Long COVID-19 Enigma: Unmasking the Role of Distinctive Personality Profiles as Risk Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Tools and Measures
- The DS-14 questionnaire for assessing Type D personality (S1). A validated Hebrew version of the questionnaire by Zohar et al. was used [20]. Within our current sample, the internal consistency was α = 0.86.
- The Generalized Anxiety Disorder (GAD) questionnaire for assessing symptoms of anxiety, based on the Diagnostic and Statistical Manual of Mental Disorders-IV (S2). A validated Hebrew version of the questionnaire was used [21,22].The survey, known for its high internal reliability and validity (Löwe et al. (2008) [23]), exhibited robust internal consistency in the present sample (α = 0.95).
- The Patient Health Questionnaire (PHQ-9) for assessing the level of depression (S3). A validated Hebrew version of the questionnaire was used [24].In validation studies conducted by Kroenke et al. (2001) [25], the PHQ-9 demonstrated Cronbach’s alpha values of 0.89. Within our current sample, the internal consistency was solid (α = 0.84).
- The Multi-dimensional Perceived Social Support scale (MSPSS) for assessing a person’s subjective perception of the extent of his or her social support (S4). A validated Hebrew version of the questionnaire by Gross et al. was used [26]. Within our current sample, the internal consistency was robust (α = 0.92).
- The Pittsburgh Sleep Quality Index (PSQI) evaluates the quality and pattern of sleep self-reported by questionnaires (S5). A validated Hebrew version of the questionnaire was used [27]. The current version of the questionnaire, translated into Hebrew and validated by Shochat et al. (2007) [28], demonstrated solid internal consistency in our sample (α = 0.82).
- The subjective Cognitive Decline (SCD) questionnaire—assessing cognitive complaints by six questions regarding cognitive decline (S6). A validated Hebrew version of the questionnaire was used [29]. Developed by Elkana et al., this tool has exhibited correlations with objective cognitive abilities, overall subjective cognitive perception, and indices related to pain in individuals diagnosed with fibromyalgia. In the current sample, the internal consistency was robust (α = 0.95).
- The Widespread Pain Index (WPI)—calculated by documenting the number of sites where the patient has felt pain over the last week, out of a total of 19 specific-predesignated sites. Used predominantly in the diagnosis of FM (S7). A validated Hebrew version of the questionnaire was used [30].
- Symptom Severity Scale (SSS)—evaluates symptoms of fatigue, unrefreshing sleep, cognitive symptoms, and multiple related factors. Used predominantly in the diagnosis of FM (S8). A validated Hebrew version of the questionnaire was used [30] with solid internal consistency (α = 0.84).
- Life quality test SF-12 provides a subjective assessment of daily activity, physically and mentally (S9). A validated Hebrew version of the questionnaire was used [31] with solid internal consistency (α = 0.89).
- Long COVID questionnaire—The Long COVID questionnaire was crafted for the study, given the absence of a validated questionnaire at the time (S10). The design drew inspiration from similar surveys employed during the study period, aligning with the prevailing definitions of Long COVID at the time [32]. The questionnaire evaluates symptoms characteristic of Long COVID, such as respiratory symptoms, fatigue, and muscle pain, by their length and severity. Within our current sample, the internal consistency was solid (α = 0.88).
