The Impact of Resistance Training on Equilibrium Abilities and Quality of Life in Older Adults after SARS-CoV-2 Survival
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Postural Stability Evaluation
2.3. Quality of Life Assessment
2.4. Intervention
2.5. Statistical Analysis
3. Results
4. Discussion
Limitation of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carley, S.; Horner, D.; Body, R.; Mackway-Jones, K. Evidence-based medicine and COVID-19: What to believe and when to change. Emerg. Med. J. 2020, 37, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Long COVID or Post-COVID Conditions; US Department of Health and Human Services: Atlanta, GA, USA, 2023. Available online: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html (accessed on 18 December 2023).
- Pazdro-Zastawny, K.; Dorobisz, K.; Misiak, P.; Kruk-Krzemień, A.; Zatoński, T. Vestibular disorders in patients after COVID-19 infection. Front. Neurol. 2022, 13, 956515. [Google Scholar] [CrossRef] [PubMed]
- Almufarrij, I.; Uus, K.; Munro, K.J. Does coronavirus affect the audio-vestibular system? A rapid systematic review. Int. J. Audiol. 2020, 59, 487–491. [Google Scholar] [CrossRef] [PubMed]
- Viola, P.; Ralli, M.; Pisani, D.; Malanga, D.; Sculco, D.; Messina, L.; Laria, C.; Aragona, T.; Leopardi, G.; Ursini, F.; et al. Tinnitus and equilibrium disorders in COVID-19 patients: Preliminary results. Eur. Arch. Otorhinolaryngol. 2021, 278, 3725–3730. [Google Scholar] [CrossRef] [PubMed]
- Bobowik, P.; Wiszomirska, I.; Gajewski, J.; Kaczmarczyk, K. Muscle strength and equilibrium-maintaining ability in post-COVID women. Gait Posture 2023, 106, S91–S92. [Google Scholar] [CrossRef]
- Dzięcioł-Anikiej, Z.; Dakowicz, A.; Dzięcioł, J.; Kopko, S.; Moskal-Jasińska, D.; Gawlikowska-Sroka, A.; Kuryliszyn-Moskal, A.; Kostro, A.M. Balance Disorders in People with History of COVID-19 in Light of Posturographic Tests. J. Clin. Med. 2023, 12, 4461. [Google Scholar] [CrossRef] [PubMed]
- Rosa, M.; Graça, M.C.; Duarte, M.; Martins, N.; Sanches, L.; Silva, E.; Ferreira, L.; Seixas, A. Barriers, facilitators, and impact of the COVID-19 pandemic on the physiotherapy intervention for people with dementia or cognitive impairment. Adv. Rehabil. 2023, 37, 41–50. [Google Scholar] [CrossRef]
- The World Health Organization Quality of Life Assessment (WHOQOL): Development and general psychometric properties. Soc. Sci. Med. 1998, 46, 1569–1585. [CrossRef] [PubMed]
- Skevington, S.M.; Lotfy, M.; O’Connell, K.A.; WHOQOL Group. The World Health Organization’s WHOQOL-BREF quality of life assessment: Psychometric properties and results of the international field trial. Qual. Life Res. 2004, 13, 299–310. [Google Scholar] [CrossRef]
- Wołowicka, L.; Jaracz, K. Health-related quality of life in self-reported surveys. Adv. Nurs. Health Promot. 1998, 13, 81–86. [Google Scholar]
