Complications during Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19 and Non-COVID-19 Patients with Acute Respiratory Distress Syndrome
Abstract
:1. Introduction
2. Methodology
2.1. Patients
2.2. Data Collection and Analysis
2.3. Statistical Analysis
3. Results
3.1. Complications in COVID-19 and Non-COVID-19 Patients
3.2. Complications in Survived and Non-Survived Patients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grasselli, G.; Calfee, C.S.; Camporota, L.; Poole, D.; Amato, M.B.P.; Antonelli, M.; Arabi, Y.M.; Baroncelli, F.; Beitler, J.R.; Bellani, G.; et al. Esicm guidelines on acute respiratory distress syndrome: Definition, phenotyping and respiratory support strategies. Intensive Care Med. 2023, 49, 727–759. [Google Scholar] [CrossRef]
- Scala, R.; Heunks, L. Highlights in acute respiratory failure. Eur. Respir. Rev. 2018, 27, 180008. [Google Scholar] [CrossRef] [PubMed]
- Tonna, J.E.; Abrams, D.; Brodie, D.; Greenwood, J.C.; Rubio Mateo-Sidron, J.A.; Usman, A.; Fan, E. Management of adult patients supported with venovenous extracorporeal membrane oxygenation (VV ECMO): Guideline from the extracorporeal life support organization (elso). ASAIO J. 2021, 67, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Offer, J.; Sampson, C.; Charlton, M. Veno-venous extracorporeal membrane oxygenation in severe acute respiratory failure. BJA Educ. 2024, 24, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Gabelloni, M.; Faggioni, L.; Cioni, D.; Mendola, V.; Falaschi, Z.; Coppola, S.; Corradi, F.; Isirdi, A.; Brandi, N.; Coppola, F.; et al. Extracorporeal membrane oxygenation (ecmo) in COVID-19 patients: A pocket guide for radiologists. Radiol. Med. 2022, 127, 369–382. [Google Scholar] [CrossRef] [PubMed]
- Rauseo, M.; Spinelli, E.; Sella, N.; Slobod, D.; Spadaro, S.; Longhini, F.; Giarratano, A.; Gilda, C.; Mauri, T.; Navalesi, P. Expert opinion document: “Electrical impedance tomography: Applications from the intensive care unit and beyond”. J. Anesth. Analg. Crit. Care 2022, 2, 28. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, G.; Simonte, R.; Longhini, F.; Spadaro, S.; Vetrugno, L.; De Robertis, E. Advanced point-of-care bedside monitoring for acute respiratory failure. Anesthesiology 2023, 138, 317–334. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, G.; Vetrugno, L.; Longhini, F. Lung ultrasound monitoring: Impact on economics and outcomes. Curr. Opin. Anaesthesiol. 2023, 36, 234–239. [Google Scholar] [CrossRef] [PubMed]
- Chiumello, D.; Sferrazza Papa, G.F.; Artigas, A.; Bouhemad, B.; Grgic, A.; Heunks, L.; Markstaller, K.; Pellegrino, G.M.; Pisani, L.; Rigau, D.; et al. Ers statement on chest imaging in acute respiratory failure. Eur. Respir. J. 2019, 54, 1900435. [Google Scholar] [CrossRef]
- Burrell, A.; Kim, J.; Alliegro, P.; Romero, L.; Serpa Neto, A.; Mariajoseph, F.; Hodgson, C. Extracorporeal membrane oxygenation for critically ill adults. Cochrane Database Syst. Rev. 2023, 9, CD010381. [Google Scholar] [CrossRef]
- Tramm, R.; Ilic, D.; Davies, A.R.; Pellegrino, V.A.; Romero, L.; Hodgson, C. Extracorporeal membrane oxygenation for critically ill adults. Cochrane Database Syst. Rev. 2015, 1, CD010381. [Google Scholar] [CrossRef] [PubMed]
- Anzueto, A.; Frutos-Vivar, F.; Esteban, A.; Alia, I.; Brochard, L.; Stewart, T.; Benito, S.; Tobin, M.J.; Elizalde, J.; Palizas, F.; et al. Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Intensive Care Med. 2004, 30, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Yan, P.; Ma, Z.; Liang, J.; Hu, Y.; Tang, J. Outcomes of COVID-19 patients undergoing extracorporeal membrane oxygenation: A systematic review and meta-analysis. Perfusion 2023. [Google Scholar] [CrossRef]