3. Results
3.1. Patient Characteristics
3.2. Demographic Characteristics of Clusters
4. Cluster Analysis
Personality Traits of Clusters
5. Discussion
Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, R.; Kang, A.; Luo, X.; Jeyanathan, M.; Gillgrass, A.; Afkhami, S.; Xing, Z. COVID-19: Current Knowledge in Clinical Features, Immunological Responses, and Vaccine Development. FASEB J. 2021, 35, e21409. [Google Scholar] [CrossRef] [PubMed]
- Manchia, M.; Gathier, A.W.; Yapici-Eser, H.; Schmidt, M.V.; de Quervain, D.; van Amelsvoort, T.; Bisson, J.I.; Cryan, J.F.; Howes, O.D.; Pinto, L.; et al. The impact of the prolonged COVID-19 pandemic on stress resilience and mental health: A critical review across waves. Eur. Neuropsychopharmacol. 2022, 55, 22–83. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carbone, M.; Lednicky, J.; Xiao, S.Y.; Venditti, M.; Bucci, E. Coronavirus 2019 Infectious Disease Epidemic: Where We Are, What Can Be Done and Hope For. J. Thorac Oncol. 2021, 16, 546–571. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roy, D.; Ghosh, R.; Dubey, S.; Dubey, M.J.; Benito-León, J.; Kanti Ray, B. Neurological and Neuropsychiatric Impacts of COVID-19 Pandemic. Can. J. Neurol. Sci. 2021, 48, 9–24. [Google Scholar] [CrossRef]
- Garg, M.; Maralakunte, M.; Garg, S.; Dhooria, S.; Sehgal, I.; Bhalla, A.S.; Vijayvergiya, R.; Grover, S.; Bhatia, V.; Jagia, P.; et al. The Conundrum of ‘long-COVID-19ʹ: A Narrative Review. Int. J. Gen. Med. 2021, 14, 2491–2506. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence. COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19; NICE Guideline; National Institute for Health and Care Excellence (NICE): London, UK, 2020; pp. 1–35. [Google Scholar]
- Dennis, A.; Wamil, M.; Alberts, J.; Oben, J.; Cuthbertson, D.J.; Wootton, D.; Crooks, M.; Gabbay, M.; Brady, M.; Hishmeh, L.; et al. Multiorgan Impairment in Low-Risk Individuals with Post-COVID-19 Syndrome: A Prospective, Community-Based Study. BMJ Open 2021, 11, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, H.R.; Nune, A. Long COVID from Rheumatology Perspective—A Narrative Review. Clin. Rheumatol. 2022, 41, 337–348. [Google Scholar] [CrossRef] [PubMed]
- Mohamed-Hussein, A.A.R.; Amin, M.T.; Makhlouf, H.A.; Makhlouf, N.A.; Galal, I.; Abd-Elaal, H.K.; Abdeltawab, D.; Kholief, K.M.S.; Hashem, M.K. Non-Hospitalised COVID-19 Patients Have More Frequent Long COVID-19 Symptoms. Int. J. Tuberc. Lung Dis. 2021, 25, 732. [Google Scholar] [CrossRef] [PubMed]
- Ceban, F.; Ling, S.; Lui, L.M.W.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di Vincenzo, J.D.; Cao, B.; et al. Fatigue and cognitive impairment in Post-COVID-19 Syndrome: A systematic review and meta-analysis. Brain Behav. Immun. 2022, 101, 93–135. [Google Scholar] [CrossRef]
- Mazza, M.G.; Palladini, M.; Poletti, S.; Benedetti, F. Post-COVID-19 Depressive Symptoms: Epidemiology, Pathophysiology, and Pharmacological Treatment. CNS Drugs 2022, 36, 681–702. [Google Scholar] [CrossRef]
- Kozak, R.; Armstrong, S.M.; Salvant, E.; Ritzker, C.; Feld, J.; Biondi, M.J.; Tsui, H. Recognition of Long-Covid-19 Patients in a Canadian Tertiary Hospital Setting: A Retrospective Analysis of Their Clinical and Laboratory Characteristics. Pathogens 2021, 10, 1246. [Google Scholar] [CrossRef] [PubMed]
- Scherlinger, M.; Felten, R.; Gallais, F.; Nazon, C.; Chatelus, E.; Pijnenburg, L.; Mengin, A.; Gras, A.; Vidailhet, P.; Arnould-Michel, R.; et al. Refining “Long-COVID” by a Prospective Multimodal Evaluation of Patients with Long-Term Symptoms Attributed to SARS-CoV-2 Infection. Infect. Dis. Ther. 2021, 10, 1747–1763. [Google Scholar] [CrossRef]
