The Lipid Accumulation Product Index (LAP) and the Cardiometabolic Index (CMI) Are Useful for Predicting the Presence and Severity of Metabolic Syndrome in Adult Patients with Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Anthropometry
2.3. Laboratory and Clinical Measurements
- i.
- Abdominal obesity (WC ≥ 102 cm for males; ≥88 cm for females);
- ii.
- Elevated triglycerides: ≥150 mg/dL (1.7 mmol/L) or specific treatment for this
- iii.
- lipid abnormality;
- iv.
- Reduced HDL-C: <40 mg/dL (1.0 mmol/L) in males; <50 mg/dL (1.3 mmol/L) in females, or specific treatment for this lipid abnormality;
- v.
- Increased BP: SBP ≥ 130 mmHg or DBP ≥ 85 mmHg and/or the treatment of previously diagnosed hypertension;
- vi.
- An increased fasting plasma glucose (FPG) concentration ≥100 mg/dL (5.6 mmol/L) or previously diagnosed type 2 diabetes mellitus.
2.4. Indexes
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sideli, L.; Lo Coco, G.; Bonfanti, R.C.; Borsarini, B.; Fortunato, L.; Sechi, C.; Micali, N. Effects of COVID-19 Lockdown on Eating Disorders and Obesity: A Systematic Review and Meta-Analysis. Eur. Eat. Disord. Rev. J. Eat. Disord. Assoc. 2021, 29, 826–841. [Google Scholar] [CrossRef]
- Gammone, M.A.; D’Orazio, N. COVID-19 and Obesity: Overlapping of Two Pandemics. Obes. Facts 2021, 14, 579–585. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Romano, L.; Di Renzo, L.; Di Lorenzo, N.; Cenname, G.; Gualtieri, P. Obesity: A Preventable, Treatable, but Relapsing Disease. Nutrition 2020, 71, 110615. [Google Scholar] [CrossRef]
- Chooi, Y.C.; Ding, C.; Magkos, F. The Epidemiology of Obesity. Metabolism 2019, 92, 6–10. [Google Scholar] [CrossRef]
- Blüher, M. Obesity: Global Epidemiology and Pathogenesis. Nat. Rev. Endocrinol. 2019, 15, 288–298. [Google Scholar] [CrossRef]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and Inflammation: The Linking Mechanism and the Complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Tarantino, G.; Caputi, A. JNKs, Insulin Resistance and Inflammation: A Possible Link between NAFLD and Coronary Artery Disease. World J. Gastroenterol. 2011, 17, 3785–3794. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Chang, H.-J.; Sung, J.; Kim, K.J.; Shin, S.; Cho, I.-J.; Shim, C.Y.; Hong, G.-R.; Chung, N. The Impact of Obesity on Subclinical Coronary Atherosclerosis According to the Risk of Cardiovascular Disease. Obesity 2014, 22, 1762–1768. [Google Scholar] [CrossRef]
- Lovren, F.; Teoh, H.; Verma, S. Obesity and Atherosclerosis: Mechanistic Insights. Can. J. Cardiol. 2015, 31, 177–183. [Google Scholar] [CrossRef]
- Bhupathiraju, S.N.; Hu, F.B. Epidemiology of Obesity and Diabetes and Their Cardiovascular Complications. Circ. Res. 2016, 118, 1723–1735. [Google Scholar] [CrossRef]
- Mathieu, P.; Pibarot, P.; Després, J.-P. Metabolic Syndrome: The Danger Signal in Atherosclerosis. Vasc. Health Risk Manag. 2006, 2, 285–302. [Google Scholar] [CrossRef]
- Zaha, D.C.; Vesa, C.; Uivarosan, D.; Bratu, O.; Fratila, O.; Tit, D.M.; Pantis, C.; Diaconu, C.C.; Bungau, S. Influence of Inflammation and Adipocyte Biochemical Markers on the Components of Metabolic Syndrome. Exp. Ther. Med. 2020, 20, 121–128. [Google Scholar] [CrossRef]