- Vetrugno, L.; Castaldo, N.; Fantin, A.; Deana, C.; Cortegiani, A.; Longhini, F.; Forfori, F.; Cammarota, G.; Grieco, D.L.; Isola, M.; et al. Ventilatory associated barotrauma in COVID-19 patients: A multicenter observational case control study (COVI-MIX-study). Pulmonology 2023, 29, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Zakrajsek, J.K.; Min, S.J.; Ho, P.M.; Kiser, T.H.; Kannappan, A.; Sottile, P.D.; Allen, R.R.; Althoff, M.D.; Reynolds, P.M.; Moss, M.; et al. Extracorporeal membrane oxygenation for refractory asthma exacerbations with respiratory failure. Chest 2023, 163, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Chiumello, D.; Coppola, S.; Froio, S.; Colombo, A.; Del Sorbo, L. Extracorporeal life support as bridge to lung transplantation: A systematic review. Crit. Care 2015, 19, 19. [Google Scholar] [CrossRef]
- Roncon-Albuquerque, R., Jr.; Carona, G.; Neves, A.; Miranda, F.; Castelo-Branco, S.; Oliveira, T.; Paiva, J.A. Venovenous extracorporeal co2 removal for early extubation in copd exacerbations requiring invasive mechanical ventilation. Intensive Care Med. 2014, 40, 1969–1970. [Google Scholar] [CrossRef]
- Badulak, J.; Antonini, M.V.; Stead, C.M.; Shekerdemian, L.; Raman, L.; Paden, M.L.; Agerstrand, C.; Bartlett, R.H.; Barrett, N.; Combes, A.; et al. Extracorporeal membrane oxygenation for COVID-19: Updated 2021 guidelines from the extracorporeal life support organization. ASAIO J. 2021, 67, 485–495. [Google Scholar] [CrossRef]
- McMichael, A.B.V.; Ryerson, L.M.; Ratano, D.; Fan, E.; Faraoni, D.; Annich, G.M. 2021 elso adult and pediatric anticoagulation guidelines. ASAIO J. 2022, 68, 303–310. [Google Scholar] [CrossRef]
- Russo, A.; Serraino, R.; Serapide, F.; Bruni, A.; Garofalo, E.; Longhini, F.; Trecarichi, E.M.; Torti, C. COVID-19-associated pulmonary aspergillosis in intensive care unit: A real-life experience. Heliyon 2024, 10, e24298. [Google Scholar] [CrossRef]
- Nahm, F.S. Nonparametric statistical tests for the continuous data: The basic concept and the practical use. Korean J. Anesthesiol. 2016, 69, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Udi, J.; Lang, C.N.; Zotzmann, V.; Krueger, K.; Fluegler, A.; Bamberg, F.; Bode, C.; Duerschmied, D.; Wengenmayer, T.; Staudacher, D.L. Incidence of barotrauma in patients with COVID-19 pneumonia during prolonged invasive mechanical ventilation—A case-control study. J. Intensive Care Med. 2021, 36, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Belletti, A.; Todaro, G.; Valsecchi, G.; Losiggio, R.; Palumbo, D.; Landoni, G.; Zangrillo, A. Barotrauma in coronavirus disease 2019 patients undergoing invasive mechanical ventilation: A systematic literature review. Crit Care Med 2022, 50, 491–500. [Google Scholar] [CrossRef] [PubMed]
- Vetrugno, L.; Deana, C.; Castaldo, N.; Fantin, A.; Belletti, A.; Sozio, E.; De Martino, M.; Isola, M.; Palumbo, D.; Longhini, F.; et al. Barotrauma during noninvasive respiratory support in COVID-19 pneumonia outside ICU: The ancillary COVIMIX-2 study. J. Clin. Med. 2023, 12, 3675. [Google Scholar] [CrossRef] [PubMed]
- Ayazi, S.; Zebarjadi, J.; Grubic, A.D.; Tahmasbi, H.; Ayazi, K.; Jobe, B.A. Pneumothorax as the presenting manifestation of COVID-19. J. Thorac. Dis. 2020, 12, 7488–7493. [Google Scholar] [CrossRef] [PubMed]
- Miro, O.; Llorens, P.; Jimenez, S.; Pinera, P.; Burillo-Putze, G.; Martin, A.; Martin-Sanchez, F.J.; Garcia-Lamberetchs, E.J.; Jacob, J.; Alquezar-Arbe, A.; et al. Frequency, risk factors, clinical characteristics, and outcomes of spontaneous pneumothorax in patients with coronavirus disease 2019: A case-control, emergency medicine-based multicenter study. Chest 2021, 159, 1241–1255. [Google Scholar] [CrossRef] [PubMed]