- Bliddal, S.; Banasik, K.; Pedersen, O.B.; Nissen, J.; Cantwell, L.; Schwinn, M.; Tulstrup, M.; Westergaard, D.; Ullum, H.; Brunak, S.; et al. Acute and Persistent Symptoms in Non-Hospitalized PCR-Confirmed COVID-19 Patients. Sci. Rep. 2021, 11, 13153. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long Covid—Mechanisms, Risk Factors, and Management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef]
- Moreno-Pérez, O.; Merino, E.; Leon-Ramirez, J.M.; Andres, M.; Ramos, J.M.; Arenas-Jiménez, J.; Asensio, S.; Sanchez, R.; Ruiz-Torregrosa, P.; Galan, I.; et al. Post-acute COVID-19 syndrome. Incidence and risk factors: A Mediterranean cohort study. J. Infect. 2021, 82, 378–383. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Denollet, J.; Conraads, V.M. Type D Personality and Vulnerability to Adverse Outcomes in Heart Disease. Cleve Clin. J. Med. 2011, 78, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Kupper, N.; Denollet, J. Type D Personality as a Prognostic Factor in Heart Disease: Assessment and Mediating Mechanisms. J. Pers. Assess. 2007, 89, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Ablin, J.N.; Zohar, A.H.; Zaraya-Blum, R.; Buskila, D. Distinctive Personality Profiles of Fibromyalgia and Chronic Fatigue Syndrome Patients. PeerJ 2016, 2016, 1–14. [Google Scholar] [CrossRef]
- Zohar, A.H.; Denollet, J.; Ari, L.L.; Cloninger, C.R. The Psychometric Properties of the DS14 in Hebrew and the Prevalence of Type D Personality in Israeli Adults. Eur. J. Psychol. Assess. 2011, 27, 274–281. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A Brief Measure for Assessing Generalized Anxiety Disorder. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef]
- Constantino, M.J.; Przeworski, A.M.Y.; Cashman-Mcgrath, L. Preliminary Reliability and Validity of the Generalized Anxiety Disorder Questionnaire-IV: A Revised Self-Report Diagnostic Measure of Generalized Anxiety Disorder. Behav. Ther. 2002, 33, 215–233. [Google Scholar]
- Löwe, B.; Decker, O.; Müller, S.; Brähler, E.; Schellberg, D.; Herzog, W.; Herzberg, P.Y. Validation and Standardization of the Generalized Anxiety Disorder Screener (GAD-7) in the General Population. Med. Care 2008, 46, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.W. Validation and Utility of a Self-Report Version of PRIME-MD. Prim. Care Companion J. Clin. Psychiatry 2000, 2, 31. [Google Scholar]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.W. The PHQ-9: Validity of a Brief Depression Severity Measure. J. Gen. Intern. Med. 2001, 16, 606–613. [Google Scholar] [CrossRef]
- Gross, R.; Glasser, S.; Elisha, D.; Tishby, O.; Jacobson, D.M.; Levitan, G.; Lambert, M.J.; Ponizovsky, A.M. Validation of the Hebrew and Arabic Versions of the Outcome Questionnaire (OQ-45). Isr. J. Psychiatry 2015, 52, 33–39. [Google Scholar]
- Buysse, D.J.; Reynolds, C.F.; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A New Instrument for Psychiatric Practice and Research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Shochat, T.; Tzischinsky, O.; Oksenberg, A.; Peled, R. Validation of the Pittsburgh Sleep Quality Index Hebrew translation (PSQI-H) in a sleep clinic sample. Isr. Med. Assoc. J. 2007, 9, 853–856. [Google Scholar] [PubMed]