- Gheorghe, G.; Toth, P.P.; Bungau, S.; Behl, T.; Ilie, M.; Pantea Stoian, A.; Bratu, O.G.; Bacalbasa, N.; Rus, M.; Diaconu, C.C. Cardiovascular Risk and Statin Therapy Considerations in Women. Diagn. Basel Switz. 2020, 10, 483. [Google Scholar] [CrossRef]
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome. In Obesity and Lipotoxicity; Engin, A.B., Engin, A., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2017; Volume 960, pp. 1–17. ISBN 978-3-319-48380-1. [Google Scholar]
- Pasquali, R.; Casanueva, F.; Haluzik, M.; van Hulsteijn, L.; Ledoux, S.; Monteiro, M.P.; Salvador, J.; Santini, F.; Toplak, H.; Dekkers, O.M. European Society of Endocrinology Clinical Practice Guideline: Endocrine Work-up in Obesity. Eur. J. Endocrinol. 2020, 182, G1–G32. [Google Scholar] [CrossRef]
- Frankenfield, D.C.; Rowe, W.A.; Cooney, R.N.; Smith, J.S.; Becker, D. Limits of Body Mass Index to Detect Obesity and Predict Body Composition. Nutrition 2001, 17, 26–30. [Google Scholar] [CrossRef]
- Gurunathan, U.; Myles, P.S. Limitations of Body Mass Index as an Obesity Measure of Perioperative Risk. Br. J. Anaesth. 2016, 116, 319–321. [Google Scholar] [CrossRef]
- Kok, P.; Seidell, J.C.; Meinders, A.E. The value and limitations of the body mass index (BMI) in the assessment of the health risks of overweight and obesity. Ned. Tijdschr. Geneeskd. 2004, 148, 2379–2382. [Google Scholar]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A Better Index of Body Adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef]
- Kahn, H.S. The “Lipid Accumulation Product” Performs Better than the Body Mass Index for Recognizing Cardiovascular Risk: A Population-Based Comparison. BMC Cardiovasc. Disord. 2005, 5, 26. [Google Scholar] [CrossRef]
- Wakabayashi, I.; Daimon, T. The “Cardiometabolic Index” as a New Marker Determined by Adiposity and Blood Lipids for Discrimination of Diabetes Mellitus. Clin. Chim. Acta Int. J. Clin. Chem. 2015, 438, 274–278. [Google Scholar] [CrossRef]
- Tylutka, A.; Morawin, B.; Walas, Ł.; Michałek, M.; Gwara, A.; Zembron-Lacny, A. Assessment of Metabolic Syndrome Predictors in Relation to Inflammation and Visceral Fat Tissue in Older Adults. Sci. Rep. 2023, 13, 89. [Google Scholar] [CrossRef]
- Raposo, M.A.; Guimarães, N.S.; Tupinambás, U. Lipid Accumulation Product Index to Predict Metabolic Syndrome in People Living with HIV. Clin. Med. Res. 2020, 18, 120–125. [Google Scholar] [CrossRef]
- Kahn, H.S. The Lipid Accumulation Product Is Better Than BMI for Identifying Diabetes. Diabetes Care 2006, 29, 151–153. [Google Scholar] [CrossRef]
- Siervo, M.; Prado, C.M.; Stephan, B.C.; Lara, J.; Muscariello, E.; Nasti, G.; Colantuoni, A. Association of the Body Adiposity Index (BAI) with Metabolic Risk Factors in Young and Older Overweight and Obese Women. Eat. Weight Disord. 2014, 19, 397–402. [Google Scholar] [CrossRef]
- Bullen, A.L.; Katz, R.; Kumar, U.; Gutierrez, O.M.; Sarnak, M.J.; Kramer, H.J.; Shlipak, M.G.; Ix, J.H.; Judd, S.E.; Cushman, M.; et al. Lipid Accumulation Product, Visceral Adiposity Index and Risk of Chronic Kidney Disease. BMC Nephrol. 2022, 23, 401. [Google Scholar] [CrossRef]