- Corradi, F.; Isirdi, A.; Malacarne, P.; Santori, G.; Barbieri, G.; Romei, C.; Bove, T.; Vetrugno, L.; Falcone, M.; Bertini, P.; et al. Low diaphragm muscle mass predicts adverse outcome in patients hospitalized for COVID-19 pneumonia: An exploratory pilot study. Minerva Anestesiol. 2021, 87, 432–438. [Google Scholar] [CrossRef]
- Corradi, F.; Vetrugno, L.; Orso, D.; Bove, T.; Schreiber, A.; Boero, E.; Santori, G.; Isirdi, A.; Barbieri, G.; Forfori, F. Diaphragmatic thickening fraction as a potential predictor of response to continuous positive airway pressure ventilation in COVID-19 pneumonia: A single-center pilot study. Respir. Physiol. Neurobiol. 2021, 284, 103585. [Google Scholar] [CrossRef]
- Cruces, P.; Retamal, J.; Hurtado, D.E.; Erranz, B.; Iturrieta, P.; Gonzalez, C.; Diaz, F. A physiological approach to understand the role of respiratory effort in the progression of lung injury in SARS-CoV-2 infection. Crit. Care 2020, 24, 494. [Google Scholar] [CrossRef]
- Shrestha, D.B.; Sedhai, Y.R.; Budhathoki, P.; Adhikari, A.; Pokharel, N.; Dhakal, R.; Kafle, S.; Yadullahi Mir, W.A.; Acharya, R.; Kashiouris, M.G.; et al. Pulmonary barotrauma in COVID-19: A systematic review and meta-analysis. Ann. Med. Surg. 2022, 73, 103221. [Google Scholar] [CrossRef]
- Belletti, A.; Palumbo, D.; Zangrillo, A.; Fominskiy, E.V.; Franchini, S.; Dell’Acqua, A.; Marinosci, A.; Monti, G.; Vitali, G.; Colombo, S.; et al. Predictors of pneumothorax/pneumomediastinum in mechanically ventilated COVID-19 patients. J. Cardiothorac. Vasc. Anesth. 2021, 35, 3642–3651. [Google Scholar] [CrossRef] [PubMed]
- Murayama, S.; Gibo, S. Spontaneous pneumomediastinum and macklin effect: Overview and appearance on computed tomography. World J. Radiol. 2014, 6, 850–854. [Google Scholar] [CrossRef] [PubMed]
- Paternoster, G.; Belmonte, G.; Scarano, E.; Rotondo, P.; Palumbo, D.; Belletti, A.; Corradi, F.; Bertini, P.; Landoni, G.; Guarracino, F. Macklin effect on baseline chest ct scan accurately predicts barotrauma in COVID-19 patients. Respir. Med. 2022, 197, 106853. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, D.; Zangrillo, A.; Belletti, A.; Guazzarotti, G.; Calvi, M.R.; Guzzo, F.; Pennella, R.; Monti, G.; Gritti, C.; Marmiere, M.; et al. A RADIOLOGICAL predictor for pneumomediastinum/pneumothorax in COVID-19 ards patients. J. Crit. Care 2021, 66, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Paternoster, G.; Bertini, P.; Belletti, A.; Landoni, G.; Gallotta, S.; Palumbo, D.; Isirdi, A.; Guarracino, F. Venovenous extracorporeal membrane oxygenation in awake non-intubated patients with COVID-19 ards at high risk for barotrauma. J. Cardiothorac. Vasc. Anesth. 2022, 36, 2975–2982. [Google Scholar] [CrossRef] [PubMed]
- Langer, T.; Santini, A.; Bottino, N.; Crotti, S.; Batchinsky, A.I.; Pesenti, A.; Gattinoni, L. “Awake” Extracorporeal membrane oxygenation (ecmo): Pathophysiology, technical considerations, and clinical pioneering. Crit. Care 2016, 20, 150. [Google Scholar] [CrossRef] [PubMed]
- Rochwerg, B.; Brochard, L.; Elliott, M.W.; Hess, D.; Hill, N.S.; Nava, S.; Navalesi, P.; Antonelli, M.; Brozek, J.; Conti, G.; et al. Official ers/ats clinical practice guidelines: Noninvasive ventilation for acute respiratory failure. Eur. Respir. J. 2017, 50, 1602426. [Google Scholar] [CrossRef]
- Brochard, L.; Lefebvre, J.C.; Cordioli, R.L.; Akoumianaki, E.; Richard, J.C. Noninvasive ventilation for patients with hypoxemic acute respiratory failure. Semin. Respir. Crit. Care Med. 2014, 35, 492–500. [Google Scholar] [PubMed]