- Elkana, O.; Yaalon, C.; Raev, S.; Sobol, N.; Ablin, J.N.; Shorer, R.; Aloush, V. A Modified Version of the 2016 ACR Fibromyalgia Criteria Cognitive Items Results in Stronger Correlations between Subjective and Objective Measures of Cognitive Impairment. Clin. Exp. Rheumatol. 2021, 39, S66–S71. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010, 62, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Huo, T.; Guo, Y.; Shenkman, E.; Muller, K. Assessing the Reliability of the Short Form 12 (SF-12) Health Survey in Adults with Mental Health Conditions: A Report from the Wellness Incentive and Navigation (WIN) Study. Health Qual. Life Outcomes 2018, 16, 34. [Google Scholar] [CrossRef]
- Kayaaslan, B.; Eser, F.; Kalem, A.K.; Kaya, G.; Kaplan, B.; Kacar, D.; Hasanoglu, I.; Coskun, B.; Guner, R. Post-COVID Syndrome: A Single-Center Questionnaire Study on 1007 Participants Recovered from COVID-19. J. Med. Virol. 2021, 93, 6566–6574. [Google Scholar] [CrossRef]
- Silva Andrade, B.; Siqueira, S.; de Assis Soares, W.R.; de Souza Rangel, F.; Santos, N.O.; Dos Santos Freitas, A.; Ribeiro da Silveira, P.; Tiwari, S.; Alzahrani, K.J.; Góes-Neto, A.; et al. Long-COVID and Post-COVID Health Complications: An Up-to-Date Review on Clinical Conditions and Their Possible Molecular Mechanisms. Viruses 2021, 13, 700. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bussani, R.; Zentilin, L.; Correa, R.; Colliva, A.; Silvestri, F.; Zacchigna, S.; Collesi, C.; Giacca, M. Persistent SARS-CoV-2 Infection in Patients Seemingly Recovered from COVID-19. J. Pathol. 2023, 259, 254–263. [Google Scholar] [CrossRef]
- Zanini, G.; Selleri, V.; Roncati, L.; Coppi, F.; Nasi, M.; Farinetti, A.; Manenti, A.; Pinti, M.; Mattioli, A.V. Vascular “Long COVID”: A New Vessel Disease? Angiology 2023, 75, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Son, K.; Jamil, R.; Chowdhury, A.; Mukherjee, M.; Venegas, C.; Miyasaki, K.; Zhang, K.; Patel, Z.; Salter, B.; Yuen, A.C.Y.; et al. Circulating Anti-Nuclear Autoantibodies in COVID-19 Survivors Predict Long-COVID Symptoms. Eur. Respir. J. 2023, 61, 2200970. [Google Scholar] [CrossRef] [PubMed]
- Coman, A.E.; Ceasovschih, A.; Petroaie, A.D.; Popa, E.; Lionte, C.; Bologa, C.; Haliga, R.E.; Cosmescu, A.; Slănină, A.M.; Bacușcă, A.I.; et al. The Significance of Low Magnesium Levels in COVID-19 Patients. Medicina 2023, 59, 279. [Google Scholar] [CrossRef] [PubMed]
- Mols, F.; Denollet, J. Type D Personality in the General Population: A Systematic Review of Health Status, Mechanisms of Disease, and Work-Related Problems. Health Qual. Life Outcomes 2010, 8, 9. [Google Scholar] [CrossRef]
- Lique, A.; Schiffer, A.; Pedersen, S.S.; Widdershoven, J.W.; Hendriks, E.H.; Winter, J.B.; Denollet, J. The Distressed (Type D) Personality is Independently Associated with Impaired Health Status and Increased Depressive Symptoms in Chronic Heart Failure. Eur. J. Cardiovasc. Prev. Rehabil. 2005, 12, 341–346. [Google Scholar]
- Wiencierz, S.; Williams, L. Type D Personality and Physical Inactivity: The Mediating Effects of Low Self-Efficacy. J. Health Psychol. 2017, 22, 1025–1034. [Google Scholar] [CrossRef]
- Nikčević, A.V.; Marino, C.; Kolubinski, D.C.; Leach, D.; Spada, M.M. Modelling the contribution of the Big Five personality traits, health anxiety, and COVID-19 psychological distress to generalised anxiety and depressive symptoms during the COVID-19 pandemic. J. Affect. Disord. 2021, 279, 578–584. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bojanowska, A.; Urbańska, B. Individual Values and Well-Being: The Moderating Role of Personality Traits. Int. J. Psychol. 2021, 56, 698–709. [Google Scholar] [CrossRef] [PubMed]