- Ayundini, G.; Astrella, C.; Tahapary, D.; Soewondo, P. A Systematic Review on the Association between Lipid Accumulation Product Index and Type 2 Diabetes Mellitus. J. ASEAN Fed. Endocr. Soc. 2019, 34, 16–20. [Google Scholar] [CrossRef]
- Ahn, N.; Baumeister, S.E.; Amann, U.; Rathmann, W.; Peters, A.; Huth, C.; Thorand, B.; Meisinger, C. Visceral Adiposity Index (VAI), Lipid Accumulation Product (LAP), and Product of Triglycerides and Glucose (TyG) to Discriminate Prediabetes and Diabetes. Sci. Rep. 2019, 9, 9693. [Google Scholar] [CrossRef]
- Zhao, S.; Ren, Z.; Yu, S.; Chi, C.; Tang, J.; Maimaitiaili, R.; Teliewubai, J.; Li, J.; Xu, Y.; Zhang, Y. Association Between Lipid Accumulation Product and Target Organ Damage in Elderly Population: The Northern Shanghai Study. Clin. Interv. Aging 2021, 16, 1769–1776. [Google Scholar] [CrossRef]
- Golabi, S.; Ajloo, S.; Maghsoudi, F.; Adelipour, M.; Naghashpour, M. Associations between Traditional and Non-Traditional Anthropometric Indices and Cardiometabolic Risk Factors among Inpatients with Type 2 Diabetes Mellitus: A Cross-Sectional Study. J. Int. Med. Res. 2021, 49, 3000605211049960. [Google Scholar] [CrossRef]
- Taverna, M.J.; Martínez-Larrad, M.T.; Frechtel, G.D.; Serrano-Ríos, M. Lipid Accumulation Product: A Powerful Marker of Metabolic Syndrome in Healthy Population. Eur. J. Endocrinol. 2011, 164, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Hu, L.; Li, M.; Zhou, W.; Wang, T.; Zhu, L.; Bao, H.; Li, P.; Cheng, X. Relationship Between the Lipid Accumulation Product Index and Arterial Stiffness in the Chinese Population With Hypertension: A Report From the China H-Type Hypertension Registry Study. Front. Cardiovasc. Med. 2021, 8, 760361. [Google Scholar] [CrossRef] [PubMed]
- Almeda-Valdés, P.; Cuevas-Ramos, D.; Aguilar-Salinas, C.A. Metabolic Syndrome and Non-Alcoholic Fatty Liver Disease. Ann. Hepatol. 2009, 8 (Suppl. S1), S18–S24. [Google Scholar] [CrossRef] [PubMed]
- Anoop, S.S.; Dasgupta, R.; Rebekah, G.; Jose, A.; Inbakumari, M.P.; Finney, G.; Thomas, N. Lipid Accumulation Product (LAP) as a Potential Index to Predict Risk of Insulin Resistance in Young, Non-Obese Asian Indian Males from Southern India: Observations from Hyperinsulinemic-Euglycemic Clamp Studies. BMJ Open Diabetes Res. Care 2021, 9, e002414. [Google Scholar] [CrossRef] [PubMed]
- Dursun, M.; Besiroglu, H.; Otunctemur, A.; Ozbek, E. Association between Cardiometabolic Index and Erectile Dysfunction: A New Index for Predicting Cardiovascular Disease. Kaohsiung J. Med. Sci. 2016, 32, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Xiong, H.; Zhang, H.; Hu, C.; Lu, S.; Zou, Y. Association between the Cardiometabolic Index and Non-Alcoholic Fatty Liver Disease: Insights from a General Population. BMC Gastroenterol. 2022, 22, 20. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-Y.; Shi, W.-R.; Yi, X.; Wang, S.-Z.; Luan, S.-Y.; Sun, Y.-X. Value of Reduced Glomerular Filtration Rate Assessment with Cardiometabolic Index: Insights from a Population-Based Chinese Cohort. BMC Nephrol. 2018, 19, 294. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, Y.; Sun, G.; Jia, P.; Qian, H.; Sun, Y. Validity of Cardiometabolic Index, Lipid Accumulation Product, and Body Adiposity Index in Predicting the Risk of Hypertension in Chinese Population. Postgrad. Med. 2018, 130, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Duan, S.; Yang, D.; Xia, H.; Ren, Z.; Chen, J.; Yao, S. Cardiometabolic Index: A New Predictor for Metabolic Associated Fatty Liver Disease in Chinese Adults. Front. Endocrinol. 2022, 13, 1004855. [Google Scholar] [CrossRef]
- Lohman, T.G.; Roche, A.F.; Martorell, R. Anthropometric Standardization Reference Manual: Abridged Edition; Human Kinetics Books: Champaign, IL, USA, 1991. [Google Scholar]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C.; et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef]
- Youden, W.J. Index for Rating Diagnostic Tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Belladelli, F.; Montorsi, F.; Martini, A. Metabolic Syndrome, Obesity and Cancer Risk. Curr. Opin. Urol. 2022, 32, 594–597. [Google Scholar] [CrossRef] [PubMed]
- Vishram, J.K.K.; Borglykke, A.; Andreasen, A.H.; Jeppesen, J.; Ibsen, H.; Jørgensen, T.; Palmieri, L.; Giampaoli, S.; Donfrancesco, C.; Kee, F.; et al. Impact of Age and Gender on the Prevalence and Prognostic Importance of the Metabolic Syndrome and Its Components in Europeans. The MORGAM Prospective Cohort Project. PLoS ONE 2014, 9, e107294. [Google Scholar] [CrossRef] [PubMed]
- Radetti, G.; Fanolla, A.; Grugni, G.; Lupi, F.; Tamini, S.; Cicolini, S.; Sartorio, A. The Role of Different Indexes of Adiposity and Body Composition for the Identification of Metabolic Syndrome in Women with Obesity. J. Clin. Med. 2021, 10, 1975. [Google Scholar] [CrossRef]
- Pucci, G.; Alcidi, R.; Tap, L.; Battista, F.; Mattace-Raso, F.; Schillaci, G. Sex- and Gender-Related Prevalence, Cardiovascular Risk and Therapeutic Approach in Metabolic Syndrome: A Review of the Literature. Pharmacol. Res. 2017, 120, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N. Genders, Sexes, and Health: What Are the Connections—And Why Does It Matter? Int. J. Epidemiol. 2003, 32, 652–657. [Google Scholar] [CrossRef] [PubMed]
- EUGenMed; Cardiovascular Clinical Study Group; Regitz-Zagrosek, V.; Oertelt-Prigione, S.; Prescott, E.; Franconi, F.; Gerdts, E.; Foryst-Ludwig, A.; Maas, A.H.E.M.; Kautzky-Willer, A.; et al. Gender in Cardiovascular Diseases: Impact on Clinical Manifestations, Management, and Outcomes. Eur. Heart J. 2016, 37, 24–34. [Google Scholar] [CrossRef]
- Beigh, S.H.; Jain, S. Prevalence of Metabolic Syndrome and Gender Differences. Bioinformation 2012, 8, 613–616. [Google Scholar] [CrossRef]
- Ahonen, T.; Saltevo, J.; Laakso, M.; Kautiainen, H.; Kumpusalo, E.; Vanhala, M. Gender Differences Relating to Metabolic Syndrome and Proinflammation in Finnish Subjects with Elevated Blood Pressure. Mediat. Inflamm. 2009, 2009, e959281. [Google Scholar] [CrossRef]