- Demoule, A.; Girou, E.; Richard, J.C.; Taille, S.; Brochard, L. Benefits and risks of success or failure of noninvasive ventilation. Intensive Care Med. 2006, 32, 1756–1765. [Google Scholar] [CrossRef] [PubMed]
- Fuset-Cabanes, M.P.; Hernandez-Platero, L.; Sabater-Riera, J.; Gordillo-Benitez, M.; Di Paolo, F.; Cardenas-Campos, P.; Maisterra-Santos, K.; Pons-Serra, M.; Sastre-Perez, P.; Garcia-Zalona, A.; et al. Days spent on non-invasive ventilation support: Can it determine when to initiate VV-ECMO? Observational study in a cohort of COVID-19 patients. BMC Pulm. Med. 2023, 23, 310. [Google Scholar] [CrossRef]
- Schmidt, M.; Hajage, D.; Landoll, M.; Pequignot, B.; Langouet, E.; Amalric, M.; Mekontso-Dessap, A.; Chiscano-Camon, L.; Surman, K.; Finnerty, D.; et al. Comparative outcomes of extracorporeal membrane oxygenation for COVID-19 delivered in experienced european centres during successive SARS-CoV-2 variant outbreaks (ecmo-surges): An international, multicentre, retrospective cohort study. Lancet Respir. Med. 2023, 11, 163–175. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Q.; Green, A.; Chandel, A.; Lantry, J.; Desai, M.; Simou, J.; Osborn, E.; Singh, R.; Puri, N.; Moran, P.; et al. Impact of noninvasive respiratory support in patients with COVID-19 requiring VV ECMO. ASAIO J. 2022, 68, 171–177. [Google Scholar] [CrossRef] [PubMed]
- Forrest, I.S.; Jaladanki, S.K.; Paranjpe, I.; Glicksberg, B.S.; Nadkarni, G.N.; Do, R. Non-invasive ventilation versus mechanical ventilation in hypoxemic patients with COVID-19. Infection 2021, 49, 989–997. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, G.; Ragazzoni, L.; Capuzzi, F.; Pulvirenti, S.; De Vita, N.; Santangelo, E.; Verdina, F.; Grossi, F.; Vaschetto, R.; Della Corte, F. Critical care surge capacity to respond to the COVID-19 pandemic in italy: A rapid and affordable solution in the novara hospital. Prehosp Disaster Med. 2020, 35, 431–433. [Google Scholar] [CrossRef] [PubMed]
- De Cassai, A.; Longhini, F.; Romagnoli, S.; Cavaliere, F.; Caroleo, A.; Foti, L.; Furlani, E.; Gianoli, S.; Monteleone, F.; Saraco, G.; et al. Research on SARS-CoV-2 pandemic: A narrative review focused on the italian contribution. J. Anesth. Analg. Crit. Care 2021, 1, 14. [Google Scholar] [CrossRef] [PubMed]
- Zanella, A.; Florio, G.; Antonelli, M.; Bellani, G.; Berselli, A.; Bove, T.; Cabrini, L.; Carlesso, E.; Castelli, G.P.; Cecconi, M.; et al. Time course of risk factors associated with mortality of 1260 critically ill patients with COVID-19 admitted to 24 italian intensive care units. Intensive Care Med. 2021, 47, 995–1008. [Google Scholar] [PubMed]
- Ferrando, C.; Mellado-Artigas, R.; Gea, A.; Arruti, E.; Aldecoa, C.; Adalia, R.; Ramasco, F.; Monedero, P.; Maseda, E.; Tamayo, G.; et al. Awake prone positioning does not reduce the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy: A multicenter, adjusted cohort study. Crit. Care 2020, 24, 597. [Google Scholar] [CrossRef]
- Longhini, F.; Bruni, A.; Garofalo, E.; Navalesi, P.; Grasselli, G.; Cosentini, R.; Foti, G.; Mattei, A.; Ippolito, M.; Accurso, G.; et al. Helmet continuous positive airway pressure and prone positioning: A proposal for an early management of COVID-19 patients. Pulmonology 2020, 26, 186–191. [Google Scholar] [CrossRef]
- Winck, J.C.; Ambrosino, N. COVID-19 pandemic and non invasive respiratory management: Every goliath needs a david. An evidence based evaluation of problems. Pulmonology 2020, 26, 213–220. [Google Scholar] [CrossRef]
- Radovanovic, D.; Rizzi, M.; Pini, S.; Saad, M.; Chiumello, D.A.; Santus, P. Helmet cpap to treat acute hypoxemic respiratory failure in patients with COVID-19: A management strategy proposal. J. Clin. Med. 2020, 9, 1191. [Google Scholar] [CrossRef]