- Maley, J.H.; Alba, G.A.; Barry, J.T.; Bartels, M.N.; Fleming, T.K.; Oleson, C.V.; Rydberg, L.; Sampsel, S.; Silver, J.K.; Sipes, S.; et al. Multi-disciplinary collaborative consensus guidance statement on the assessment and treatment of breathing discomfort and respiratory sequelae in patients with post-acute sequelae of SARS-CoV-2 infection (PASC). PM R. 2022, 14, 77–95. [Google Scholar] [CrossRef]
- Jalilzadeh Afshar, P. Vestibular Rehabilitation in Isolated Otolith Dysfunction after Covid-19: A Case Report. Iran. Rehabil. J. 2021, 19, 473–480. [Google Scholar] [CrossRef]
- Aartolahti, E.; Lönnroos, E.; Hartikainen, S.; Häkkinen, A. Long-term strength and balance training in prevention of decline in muscle strength and mobility in older adults. Aging Clin. Exp. Res. 2020, 32, 59–66. [Google Scholar] [CrossRef]
- Endo, Y.; Nourmahnad, A.; Sinha, I. Optimizing Skeletal Muscle Anabolic Response to Resistance Training in Aging. Front. Physiol. 2020, 11, 874. [Google Scholar] [CrossRef]
- Sousa, N.; Mendes, R. Comparison of effects of resistance and multicomponent training on falls prevention in institutionalized elderly women. J. Am. Geriatr. Soc. 2015, 63, 396–397. [Google Scholar] [CrossRef]
- Cotler, J.; Holtzman, C.; Dudun, C.; Jason, L.A. A Brief Questionnaire to Assess Post-Exertional Malaise. Diagnostics 2018, 8, 66. [Google Scholar] [CrossRef]
- Freeman, R.; Wieling, W.; Axelrod, F.B.; Benditt, D.G.; Benarroch, E.; Biaggioni, I.; Cheshire, W.P.; Chelimsky, T.; Cortelli, P.; Gibbons, C.H.; et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin. Auton. Res. 2011, 21, 69–72. [Google Scholar] [CrossRef]
- The World Health Organization Quality of Life assessment (WHOQOL): Position paper from the World Health Organization. Soc. Sci. Med. 1995, 41, 1403–1409. [CrossRef]
- NICE. COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19. 2020. Available online: https://www.nice.org.uk/guidance/ng188 (accessed on 6 December 2023).
- Brzycki, M. Strength testing—Predicting a one-rep max from reps to fatigue. J. Phys. Educ. Recreat. Danc. 1993, 64, 88–90. [Google Scholar] [CrossRef]
- Panel on Prevention of Falls in Older Persons, American Geriatrics Society and British Geriatrics Society. Summary of the Updated American Geriatrics Society/British Geriatrics Society clinical practice guideline for prevention of falls in older persons. J. Am. Geriatr. Soc. 2011, 59, 148–157. [Google Scholar]
- Mandal, S.; Barnett, J.; Brill, S.E.; Brown, J.S.; Denneny, E.K.; Hare, S.S.; Heightman, M.; Hillman, T.E.; Jacob, J.; Jarvis, H.C.; et al. Long-COVID: A cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021, 76, 396–398. [Google Scholar] [CrossRef]
- Xu, E.; Xie, Y.; Al-Aly, Z. Long-term neurologic outcomes of COVID-19. Nat. Med. 2022, 28, 2406–2415. [Google Scholar] [CrossRef]
- Harapan, B.N.; Yoo, H.J. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). J. Neurol. 2021, 268, 3059–3071. [Google Scholar] [CrossRef]
- Collins, B.C.; Laakkonen, E.K.; Lowe, D.A. Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone 2019, 123, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xu, Y.; Zhang, Y.; Vijayakumar, S.; Jones, S.M.; Lundberg, Y.W. Mechanism Underlying the Effects of Estrogen Deficiency on Otoconia. J. Assoc. Res. Otolaryngol. 2018, 19, 353–362. [Google Scholar] [CrossRef]