- Njelekela, M.A.; Mpembeni, R.; Muhihi, A.; Mligiliche, N.L.; Spiegelman, D.; Hertzmark, E.; Liu, E.; Finkelstein, J.L.; Fawzi, W.W.; Willett, W.C. Gender-related differences in the prevalence of cardiovascular disease risk factors and their correlates in urban Tanzania. BMC Cardiovasc. Disord. 2009, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Fezeu, L.; Balkau, B.; Kengne, A.P.; Sobngwi, E.; Mbanya, J.C. Metabolic syndrome in a sub-Saharan African setting: Central obesity may be the key determinant. Atherosclerosis 2007, 193, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Henstridge, D.C.; Abildgaard, J.; Lindegaard, B.; Febbraio, M.A. Metabolic Control and Sex: A Focus on Inflammatory-Linked Mediators. Br. J. Pharmacol. 2019, 176, 4193–4207. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Qiu, X.; Ma, H.; Geng, Q. Incidence and Long-Term Specific Mortality Trends of Metabolic Syndrome in the United States. Front. Endocrinol. 2022, 13, 1029736. [Google Scholar] [CrossRef] [PubMed]
- Alemany, M. The Metabolic Syndrome, a Human Disease. Int. J. Mol. Sci. 2024, 25, 2251. [Google Scholar] [CrossRef] [PubMed]
- Elisha, B.; Rabasa-Lhoret, R.; Messier, V.; Abdulnour, J.; Karelis, A.D. Relationship between the Body Adiposity Index and Cardiometabolic Risk Factors in Obese Postmenopausal Women. Eur. J. Nutr. 2013, 52, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Schulze, M.B.; Thorand, B.; Fritsche, A.; Häring, H.U.; Schick, F.; Zierer, A.; Rathmann, W.; Kröger, J.; Peters, A.; Boeing, H.; et al. Body Adiposity Index, Body Fat Content and Incidence of Type 2 Diabetes. Diabetologia 2012, 55, 1660–1667. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.-A.; Hong, S.B.; Shin, K.S. Body Adiposity Index and Metabolic Syndrome Risk Factors in Korean Adults: A Comparison with Body Mass Index and Other Parameters. Biomed. Sci. Lett. 2017, 23, 57–63. [Google Scholar] [CrossRef]
- Han, W.; Zhang, M.; Wang, H.; Yang, Y.; Wang, L. Lipid Accumulation Product Is an Effective Predictor of Metabolic Syndrome in Non-Obese Women with Polycystic Ovary Syndrome. Front. Endocrinol. 2023, 14, 1279978. [Google Scholar] [CrossRef]
- Tellechea, M.L.; Aranguren, F.; Martínez-Larrad, M.T.; Serrano-Ríos, M.; Taverna, M.J.; Frechtel, G.D. Ability of Lipid Accumulation Product to Identify Metabolic Syndrome in Healthy Men from Buenos Aires. Diabetes Care 2009, 32, e85. [Google Scholar] [CrossRef]
- Radetti, G.; Grugni, G.; Lupi, F.; Fanolla, A.; Caroli, D.; Bondesan, A.; Sartorio, A. High Tg/HDL-Cholesterol Ratio Highlights a Higher Risk of Metabolic Syndrome in Children and Adolescents with Severe Obesity. J. Clin. Med. 2022, 11, 4488. [Google Scholar] [CrossRef] [PubMed]
- Lazzer, S.; D’Alleva, M.; Isola, M.; De Martino, M.; Caroli, D.; Bondesan, A.; Marra, A.; Sartorio, A. Cardiometabolic Index (CMI) and Visceral Adiposity Index (VAI) Highlight a Higher Risk of Metabolic Syndrome in Women with Severe Obesity. J. Clin. Med. 2023, 12, 3055. [Google Scholar] [CrossRef] [PubMed]
Total | MetS+ | MetS− | p-Value | |
---|---|---|---|---|
n. | 1912 | 1191(62.3%) | 721 (37.7%) | |
Sex (F/M) | 1690 (88.4%)/222 (11.6%) | 1030 (86.5%)/161 (13.5%) | 660 (91.5%)/61 (8.5%) | <0.001 |
Age (yrs) | 50.7 ± 14.1 | 53.4 ± 12.6 | 46.2 ± 15.3 | <0.0001 |
WC (cm) | 121.4 ± 12.9 | 123.9 ± 12.7 | 117.4 ± 12.2 | <0.0001 |