- Spiezia, L.; Boscolo, A.; Poletto, F.; Cerruti, L.; Tiberio, I.; Campello, E.; Navalesi, P.; Simioni, P. COVID-19-related severe hypercoagulability in patients admitted to intensive care unit for acute respiratory failure. Thromb. Haemost. 2020, 120, 998–1000. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, E.; Cammarota, G.; Neri, G.; Macheda, S.; Biamonte, E.; Pasqua, P.; Guzzo, M.L.; Longhini, F.; Bruni, A. Bivalirudin vs. Enoxaparin in intubated COVID-19 patients: A pilot multicenter randomized controlled trial. J. Clin. Med. 2022, 11, 5992. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Guan, Q.; Qin, J.; Shan, R.; Wu, J.; Zhang, C. Bivalirudin versus heparin anticoagulation in patients receiving extracorporeal membrane oxygenation. Perfusion 2023, 38, 1133–1141. [Google Scholar] [CrossRef] [PubMed]
- Dave, S.B.; Rabinowitz, R.; Shah, A.; Tabatabai, A.; Galvagno, S.M., Jr.; Mazzeffi, M.A.; Rector, R.; Kaczorowski, D.J.; Scalea, T.M.; Menaker, J. COVID-19 outcomes of venovenous extracorporeal membrane oxygenation for acute respiratory failure vs historical cohort of non-COVID-19 viral infections. Perfusion 2023, 38, 1165–1173. [Google Scholar] [CrossRef] [PubMed]
- Garfield, B.; Bianchi, P.; Arachchillage, D.; Hartley, P.; Naruka, V.; Shroff, D.; Law, A.; Passariello, M.; Patel, B.; Price, S.; et al. Six month mortality in patients with COVID-19 and non-COVID-19 viral pneumonitis managed with veno-venous extracorporeal membrane oxygenation. ASAIO J. 2021, 67, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Seok, H.; Kim, B.K.; Hwang, J.; Park, D.W.; Shin, J.S.; Kim, J.H. COVID-19 versus other disease etiologies as the cause of ards in patients necessitating venovenous extracorporeal membrane oxygenation—A comparison of patients’ data during the three years of the COVID-19 pandemic. J. Clin. Med. 2023, 12, 6752. [Google Scholar] [CrossRef]
- Fernando, S.M.; Brodie, D.; Barbaro, R.P.; Agerstrand, C.; Badulak, J.; Bush, E.L.; Mueller, T.; Munshi, L.; Fan, E.; MacLaren, G.; et al. Age and associated outcomes among patients receiving venovenous extracorporeal membrane oxygenation for acute respiratory failure: Analysis of the extracorporeal life support organization registry. Intensive Care Med. 2024, 50, 395–405. [Google Scholar] [CrossRef]
- Barbaro, R.P.; MacLaren, G.; Boonstra, P.S.; Iwashyna, T.J.; Slutsky, A.S.; Fan, E.; Bartlett, R.H.; Tonna, J.E.; Hyslop, R.; Fanning, J.J.; et al. Extracorporeal membrane oxygenation support in COVID-19: An international cohort study of the extracorporeal life support organization registry. Lancet 2020, 396, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Formenti, P.; Umbrello, M. Pleural effusion in ards. Minerva Anestesiol. 2014, 80, 245–253. [Google Scholar]
- Wang, T.J.; Pai, K.C.; Huang, C.T.; Wong, L.T.; Wang, M.S.; Lai, C.M.; Chen, C.H.; Wu, C.L.; Chao, W.C. A positive fluid balance in the first week was associated with increased long-term mortality in critically ill patients: A retrospective cohort study. Front. Med. 2022, 9, 727103. [Google Scholar] [CrossRef]
- Balakumar, V.; Murugan, R.; Sileanu, F.E.; Palevsky, P.; Clermont, G.; Kellum, J.A. Both positive and negative fluid balance may be associated with reduced long-term survival in the critically ill. Crit. Care Med. 2017, 45, e749–e757. [Google Scholar] [CrossRef] [PubMed]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Crit. Care Med. 2021, 49, e1063–e1143. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.; Kwak, J.Y.; Jung, Y.T. Association between postoperative fluid balance and mortality and morbidity in critically ill patients with complicated intra-abdominal infections: A retrospective study. Acute Crit. Care 2020, 35, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Wautier, J.L.; Wautier, M.P. Vascular permeability in diseases. Int. J. Mol. Sci. 2022, 23, 3645. [Google Scholar] [CrossRef]