- Mustafa, M.; Taya, U. Vestibular Evoked Myogenic Potentials of Asymptomatic COVID-19 PCR-Positive Cases. Glob. J. Otolaryngol. 2020, 22, 556097. [Google Scholar]
- Trabelsi, K.; Ammar, A.; Masmoudi, L.; Boukhris, O.; Chtourou, H.; Bouaziz, B.; Brach, M.; Bentlage, E.; How, D.; Ahmed, M.; et al. Sleep Quality and Physical Activity as Predictors of Mental Wellbeing Variance in Older Adults during COVID-19 Lockdown: ECLB COVID-19 International Online Survey. Int. J. Environ. Res. Public Health 2021, 18, 4329. [Google Scholar] [CrossRef]
- Rhyu, I.J.; Bytheway, J.A.; Kohler, S.J.; Lange, H.; Lee, K.J.; Boklewski, J.; McCormick, K.; Williams, N.I.; Stanton, G.B.; Greenough, W.T.; et al. Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 2010, 167, 1239–1248. [Google Scholar] [CrossRef]
- Cao, Z.-B.; Maeda, A.; Shima, N.; Kurata, H.; Nishizono, H. Effects of exercise and nutritional intervention to improve physical factors associated with fracture risk in middle-aged and older women. Int. J. Sport Health Sci. 2007, 5, 147–156. [Google Scholar] [CrossRef]
- Collinet, C.; Delalandre, M. Physical and sports activities, and healthy and active ageing: Establishing a frame of reference for public action. Int. Rev. Sociol. Sport 2017, 52, 570–583. [Google Scholar] [CrossRef]
- Kekalainen, T.; Kokko, K.; Sipila, S.; Walker, S. Effects of a 9-month resistance training intervention on quality of life, sense of coherence, and depressive symptoms in older adults: Randomized controlled trial. Qual. Life Res. 2018, 27, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Reher, D.S.; Requena, M.; de Santis, G.; Esteve, A.; Livi Bacci, M.; Padyab, M.; Sandström, G. The COVID-19 pandemic in an aging world. SocArXiv 2020, 1–8. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Division of Behavioral and Social Sciences and Education, Health and Medicine Division; Board on Behavioral, Cognitive, and Sensory Sciences; Board on Health Sciences Policy, Committee on the Health and Medical Dimensions of Social Isolation and Loneliness in Older Adults. Social Isolation and Loneliness in Older Adults: Opportunities for the Health Care System; National Academies Press: Washington, DC, USA, 2020. [Google Scholar]
- Valtorta, N.K.; Kanaan, M.; Gilbody, S.; Ronzi, S.; Hanratty, B. Loneliness and social isolation as risk factors for coronary heart disease and stroke: Systematic review and meta-analysis of longitudinal observational studies. Heart 2016, 102, 1009–1016. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.J.; Victor, C. Typologies of loneliness, living alone and social isolation, and their associations with physical and mental health. Ageing Soc. 2019, 39, 1709–1730. [Google Scholar] [CrossRef]