- Friedman, H.S.; Kern, M.L. Personality, Well-Being, and Health. Annu. Rev. Psychol. 2014, 65, 719–742. [Google Scholar] [CrossRef] [PubMed]
- Conversano, C.; Marchi, L.; Ciacchini, R.; Carmassi, C.; Contena, B.; Bazzichi, L.M.; Gemignani, A. Personality Traits in Fibromyalgia (FM): Does FM Personality Exists? A Systematic Review. Clin. Pract. Epidemiol. Ment. Health 2018, 14, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.W.; Lim, H.E.; Yoon, S.; Na, K.S.; Ko, Y.H.; Joe, S.H.; Kim, Y.H. Does Type D Personality Impact on the Prognosis of Patients Who Underwent Catheter Ablation for Atrial Fibrillation? A 1-Year Follow-up Study. Psychiatry Investig. 2017, 14, 281–288. [Google Scholar] [CrossRef]
- Ladwig, K.H.; Goette, A.; Atasoy, S.; Johar, H. Psychological Aspects of Atrial Fibrillation: A Systematic Narrative Review: Impact on Incidence, Cognition, Prognosis, and Symptom Perception. Curr. Cardiol. Rep. 2020, 22, 137. [Google Scholar] [CrossRef] [PubMed]
- Clauw, D.J.; Calabrese, L. Rheumatology and Long COVID: Lessons from the Study of Fibromyalgia. Ann. Rheum. Dis. 2023, 83, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Mariette, X. Long COVID: A new word for naming fibromyalgia? Ann. Rheum Dis. 2024, 83, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Siracusa, R.; Paola, R.D.; Cuzzocrea, S.; Impellizzeri, D. Fibromyalgia: Pathogenesis, Mechanisms, Diagnosis and Treatment Options Update. Int. J. Mol. Sci. 2021, 22, 3891. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garip, Y.; Güler, T.; Bozkurt Tuncer, Ö.; Önen, S. Type d Personality Is Associated with Disease Severity and Poor Quality of Life in Turkish Patients with Fibromyalgia Syndrome: A Cross-Sectional Study. Arch. Rheumatol. 2020, 35, 13–19. [Google Scholar] [CrossRef]
- Josefsson, K.; Cloninger, C.R.; Hintsanen, M.; Jokela, M.; Pulkki-Råback, L.; Keltikangas-Järvinen, L. Associations of Personality Profiles with Various Aspects of Well-Being: A Population-Based Study. J. Affect. Disord. 2011, 133, 265–273. [Google Scholar] [CrossRef]
- Cloninger, C.R.; Zohar, A.H. Personality and the Perception of Health and Happiness. J. Affect. Disord. 2011, 128, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Fowler-Davis, S.; Platts, K.; Thelwell, M.; Woodward, A.; Harrop, D. A Mixed-Methods Systematic Review of Postviral Fatigue Interventions: Are There Lessons for Long Covid? PLoS ONE 2021, 16, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Qiao, D.; Xu, Y.; Zhao, W.; Yang, Y.; Wen, D.; Li, X.; Nie, X.; Dong, Y.; Tang, S.; et al. The Efficacy of Computerized Cognitive Behavioral Therapy for Depressive and Anxiety Symptoms in Patients with COVID-19: Randomized Controlled Trial. J. Med. Internet Res. 2021, 23, e26883. [Google Scholar] [CrossRef] [PubMed]
- Yong, S.J. Long COVID or Post-COVID-19 Syndrome: Putative Pathophysiology, Risk Factors, and Treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef]
- Sumin, A.N.; Prokashko, I.Y.; Shcheglova, A.V. Evaluation of Coping Strategies among Students with Type D Personality. Int. J. Environ. Res. Public Health 2022, 19, 4918. [Google Scholar] [CrossRef]
Cluster 1 (N = 58) | Cluster 2 (N = 56) | Total (N= 114) | ||
---|---|---|---|---|
Age | 20–68 | 21–78 | 20–78 | |
mean: 43.49 | mean: 45.96 | mean: 44.5 | ||
SD: 14.5 | SD: 14.4 | SD: 14.4 | ||
Sex | Male | 12 (20.7%) | 17 (30.4%) | 29 (25.4%) |
Female | 46 (79.3%) | 39 (69.6%) | 85 (74.5%) | |