- Hotchkiss, R.S.; Moldawer, L.L.; Opal, S.M.; Reinhart, K.; Turnbull, I.R.; Vincent, J.L. Sepsis and septic shock. Nat. Rev. Dis. Primers 2016, 2, 16045. [Google Scholar] [CrossRef] [PubMed]
- Hayanga, J.W.A.; Song, T.; Durham, L.; Garrison, L.; Smith, D.; Molnar, Z.; Scheier, J.; Deliargyris, E.N.; Moazami, N. Extracorporeal hemoadsorption in critically ill COVID-19 patients on VV ECMO: The cytosorb therapy in COVID-19 (CTC) registry. Crit. Care 2023, 27, 243. [Google Scholar] [CrossRef]
- Hammer, G.P.; du Prel, J.B.; Blettner, M. Avoiding bias in observational studies: Part 8 in a series of articles on evaluation of scientific publications. Dtsch. Arztebl. Int. 2009, 106, 664–668. [Google Scholar]
- Silversides, J.A.; Major, E.; Ferguson, A.J.; Mann, E.E.; McAuley, D.F.; Marshall, J.C.; Blackwood, B.; Fan, E. Conservative fluid management or deresuscitation for patients with sepsis or acute respiratory distress syndrome following the resuscitation phase of critical illness: A systematic review and meta-analysis. Intensive Care Med. 2017, 43, 155–170. [Google Scholar] [CrossRef]
- Wiedemann, H.P.; Wheeler, A.P.; Bernard, G.R.; Thompson, B.T.; Hayden, D.; deBoisblanc, B.; Connors, A.F., Jr.; Hite, R.D.; Harabin, A.L. Comparison of two fluid-management strategies in acute lung injury. N. Engl. J. Med. 2006, 354, 2564–2575. [Google Scholar] [CrossRef]
Overall (n = 64) | Non-COVID-19 (n = 39) | COVID-19 (n = 25) | OR [95% CI] | p-Value | |
---|---|---|---|---|---|
Age (year) | 57 [44; 64] | 58 [44; 65] | 54 [42; 62] | 0.601 | |
Female sex—n (%) | 16 (25%) | 11 (28%) | 5 (20%) | 1.57 [0.47–4.73] | 0.561 |
BMI (kg/m2) | 27 [23; 31] | 27 [23; 33] | 25 [23; 30] | 0.308 | |
Current smoker—n (%) | 27 (42%) | 15 (38%) | 12 (48%) | 0.68 [0.26–1.79] | 0.605 |
SOFA | 11 [11; 12] | 11 [11; 12] | 12 [11; 12] | 0.424 | |
PaO2/FiO2 (mmHg) | 98 [77; 110] | 102 [78; 110] | 80 [72; 110] | 0.276 | |
Etiology of ARF—n (%) | |||||
Bacterial | 36 (56%) | 33 (85%) | 3 (12%) | <0.001 | |
Viral | 31 (48%) | 6 (15%) | 25 (100%) | ||
Fungal | 5 (8%) | 2 (5%) | 3 (8%) | ||
Comorbidities—n (%) | |||||
Arterial hypertension | 28 (44%) | 14 (36%) | 14 (56%) | 0.44 [0.16–1.28] | 0.130 |
Diabetes | 22 (34%) | 14 (36%) | 8 (32%) | 1.19 [0.44–3.43] | 0.794 |
Cardiovascular disease | 27 (42%) | 15 (38%) | 12 (48%) | 0.68 [0.26–1.79] | 0.681 |
Chronic renal failure | 3 (5%) | 1 (3%) | 2 (8%) | 0.30 [0.02–2.77] | 0.555 |
Peripheral vascular disease | 2 (3%) | 1 (3%) | 1 (4%) | 0.63 [0.03–12.46] | 0.999 |
Cerebrovascular disease | 4 (6%) | 3 (8%) | 1 (4%) | 2.00 [0.28–26.94] | 0.999 |
Liver disease | 3 (5%) | 1 (3%) | 2 (8%) | 0.30 [0.02–2.77] | 0.555 |
Overall (n = 64) | Non-COVID-19 (n = 39) | COVID-19 (n = 25) | OR [95% CI] | p-Value | |
---|---|---|---|---|---|
Vasoactive drugs—n (%) | 55 (86%) | 34 (87%) | 12 (48%) | 7.37 [2.18–22.85] | 0.001 |
Pulmonary Vasodilators—n (%) | 15 (23%) | 8 (21%) | 7 (28%) | 0.66 [0.23–2.07] | 0.553 |
NMBA—n (%) | 60 (94%) | 35 (90%) | 25 (100%) | 0.00 [0.00–1.60] | 0.150 |
Corticosteroids—n (%) | 31 (48%) | 16 (41%) | 15 (60%) | 0.46 [0.17–1.34] | 0.200 |
Prone Position—n (%) | 42 (66%) | 24 (62%) | 18 (72%) | 0.62 [0.22–1.72] | 0.622 |
Pneumothorax—n (%) | 10 (16%) | 3 (8%) | 7 (28%) | 0.21 [0.05–0.97] | 0.039 |
Pneumomediastinum—n (%) | 7 (11%) | 2 (5%) | 5 (20%) | 0.22 [0.04–1.21] | 0.100 |