- Floyd, A.; Moyer, A. Group vs. individual exercise interventions for women with breast cancer: A meta-analysis. Health Psychol. Rev. 2009, 4, 22–41. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Jiang, X.; Sun, Y.; Shu, W. Effect of hormone therapy on the risk of bone fractures: A systematic review and meta-analysis of randomized controlled trials. Menopause 2016, 23, 461–470. [Google Scholar] [CrossRef]
- Kaczmarczyk, K.; Matharu, Y.; Bobowik, P.; Gajewski, J.; Maciejewska-Skrendo, A.; Kulig, K. Resistance Exercise Program Is Feasible and Effective in Improving Functional Strength in Post-COVID Survivors. J. Clin. Med. 2024, 13, 1712. [Google Scholar] [CrossRef]
n | Age [Years] | Body Mass [kg] | Body Height [cm] | BMI [kg/m2] | ||
---|---|---|---|---|---|---|
Intervention group | F | 11 | 69.27 ± 5.20 | 65.27 ± 10.54 | 163.09 ± 7.61 | 24.50 ± 4.83 |
M | 15 | 69.47 ± 4.84 * | 87.67 ± 15.10 | 176.67 ± 6.85 | 27.86 ± 3.38 | |
Control group | F | 12 | 73.33 ± 7.39 | 72.59 ± 12.13 | 160.92 ± 5.74 | 28.06 ± 3.34 |
M | 8 | 75.63 ± 7.07 | 89.45 ± 20.29 | 179.00 ± 6.12 | 27.07 ± 5.36 |
Control | Intervention | Increments (After–Before) Comparisons Control vs. Intervention | ||||||
---|---|---|---|---|---|---|---|---|
Male (n = 8) | Female (n = 12) | Male (n = 15) | Female (n = 11) | |||||
Median (LoQ-UpQ) | Median (LoQ-UpQ) | Median (LoQ-UpQ) | Median (LoQ-UpQ) | Z | p | R | ||
OSI EO | Before | 0.40 (0.30–0.45) | 0.30 (0.30–0.40) | 0.40 (0.30–0.50) | 0.40 (0.30–0.40) | −3.12 | 0.0017 * | 0.533 |
OSI EO II | After | 0.45 (0.35–0.75) | 0.30 (0.25–0.45) | 0.30 (0.30–0.40) * | 0.30 (0.20–0.30) # | |||
APSI EO | Before | 0.30 (0.25–0.40) | 0.30 (0.20–0.30) | 0.20 (0.20–0.30) | 0.30 (0.20–0.30) | −1.67 | 0.1087 | 0.281 |
APSI EO II | After | 0.30 (0.25–0.60) | 0.20 (0.20–0.30) | 0.20 (0.20–0.30) * | 0.20 (0.10–0.20) *,# | |||
MLSI EO | Before | 0.10 (0.10–0.20) | 0.10 (0.10–0.20) | 0.10 (0.10–0.20) | 0.20 (0.10–0.30) | −1.83 | 0.0860 | 0.298 |
MLSI EO II | After | 0.20 (0.15–0.30) | 0.10 (0.10–0.25) | 0.10 (0.10–0.20) | 0.10 (0.10–0.20) | |||
OSI EC | Before | 1.45 (1.05–1.50) | 1.20 (0.80–1.40) | 1.30 (0.80–1.60) | 1.10 (0.80–1.50) | 0.55 | 0.5755 | −0.098 |
OSI EC II | After | 1.20 (0.95–1.45) | 0.95 (0.75–1.30) | 1.10 (0.80–1.80) | 1.00 (0.70–1.10) | |||
APSI EC | Before | 0.85 (0.70–1.20) | 0.70 (0.55–1.00) | 1.00 (0.80–1.20) | 0.80 (0.60–1.20) | −0.29 | 0.7671 | 0.052 |
APSI EC II | After | 0.85 (0.70–1.25) | 0.85 (0.65–1.10) | 1.00 (0.70–1.60) | 0.70 (0.60–0.90) | |||
MLSI EC | Before | 0.60 (0.50–0.90) | 0.50 (0.40–0.80) | 0.40 (0.30–0.80) | 0.50 (0.20–0.70) | 0.71 | 0.4752 | −0.125 |
MLSI EC II | After | 0.55 (0.40–0.75) | 0.30 (0.20–0.60) | 0.30 (0.20–0.50) | 0.40 (0.20–0.50) | |||
FRI 12-8 | Before | 1.20 (1.00–1.75) | 0.85 (0.80–1.10) | 1.10 (0.90–1.40) | 1.10 (0.70–1.20) | −0.57 | 0.5755 | 0.100 |
FRI12-8 II | After | 1.10 (1.00–1.80) | 1.00 (0.75–1.15) | 1.10 (1.00–1.20) | 0.80 (0.70–1.00) | |||
FRI 6-2 | Before | 10.00 (7.70–10.00) | 2.20 (1.45–10.00) | 6.20 (2.70–10.00) | 2.20 (1.20–4.50) | −2.06 | 0.0418 * | 0.354 |
Control | Intervention | Increments (After–Before) Comparisons Control vs. Intervention | ||||||
