overweight and Normal Weight Men during Fat-Rich Meal Digestion. Nutrients 2020, 12, 1820. [Google Scholar] [CrossRef]
- Hodzic, Z.; Schill, E.M.; Bolock, A.M.; Good, M. IL-33 and the intestine: The good, the bad, and the inflammatory. Cytokine 2017, 100, 1–10. [Google Scholar] [CrossRef]
- Wu, W.H.; Kim, M.; Chang, L.-C.; Assie, A.; Saldana-Morales, F.B.; Zegarra-Ruiz, D.F.; Norwood, K.; Samuel, B.S.; Diehl, G.E. Interleukin-1β secretion induced by mucosa-associated gut commensal bacteria promotes intestinal barrier repair. Gut Microbes 2022, 14, 2014772. [Google Scholar] [CrossRef] [PubMed]
- Chelakkot, C.; Ghim, J.; Ryu, S.H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 2018, 50, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.; Marques, C.; Pestana, D.; Santoalha, M.; Carvalho, D.; Freitas, P.; Calhau, C. The role of I-FABP as a biomarker of intestinal barrier dysfunction driven by gut microbiota changes in obesity. Nutr. Metab. 2016, 13, 31. [Google Scholar] [CrossRef] [PubMed]
- Chakaroun, R.M.; Massier, L.; Kovacs, P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients 2020, 12, 1082. [Google Scholar] [CrossRef] [PubMed]
- Adamowicz, J.L.; Caikauskaite, I.; Friedberg, F. Defining recovery in chronic fatigue syndrome: A critical review. Qual. Life Res. 2014, 23, 2407–2416. [Google Scholar] [CrossRef] [PubMed]
- Scheibenbogen, C.; Bellmann-Strobl, J.T.; Heindrich, C.; Wittke, K.; Stein, E.; Franke, C.; Prüss, H.; Preßler, H.; Machule, M.-L.; Audebert, H.; et al. Fighting Post-COVID and ME/CFS—Development of curative therapies. Front. Med. 2023, 10, 1194754. [Google Scholar] [CrossRef]
- Shang, W.; Kang, L.; Cao, G.; Wang, Y.; Gao, P.; Liu, J.; Liu, M. Percentage of Asymptomatic Infections among SARS-CoV-2 Omicron Variant-Positive Individuals: A Systematic Review and Meta-Analysis. Vaccines 2022, 10, 1049. [Google Scholar] [CrossRef]
- Fulton, C.D.M.; Beasley, D.W.C.; Bente, D.A.; Dineley, K.T. Long-term, West Nile virus-induced neurological changes: A comparison of patients and rodent models. Brain Behav. Immun. Health 2020, 7, 100105. [Google Scholar] [CrossRef]
- Gesellschaft für ME/CFS. ME/CFS Report und Erhebung Österreich 2021—2 December 2021. Available online: https://cfs-hilfe.at/wp-content/uploads/Report-ME-CFS-Oesterreich-2021.pdf (accessed on 14 September 2023).
- Reynolds, K.J.; Vernon, S.D.; Bouchery, E.; Reeves, W.C. The economic impact of chronic fatigue syndrome. Cost Eff. Resour. Alloc. 2004, 2, 4. [Google Scholar] [CrossRef]
Study Group | ME/CFS + ID | ME/CFS − ID | Healthy |
---|---|---|---|
Demographic Data | |||
Mean age in years (±SD) | 41.2 (±12.6) | 38.4 (±10.8) | 43.1 (±13.0) |
Female sex in percentage (n) | 75 (15) | 84.2 (16) | 73.7 (14) |
Inclusion criteria | |||
Immunodeficiency (ID) | yes | no | no |
ME/CFS (IOM criteria) * | yes | yes | no |
Exclusion criteria | |||
Neurological/psychiatric co-morbidities | no | no | yes |
Study Group | ME/CFS + ID | ME/CFS − ID | Healthy |
---|---|---|---|
Co-morbidities (%) | |||
Fibromyalgia | 5.0 | 0.0 | 0.0 |
Postural orthostatic tachycardia syndrome | 20.0 | 52.6 | 0.0 |
Orthostatic dysregulation | 45.0 | 78.9 | 5.3 |
Irritable bowel syndrome | 30.0 | 21.1 | 0.0 |
Food intolerances/atopic conditions | 70.0 | 68.4 | 42.1 |
Mild anxiety | 0.0 | 10.5 | 0.0 |
Mild depression | 15.0 | 21.1 | 0.0 |
Hypermobility Ehlers–Danlos syndrome | 0.0 | 10.5 | 0.0 |
Small fiber neuropathy | 15.0 | 31.6 | 0.0 |
Endometriosis (female cohort) | 26.7 | 6.25 | 0.0 |
Chronic pelvic pain | 5.0 | 0.0 | 5.3 |
Irritable bladder | 5.0 | 21.1 | 0.0 |
Hashimoto thyroiditis/hypothyroidism * | 20.0 | 0.0 | 5.3 |
Mast cell activation syndrome | 20.0 | 36.8 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rohrhofer, J.; Hauser, L.; Lettenmaier, L.; Lutz, L.; Koidl, L.; Gentile, S.A.; Ret, D.; Stingl, M.; Untersmayr, E. Immunological Patient Stratification in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. J. Clin. Med. 2024, 13, 275. https://doi.org/10.3390/jcm13010275
Rohrhofer J, Hauser L, Lettenmaier L, Lutz L, Koidl L, Gentile SA, Ret D, Stingl M, Untersmayr E. Immunological Patient Stratification in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Clinical Medicine. 2024; 13(1):275. https://doi.org/10.3390/jcm13010275
Chicago/Turabian StyleRohrhofer, Johanna, Lisa Hauser, Lisa Lettenmaier, Lena Lutz, Larissa Koidl, Salvatore Alessio Gentile, Davide Ret, Michael Stingl, and Eva Untersmayr. 2024. "Immunological Patient Stratification in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome" Journal of Clinical Medicine 13, no. 1: 275. https://doi.org/10.3390/jcm13010275
APA StyleRohrhofer, J., Hauser, L., Lettenmaier, L., Lutz, L., Koidl, L., Gentile, S. A., Ret, D., Stingl, M., & Untersmayr, E. (2024). Immunological Patient Stratification in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Journal of Clinical Medicine, 13(1), 275. https://doi.org/10.3390/jcm13010275