Subcutaneous emphysema—n (%) | 8 (12%) | 2 (5%) | 6 (24%) | 0.17 [0.03–0.81] | 0.048 |
Pleural effusion—n (%) | 22 (34%) | 12 (31%) | 10 (40%) | 0.67 [0.24–1.87] | 0.590 |
Pulmonary embolism—n (%) | 5 (8%) | 3 (8%) | 2 (8%) | 0.95 [0.18–7.72] | 0.999 |
Limb ischemia—n (%) | 3 (5%) | 2 (5%) | 1 (4%) | 1.26 [0.14–19.00] | 0.999 |
Deep vein thrombosis—n (%) | 11 (17%) | 6 (15%) | 5 (20%) | 0.73 [0.21–2.53] | 0.738 |
NIV—n (%) | 36 (56%) | 16 (41%) | 20 (80%) | 0.17 [0.06–0.59] | 0.004 |
NIV (days) | 1 [0; 2] | 0 [0; 1] | 2 [1; 4] | <0.001 | |
iMV—n (%) | 64 (100%) | 39 (100%) | 25 (100%) | n.a. | 0.999 |
iMV (days) | 2 [1; 3] | 2 [1;3] | 2 [1;3] | 0.581 | |
ICU LOS (days) | 2 [1; 4] | 2 [1; 4] | 2 [1; 4] | 0.587 | |
Hospital LOS (days) | 4 [2; 5] | 2 [1; 5] | 5 [2; 7] | 0.019 |
Overall | Non-COVID-19 | COVID-19 | OR [95% CI] | p-Value | |
---|---|---|---|---|---|
Patients with new complications—n (%) | 21/64 (33%) | 12/39 (31%) | 9/25 (36%) | 0.79 [0.28–2.34] | 0.786 |
Pneumothorax—n (%) | 17/54 (31%) | 9/36 (25%) | 8/17 (44%) | 0.41 [0.12–1.31] | 0.208 |
Pneumomediastinum—n (%) | 10/57 (18%) | 5/37 (14%) | 5/20 (25%) | 0.47 [0.12–1.81] | 0.297 |
Subcutaneous emphysema—n (%) | 11/56 (20%) | 6/37 (16%) | 5/19 (26%) | 0.54 [0.16–2.00] | 0.481 |
Pulmonary embolism—n (%) | 3/59 (5%) | 1/36 (3%) | 2/23 (9%) | 0.30 [0.02–2.76] | 0.554 |
Pleural effusion—n (%) | 10/42(24%) | 7/27 (26%) | 3/15 (20%) | 1.40 [0.35–5.68] | 0.999 |
Hemothorax—n (%) | 3/64 (5%) | 2/39 (5%) | 1/25 (4%) | 1.30 [0.14–19.50] | 0.999 |
Acute myocardial infarction—n (%) | 2/64 (3%) | 1/39 (3%) | 1/25 (4%) | 0.63 [0.03–12.46] | 0.999 |
Hemorrhagic brain injury—n (%) | 1/64 (2%) | 1/39 (3%) | 0/25 (0%) | n.a. | 0.999 |
Deep vein thrombosis—n (%) | 4/53 (8%) | 2/33 (6%) | 2/20 (10%) | 0.58 [0.08–3.99] | 0.581 |
Overall (n = 64) | Non-COVID-19 (n = 39) | COVID-19 (n = 25) | OR [95% CI] | p-Value | |
---|---|---|---|---|---|
Prone position during ECMO—n (%) | 32 (50%) | 19 (49%) | 13 (52%) | 0.88 [0.34–2.54] | 0.999 |
ECMO duration (days) | 8 [5; 12] | 8 [5; 10] | 10 [5; 13] | 0.618 | |
NIV after ECMO cannulation—n (%) | 30 (47%) | 21 (53%) | 9 (47%) | 2.07 [0.72–5.91] | 0.204 |
NIV after ECMO cannulation (days) | 3 [3; 4] | 3 [3; 4] | 4 [3; 4] | 0.495 | |
iMV after ECMO cannulation (days) | 14 [5; 16] | 12 [5; 16] | 14 [5; 16] | 0.894 | |
Total time spent under ventilatory support (days) | 19 [11; 21] | 19 [7; 21] | 19 [11; 23] | 0.428 | |
Tracheostomy—n (%) | 13 (20%) | 7 (18%) | 6 (24%) | 0.69 [0.21–2.44] | 0.751 |
CRRT after ECMO cannulation—n (%) | 26 (41%) | 16 (41%) | 10 (40%) | 1.04 [0.38–2.82] | 0.999 |
Total ICU LOS (days) | 23 [9; 30] | 24 [9; 30] | 22 [9; 30] | 0.787 | |
Total hospital LOS (days) | 32 [11; 41] | 34 [12; 41] | 30 [11; 41] | 0.669 | |
ICU mortality | 23 (36%) | 12 (31%) | 11 (44%) | 0.57 [0.21–1.53] | 0.300 |
Hospital mortality | 23 (36%) | 12 (31%) | 11 (44%) | 0.57 [0.21–1.53] | 0.300 |
Alive (n = 41) | Dead (n = 23) | OR [95% CI] | p-Value | |
---|---|---|---|---|
Vasoactive drugs—n (%) | 37 (90%) | 18 (78%) | 2.57 [0.63–9.05] | 0.263 |
Pulmonary vasodilators—n (%) | 9 (22%) | 6 (26%) | 0.80 [0.26–2.87] | 0.766 |
NMBA—n (%) | 39 (95%) | 21 (91%) | 1.86 [0.27–12.38] | 0.614 |
Corticosteroids—n (%) | 19 (46%) | 12 (52%) | 0.79 [0.30–2.07] | 0.795 |
Prone position—n (%) | 28 (68%) | 14 (61%) | 1.39 [0.47–3.87] | 0.591 |
Pneumothorax—n (%) | 4 (10%) | 6 (26%) | 0.31 [0.09–1.12] | 0.148 |
Pneumomediastinum—n (%) | 3 (7%) | 4 (17%) | 0.38 [0.09–1.54] | 0.240 |
Subcutaneous emphysema—n (%) | 3 (7%) | 5 (22%) | 0.28 [0.07–1.30] | 0.124 |
Pleural effusion—n (%) | 14 (34%) | 8 (35%) | 0.97 [0.35–2.81] | 0.999 |