---|---|---|---|---|---|---|---|---|
Male (n = 8) | Female (n = 12) | Male (n = 15) | Female (n = 11) | Z | p-Value | R | ||
Mean, Me (LoQ-UpQ) | Mean, Me (LoQ-UpQ) | Mean, Me (LoQ-UpQ) | Mean, Me (LoQ-UpQ) | |||||
DOM1 Physic. | B | 57.3, 59.5 (47.0–66.0) | 50.2, 53.0 (38.0–56.0) | 54.3, 56.0 (44.0–63.0) | 57.5, 56.0 (44.0–69.0) | 0.412 | 0.6804 | 0.075 |
DOM1 Physic. | A | 51.8, 50.0 (44.0–59.5) | 57.3, 56.0 (56.0–56.0) | 59.0, 63.0 (50.0–69.0) | 59.3, 63.0 (56.0–63.0) | |||
DOM 2 Psychol. | B | 67.3, 66.0 (59.5–75.0) | 59.5, 59.5 (56.0–66.0) | 62.6, 63.0 (56.0–69.0) | 64.4, 69.0 (56.0–69.0) | 2.194 | 0.0282 * | 0.389 |
DOM 2 Psychol. | A | 60.3, 59.5 (56.0–63.0) | 61.4, 63.0 (56.0–69.0) | 69.7, 69.0 (63.0–81.0) | 68.4, 69.0 (63.0–69.0) | |||
DOM3 Soc. | B | 66.4, 62.5 (53.0–78.0) | 64.5, 69.0 (56.0–75.0) | 67.1, 75.0 (56.0–75.0) | 68.7, 69.0 (56.0–81.0) | 2.051 | 0.0403 * | 0.361 |
DOM3 Soc. | A | 68.0, 62.5 (56.0–84.5) | 62.5, 72.0 (50.0–75.0) | 72.1, 75.0 (69.0–75.0) | 79.0, 75.0 (69.0–81.0) | |||
DOM4 Environ. | B | 74.3, 75.0 (62.5–84.5) | 68.8, 69.0 (69.0–75.0) | 71.1, 69.0 (63.0–75.0) | 74.6, 75.0 (69.0–81.0) | 0.706 | 0.4802 | 0.126 |
DOM4 Environ. | A | 75.1, 78.0 (66.0–81.0) | 72.0, 72.0 (63.0–81.0) | 78.1, 75.0 (69.0–88.0) | 77.9, 81.0 (69.0–88.0) | |||
Q1 | B | 4.1, 4.0 (4.0–4.5) | 3.8, 4.0 (3.0–4.5) | 3.8, 4.0 (3.0–4.0) | 4.0, 4.0 (4.0–4.0) | 1.175 | 0.2399 | 0.181 |
Q1 | A | 4.1, 4.0 (4.0–4.0) | 3.9, 4.0 (4.0–4.0) | 4.2, 4.0 (4.0–5.0) | 4.2, 4.0 (4.0–4.0) | |||
Q2 | B | 3.4, 3.5 (2.5–4.0) | 3.3, 3.5 (2.5–4.0) | 3.1, 3.0 (2.0–4.0) | 3.5, 4.0 (3.0–4.0) | 3.309 | 0.0009 | 0.535 |
Q2 | A | 3.0, 3.0 (2.0–4.0) | 3.3, 3.0 (3.0–4.0) | 3.9, 4.0 (4.0–4.0) | 3.8, 4.0 (4.0–4.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobowik, P.; Gajewski, J.; Wiszomirska, I.; Maciejewska-Skrendo, A.; Leźnicka, K.; Kaczmarczyk, K. The Impact of Resistance Training on Equilibrium Abilities and Quality of Life in Older Adults after SARS-CoV-2 Survival. J. Clin. Med. 2024, 13, 2747. https://doi.org/10.3390/jcm13102747
Bobowik P, Gajewski J, Wiszomirska I, Maciejewska-Skrendo A, Leźnicka K, Kaczmarczyk K. The Impact of Resistance Training on Equilibrium Abilities and Quality of Life in Older Adults after SARS-CoV-2 Survival. Journal of Clinical Medicine. 2024; 13(10):2747. https://doi.org/10.3390/jcm13102747
Chicago/Turabian StyleBobowik, Patrycja, Jan Gajewski, Ida Wiszomirska, Agnieszka Maciejewska-Skrendo, Katarzyna Leźnicka, and Katarzyna Kaczmarczyk. 2024. "The Impact of Resistance Training on Equilibrium Abilities and Quality of Life in Older Adults after SARS-CoV-2 Survival" Journal of Clinical Medicine 13, no. 10: 2747. https://doi.org/10.3390/jcm13102747
APA StyleBobowik, P., Gajewski, J., Wiszomirska, I., Maciejewska-Skrendo, A., Leźnicka, K., & Kaczmarczyk, K. (2024). The Impact of Resistance Training on Equilibrium Abilities and Quality of Life in Older Adults after SARS-CoV-2 Survival. Journal of Clinical Medicine, 13(10), 2747. https://doi.org/10.3390/jcm13102747