HC (cm) | 131.9 ± 12.9 | 132.0 ± 13.5 | 131.7 ± 11.9 | ns |
BW (kg) | 109.9 ± 18.8 | 111.0 ± 19.5 | 108.0 ± 17.4 | <0.001 |
Height (cm) | 159.1 ± 8.4 | 159.1 ± 8.4 | 159.2 ± 8.3 | ns |
BMI (kg/m2) | 43.3 ± 6.2 | 43.8 ± 6.6 | 42.5 ± 5.4 | <0.0001 |
SBP (mmHg) | 128.6 ± 13.9 | 130.4 ± 13.6 | 125.5 ± 13.9 | <0.0001 |
DBP (mmHg) | 77.1 ± 7.8 | 77.6 ± 7.7 | 76.2 ± 7.9 | <0.001 |
Glucose (mg/dL) | 98.8 ± 32.2 | 108.0 ± 36.8 | 83.6 ± 11.9 | <0.0001 |
T-C (mg/dL) | 195.6 ± 37.2 | 198.1 ± 38.0 | 191.4 ± 35.5 | <0.001 |
HDL-C (mg/dL) | 49.6 ± 12.8 | 45.7 ± 11.4 | 56.1 ± 12.2 | <0.0001 |
Triglycerides (mg/dL) | 137.1 ± 65.7 | 159.5 ± 70.4 | 100.0 ± 32.3 | <0.0001 |
BAI | 48. 0 ± 7.8 | 48.1 ± 8.2 | 47.8 ± 7.8 | ns |
LAP | 97.6 ± 52.0 | 116.4 ± 55.0 | 66.4 ± 24.9 | <0.0001 |
CMI | 1.44 ± 0.92 | 1.76 ± 1.0 | 0.93 ± 0.4 | <0.0001 |
Males | Females | p-Value | |
---|---|---|---|
n. | 222 (11.6%) | 1690 (88.4%) | |
Age (yrs) | 47.5 ± 14.7 | 51.1 ± 14.0 | <0.001 |
WC (cm) | 131.5 ± 12.6 | 120.1 ± 12.4 | <0.0001 |
HC (cm) | 130.1 ± 13.9 | 132.1 ± 12.7 | <0.05 |
BW (kg) | 126.9 ± 22.1 | 107.6 ± 17.1 | <0.0001 |
Height (cm) | 172.0 ± 7.9 | 157.4 ± 6.8 | <0.0001 |
BMI (kg/m2) | 42.8 ± 6.2 | 43.4 ± 6.2 | ns |
SBP (mmHg) | 131.6 ± 15.1 | 128.2 ± 13.7 | <0.001 |
DBP (mmHg) | 78.2 ± 9.5 | 76.9 ± 7.6 | <0.05 |
Glucose (mg/dL) | 100.8 ± 35.7 | 98.5 ± 31.8 | ns |
T-C (mg/dL) | 191.0 ± 35.0 | 196.2 ± 37.5 | ns |
HDL-C (mg/dL) | 41.6 ± 10.0 | 50.7 ± 12.7 | <0.0001 |
Triglycerides (mg/dL) | 164.7 ± 87.0 | 133.4 ± 61.4 | <0.0001 |
MetS (Y/N) | 161 (72.5%)/61 (27.5%) | 1030 (60.9%)/660 (39.1%) | <0.001 |
n. IDF criteria | 3.2 ± 1.0 | 2.9 ± 1.2 | <0.01 |
BAI | 39.9 ± 6.9 | 49.1 ± 7.2 | <0.0001 |
LAP | 122.8 ± 67.0 | 94.3 ± 48.7 | <0.0001 |
CMI | 1.89 ± 1.3 | 1.38 ± 0.8 | <0.0001 |
ROC Area | Cut-Off | Sensitivity | Specificity | Likelihood Ratio | |
---|---|---|---|---|---|
Population | |||||
BAI | 0.50 (0.47–0.52) | 43.55 | 30.31% | 74.48% | 1.19 |
LAP | 0.82 (0.80–0.84) | 91.05 | 63.06% | 86.55% | 4.69 |
CMI | 0.82 (0.80–0.84) | 1.22 | 67.59% | 81.55% | 3.66 |
Males | |||||
BAI | 0.51 (0.42–0.59) | 46.14 | 16. 51% | 93.44% | 1.19 |
LAP | 0.81 (0.75–0.87) | 101.5 | 70.81% | 81.97% | 3.93 |
CMI | 0.81 (0.76–0.87) | 1.47 | 66.46% | 85.25% | 4.50 |
Females | |||||
BAI | 0.52 (0.49–0.55) | 56.79 | 16. 89% | 89.70% | 1.64 |
LAP | 0.82 (0.80–0.84) | 87.39 | 64.27% | 85.45% | 3.93 |
CMI | 0.81 (0.79–0.83) | 1.14 | 71.84% | 73.77% | 3.14 |
Younger (≤50 years) | |||||
BAI | 0.51 (0.42–0.59) | 56.73 | 13. 41% | 91.20% | 1.52 |
LAP | 0.81 (0.75–0.87) | 89.24 | 65.52% | 83.37% | 3.93 |
CMI | 0.81 (0.76–0.87) | 1.25 | 71.83% | 76.72% | 4.50 |
Older (>50 years) | |||||
BAI | 0.50 (0.46–0.54) | 56.45 | 17.20% | 88.70% | 1.52 |
LAP | 0.82 (0.79–0.84) | 86.71 | 67.80% | 84.70% | 4.43 |
CMI | 0.86 (0.83–0.88) | 1.12 | 72.00% | 88.00% | 6.02 |
WC | HC | Height | BW | BMI | Glucose | T-C | HDL-C | Triglycerides | MetS | BAI | LAP | CMI | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
POPULATION | ||||||||||||||
BAI | R2 | 0.116 | 0.580 | 0.320 | 0.054 | 0.499 | 0.004 | <0.001 | 0.014 | 0.024 | >0.001 | <0.001 | 0.013 | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.01 | ns | <0.0001 | <0.0001 | ns | ns | <0.0001 | ||