Pulmonary embolism—n (%) | 3 (7%) | 2 (9%) | 0.83 [0.16–4.97] | 0.999 |
Limb ischemia—n (%) | 3 (7%) | 0 (0%) | n.a. | 0.547 |
Deep vein thrombosis—n (%) | 5 (12%) | 6 (26%) | 0.39 [0.11–1.39] | 0.182 |
NIV—n (%) | 23 (56%) | 13 (57%) | 0.98 [0.36–2.58] | 0.999 |
NIV (days) | 1 [0; 2] | 1 [0; 4] | 0.358 | |
iMV—n (%) | 41 (100%) | 23 (100%) | n.a. | 0.999 |
iMV (days) | 2 [1; 3] | 2 [2; 3] | 0.219 | |
ICU LOS (days) | 3 [1; 4] | 2 [2; 4] | 0.655 | |
Hospital LOS (days) | 3 [1; 5] | 5 [2; 7] | 0.051 |
Alive (n = 41) | Dead (n = 23) | IRR [95% CI] | p-Value | |
---|---|---|---|---|
Patients with new complications—n/1000 days | 9.8 | 63.5 | 0.15 [0.06–0.38] | <0.001 |
Pneumothorax—n/1000 days | 8.9 | 37.0 | 0.24 [0.08–0.74] | 0.008 |
Pneumomediastinum—n/1000 days | 5.3 | 21.2 | 0.25 [0.06–1.21] | 0.052 |
Subcutaneous emphysema—n/1000 days | 5.3 | 26.5 | 0.20 [0.05–0.84] | 0.016 |
Pulmonary embolism—n/1000 days | 1.8 | 21.2 | 0.08 [0.01–0.59] | 0.005 |
Pleural effusion—n/1000 days | 2.7 | 37.0 | 0.07 [0.01–0.32] | <0.001 |
Hemothorax—n/1000 days | 1.8 | 5.3 | 0.34 [0.02–19.8] | 0.429 |
Acute myocardial infarction—n/1000 days | 0.0 | 10.6 | 0.00 [0.00–0.89] | <0.001 |
Hemorrhagic brain injury—n/1000 days | 0.0 | 5.3 | 0.00 [0.00–6.55] | 0.015 |
Deep vein thrombosis—n/1000 days | 0.9 | 21.2 | 0.04 [0.00–0.42] | 0.002 |
Alive (n = 41) | Dead (n = 23) | OR [95% CI] | p-Value | |
---|---|---|---|---|
Prone position during ECMO—n (%) | 17 (42%) | 15 (65%) | 0.38 [0.14–1.14] | 0.118 |
ECMO duration (days) | 10 [8; 12] | 4 [3; 5] | <0.001 | |
NIV after ECMO cannulation—n (%) | 30 (73%) | 0 (0%) | n.a. | <0.001 |
iMV after ECMO cannulation (days) | 14 [13; 18] | 4 [3; 5] | <0.001 | |
Total time spent under ventilatory support (days) | 20 [19; 22] | 7 [6; 11] | <0.001 | |
Tracheostomy—n (%) | 11 (27%) | 2 (9%) | 3.85 [0.89–18.53] | 0.111 |
CRRT after ECMO cannulation—n (%) | 15 (37%) | 11 (48%) | 0.63 [0.24–1.69] | 0.433 |
Total ICU LOS (days) | 27 [23; 32] | 7 [6; 11] | <0.001 | |
Total hospital LOS (days) | 38 [33; 45] | 10 [7; 12] | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruni, A.; Battaglia, C.; Bosco, V.; Pelaia, C.; Neri, G.; Biamonte, E.; Manti, F.; Mollace, A.; Boscolo, A.; Morelli, M.; et al. Complications during Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19 and Non-COVID-19 Patients with Acute Respiratory Distress Syndrome. J. Clin. Med. 2024, 13, 2871. https://doi.org/10.3390/jcm13102871
Bruni A, Battaglia C, Bosco V, Pelaia C, Neri G, Biamonte E, Manti F, Mollace A, Boscolo A, Morelli M, et al. Complications during Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19 and Non-COVID-19 Patients with Acute Respiratory Distress Syndrome. Journal of Clinical Medicine. 2024; 13(10):2871. https://doi.org/10.3390/jcm13102871
Chicago/Turabian StyleBruni, Andrea, Caterina Battaglia, Vincenzo Bosco, Corrado Pelaia, Giuseppe Neri, Eugenio Biamonte, Francesco Manti, Annachiara Mollace, Annalisa Boscolo, Michele Morelli, and et al. 2024. "Complications during Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19 and Non-COVID-19 Patients with Acute Respiratory Distress Syndrome" Journal of Clinical Medicine 13, no. 10: 2871. https://doi.org/10.3390/jcm13102871
APA StyleBruni, A., Battaglia, C., Bosco, V., Pelaia, C., Neri, G., Biamonte, E., Manti, F., Mollace, A., Boscolo, A., Morelli, M., Navalesi, P., Laganà, D., Garofalo, E., Longhini, F., & IMAGE Group. (2024). Complications during Veno-Venous Extracorporeal Membrane Oxygenation in COVID-19 and Non-COVID-19 Patients with Acute Respiratory Distress Syndrome. Journal of Clinical Medicine, 13(10), 2871. https://doi.org/10.3390/jcm13102871