Marital status | Married | 32 (55.2%) | 29 (51.8%) | 61 (53.5%) |
Divorced | 10 (17.2%) | 12 (21.4%) | 22 (19.2%) | |
Widow | 0 | 1 (1.8%) | 1 (0.07%) | |
Single | 16 (27.6%) | 14 (25%) | 30 (26.3%) | |
Chronic disease | 22 (37.9%) | 14 (25.9%) | 36 (31.5%) | |
Asthma | 3 (5.1%) | 5 (8.9%) | 8 (7%) | |
Fibromyalgia | 6 (10.3%) | 3 (5.1%) | 9 (7.8%) | |
Diabetes | 2 (3.4%) | 3 (5.1%) | 5 (4.3%) | |
IBD\IBS | 3 (5.2%) | 2 (3.5%) | 5 (4.3%) | |
Hypertension | 5 (8.6%) | 1 (1.7%) | 6 (5.2%) | |
Hypothyroidism | 4 (6.8%) | 1 (1.7%) | 5 (4.3%) | |
Other | 7 (10.7%) | 7 (10.2%) | 14 (12.2%) | |
Physical status | Limitation on daily Function | 27 (46.5%) | 19 (33.9%) | 46 (40.3%) |
No limitation on daily function | 31 (53.5%) | 37 (66.1%) | 68 (59.6%) |
Cluster 1 Mean (sd) | Cluster 2 Mean (sd) | t(df) = [t-Value], p = [p-Value]. | |
---|---|---|---|
Long COVID | 87.5 (31.65) | 63.3 (34.01) | t(112) = −3.92, p < 0.001 |
SSS | 8.17 (2.8) | 5.78 (2.8) | t(112) = −4.49, p < 0.001 |
WPI | 4.94 (4.7) | 3.39 (3.7) | t(112) = −1.95, p = 0.053 |
PSQI | 11.06 (5.1) | 7.91 (4.4) | t(112) = −3.5, p = 0.001 |
GAD7 | 9.51 (6.5) | 2.69 (2.2) | t(112) = −7.51, p < 0.001 |
PHQ9 | 13.03 (6.5) | 6.44 (4.4) | t(112) = −6.28, p < 0.001 |
SCD | 22.06 (10.1) | 14.94 (10.4) | t(112) = −3.69, p < 0.001 |
MSPSS | 30.22 (5.9) | 32.57 (4.5) | t(112) = 2.38, p = 0.019 |
SF-12 | |||
MCS | 34.68 (10.7) | 47.22 (10.1) | t(112) = 6.43, p < 0.001 |
PCS | 38.78 (10.05) | 40.86 (11.7) | t(112) = 1.006, p = 0.317 |
Cluster 1 (N = 58) | Cluster 2 (N = 56) | |||
---|---|---|---|---|
Anxiety (GAD7) | Severe | 16 (27.6%) | 0 | p < 0.001 |
Moderate | 8 (13.8%) | 0 | ||
Mild | 18 (31%) | 11 (19.6%) | ||
None | 16 (27.6%) | 45 (80.4%) | ||
Depression (PHQ9) | Severe | 13 (22.4%) | 3 (5.4%) | p < 0.001 |
Moderate | 14 (24.1%) | 11 (19.6%) | ||
Mild | 15 (25.9%) | 18 (32.1%) | ||
None | 5 (8.6%) | 24 (42.9%) | ||
Sleep quality (PSQI) | Good | 10 (17.2%) | 17 (30.4%) | p = 0.1 |
Disturbed | 48 (82.8%) | 39 (69.6%) | ||
FM (SSS, WPI) | Overall prevalence | 25 (43.1%) | 12 (21.4%) | p = 0.013 |
New diagnosis | 19 (32.7%) | 9 (16.0%) | ||
Prior diagnosis | 6 (10.3%) | 3 (5.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amsterdam, D.; Kupershmidt, A.; Avinir, A.; Matalon, R.; Ohana, O.; Feder, O.; Shtrozberg, S.; Choshen, G.; Ablin, J.N.; Elkana, O. Long COVID-19 Enigma: Unmasking the Role of Distinctive Personality Profiles as Risk Factors. J. Clin. Med. 2024, 13, 2886. https://doi.org/10.3390/jcm13102886
Amsterdam D, Kupershmidt A, Avinir A, Matalon R, Ohana O, Feder O, Shtrozberg S, Choshen G, Ablin JN, Elkana O. Long COVID-19 Enigma: Unmasking the Role of Distinctive Personality Profiles as Risk Factors. Journal of Clinical Medicine. 2024; 13(10):2886. https://doi.org/10.3390/jcm13102886
Chicago/Turabian StyleAmsterdam, Dana, Aviv Kupershmidt, Asia Avinir, Ron Matalon, Ofir Ohana, Omri Feder, Shai Shtrozberg, Guy Choshen, Jacob Nadav Ablin, and Odelia Elkana. 2024. "Long COVID-19 Enigma: Unmasking the Role of Distinctive Personality Profiles as Risk Factors" Journal of Clinical Medicine 13, no. 10: 2886. https://doi.org/10.3390/jcm13102886
APA StyleAmsterdam, D., Kupershmidt, A., Avinir, A., Matalon, R., Ohana, O., Feder, O., Shtrozberg, S., Choshen, G., Ablin, J. N., & Elkana, O. (2024). Long COVID-19 Enigma: Unmasking the Role of Distinctive Personality Profiles as Risk Factors. Journal of Clinical Medicine, 13(10), 2886. https://doi.org/10.3390/jcm13102886