LAP | R2 | 0.193 | 0.011 | 0.016 | 0.066 | 0.045 | 0.103 | 0.079 | 0.132 | 0.850 | 0.217 | >0.001 | 0.688 | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ns | <0.0001 | ||
CMI | R2 | 0.006 | 0.003 | 0.013 | 0.003 | >0.001 | 0.053 | 0.028 | 0.355 | 0.823 | 0.193 | 0.013 | 0.688 | |
p-value | <0.001 | <0.05 | <0.0001 | <0.05 | ns | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ||
MALES | ||||||||||||||
BAI | R2 | 0.358 | 0.645 | 0.202 | 0.139 | 0.548 | 0.017 | 0.004 | 0.005 | 0.009 | 0.004 | 0.009 | >0.001 | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ns | ns | ns | ns | ns | ns | ns | ||
LAP | R2 | 0.057 | 0.018 | 0.002 | 0.043 | 0.049 | 0.055 | 0.072 | 0.156 | 0.886 | 0.149 | 0.009 | 0.792 | |
p-value | <0.001 | ns | ns | <0.01 | <0.001 | <0.001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | ns | <0.0001 | ||
CMI | R2 | 0.002 | 0.002 | 0.004 | >0.001 | >0.001 | 0.025 | 0.040 | 0.340 | 0.877 | 0.142 | >0.001 | 0.792 | |
p-value | ns | ns | ns | ns | ns | <0.05 | <0.01 | <0.0001 | <0.0001 | <0.0001 | ns | <0.0001 | ||
FEMALES | ||||||||||||||
BAI | R2 | 0.244 | 0.648 | 0.215 | 0.174 | 0.567 | 0.004 | 0.001 | 0.002 | 0.012 | 0.003 | >0.001 | 0.004 | |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0068 | ns | ns | <0.0001 | <0.05 | <0.001 | <0.05 | ||
LAP | R2 | 0.201 | 0.013 | 0.001 | 0.047 | 0.050 | 0.116 | 0.091 | 0.112 | 0.837 | 0.230 | 0.007 | 0.651 | |
p-value | <0.0001 | <0.0001 | ns | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.001 | <0.0001 | ||
CMI | R2 | 0.002 | 0.002 | 0.001 | <0.001 | <0.001 | 0.063 | 0.031 | 0.359 | 0.804 | 0.206 | 0.004 | 0.651 | |
p-value | ns | ns | ns | ns | ns | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.05 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamini, S.; Bondesan, A.; Caroli, D.; Sartorio, A. The Lipid Accumulation Product Index (LAP) and the Cardiometabolic Index (CMI) Are Useful for Predicting the Presence and Severity of Metabolic Syndrome in Adult Patients with Obesity. J. Clin. Med. 2024, 13, 2843. https://doi.org/10.3390/jcm13102843
Tamini S, Bondesan A, Caroli D, Sartorio A. The Lipid Accumulation Product Index (LAP) and the Cardiometabolic Index (CMI) Are Useful for Predicting the Presence and Severity of Metabolic Syndrome in Adult Patients with Obesity. Journal of Clinical Medicine. 2024; 13(10):2843. https://doi.org/10.3390/jcm13102843
Chicago/Turabian StyleTamini, Sofia, Adele Bondesan, Diana Caroli, and Alessandro Sartorio. 2024. "The Lipid Accumulation Product Index (LAP) and the Cardiometabolic Index (CMI) Are Useful for Predicting the Presence and Severity of Metabolic Syndrome in Adult Patients with Obesity" Journal of Clinical Medicine 13, no. 10: 2843. https://doi.org/10.3390/jcm13102843
APA StyleTamini, S., Bondesan, A., Caroli, D., & Sartorio, A. (2024). The Lipid Accumulation Product Index (LAP) and the Cardiometabolic Index (CMI) Are Useful for Predicting the Presence and Severity of Metabolic Syndrome in Adult Patients with Obesity. Journal of Clinical Medicine, 13(10), 2843. https://doi.org/10.3390/jcm13102843