Evaluating Magnetic Seed Localization in Targeted Axillary Dissection for Node-Positive Early Breast Cancer Patients Receiving Neoadjuvant Systemic Therapy: A Comprehensive Review and Pooled Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
- [magnetic seed] OR [Magseed];
- [targeted axillary dissection] OR [TAD];
- [breast cancer];
- [neoadjuvant].
2.2. Inclusion and Exclusion Criteria
2.2.1. Inclusion Criteria
- Retrospective or prospective cohort design;
- Investigation of the role of magnetic seeds in TAD in patients undergoing neoadjuvant systemic therapy (NST);
- Availability of data endpoints, including successful localisation and retrieval rate, SLNB-MLNB concordance rate, pathological complete response (pCR), and migration rate.
2.2.2. Exclusion Criteria
- Manuscripts not available in English;
- Studies involving non-human subjects;
- Non-peer-reviewed studies;
- Studies with 10 or fewer eligible cases;
- Case reports.
2.2.3. Statistical Analysis
3. Results
3.1. Literature Search Results
3.2. Pooled Analysis
4. Discussion
4.1. Performance of Magseed® in Targeted Axillary Dissection (TAD)
4.2. Comparison of Wireless Technologies for Localisation
4.3. Imaging Modalities
4.4. The Role of Artificial Intelligence (AI)
4.5. Oncological Safety of Targeted Axillary Dissection (TAD)
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mansel, R.E.; Fallowfield, L.; Kissin, M.; Goyal, A.; Newcombe, R.G.; Dixon, J.M.; Yiangou, C.; Horgan, K.; Bundred, N.; Monypenny, I.; et al. Randomized multicenter trial of sentinel node biopsy versus standard axillary treatment in operable breast cancer: The ALMANAC Trial. J. Natl. Cancer Inst. 2006, 98, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Bartels, S.A.L.; Donker, M.; Poncet, C.; Sauve, N.; Straver, M.E.; van de Velde, C.J.H.; Mansel, R.E.; Blanken, C.; Orzalesi, L.; Klinkenbijl, J.H.G.; et al. Radiotherapy or Surgery of the Axilla After a Positive Sentinel Node in Breast Cancer: 10-Year Results of the Randomized Controlled EORTC 10981-22023 AMAROS Trial. J. Clin. Oncol. 2023, 41, 2159–2165. [Google Scholar] [CrossRef] [PubMed]
- Giuliano, A.E.; Ballman, K.V.; McCall, L.; Beitsch, P.D.; Brennan, M.B.; Kelemen, P.R.; Ollila, D.W.; Hansen, N.M.; Whitworth, P.W.; Blumencranz, P.W.; et al. Effect of Axillary Dissection vs No Axillary Dissection on 10-Year Overall Survival Among Women With Invasive Breast Cancer and Sentinel Node Metastasis: The ACOSOG Z0011 (Alliance) Randomized Clinical Trial. JAMA 2017, 318, 918–926. [Google Scholar] [CrossRef] [PubMed]
- El Hage Chehade, H.; Headon, H.; El Tokhy, O.; Heeney, J.; Kasem, A.; Mokbel, K. Is sentinel lymph node biopsy a viable alternative to complete axillary dissection following neoadjuvant chemotherapy in women with node-positive breast cancer at diagnosis? An updated meta-analysis involving 3398 patients. Am. J. Surg. 2016, 212, 969–981. [Google Scholar] [CrossRef] [PubMed]
- Swarnkar, P.K.; Tayeh, S.; Michell, M.J.; Mokbel, K. The Evolving Role of Marked Lymph Node Biopsy (MLNB) and Targeted Axillary Dissection (TAD) after Neoadjuvant Chemotherapy (NACT) for Node-Positive Breast Cancer: Systematic Review and Pooled Analysis. Cancers 2021, 13, 1539. [Google Scholar] [CrossRef] [PubMed]
- Kantor, O.; Sipsy, L.M.; Yao, K.; James, T.A. A Predictive Model for Axillary Node Pathologic Complete Response after Neoadjuvant Chemotherapy for Breast Cancer. Ann. Surg. Oncol. 2018, 25, 1304–1311. [Google Scholar] [CrossRef]
- Langer, I.; Guller, U.; Berclaz, G.; Koechli, O.R.; Schaer, G.; Fehr, M.K.; Hess, T.; Oertli, D.; Bronz, L.; Schnarwyler, B.; et al. Morbidity of sentinel lymph node biopsy (SLN) alone versus SLN and completion axillary lymph node dissection after breast cancer surgery: A prospective Swiss multicenter study on 659 patients. Ann. Surg. 2007, 245, 452–461. [Google Scholar] [CrossRef]
- Murphy, B.L.; Day, C.N.; Hoskin, T.L.; Habermann, E.B.; Boughey, J.C. Neoadjuvant Chemotherapy Use in Breast Cancer is Greatest in Excellent Responders: Triple-Negative and HER2+ Subtypes. Ann. Surg. Oncol. 2018, 25, 2241–2248. [Google Scholar] [CrossRef]
- Cheang, E.; Ha, R.; Thornton, C.M.; Mango, V.L. Innovations in image-guided preoperative breast lesion localization. Br. J. Radiol. 2018, 91, 20170740. [Google Scholar] [CrossRef]
- Price, E.R.; Khoury, A.L.; Esserman, L.J.; Joe, B.N.; Alvarado, M.D. Initial Clinical Experience With an Inducible Magnetic Seed System for Preoperative Breast Lesion Localization. AJR Am. J. Roentgenol. 2018, 210, 913–917. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Hieken, T.J.; Glazebrook, K.N.; Boughey, J.C. Localizing the Clipped Node in Patients with Node-Positive Breast Cancer Treated with Neoadjuvant Chemotherapy: Early Learning Experience and Challenges. Ann. Surg. Oncol. 2017, 24, 3011–3016. [Google Scholar] [CrossRef] [PubMed]
- Man, V.; Kwong, A. Different strategies in marking axillary lymph nodes in breast cancer patients undergoing neoadjuvant medical treatment: A systematic review. Breast Cancer Res. Treat. 2021, 186, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Caudle, A.S.; Yang, W.T.; Krishnamurthy, S.; Mittendorf, E.A.; Black, D.M.; Gilcrease, M.Z.; Bedrosian, I.; Hobbs, B.P.; DeSnyder, S.M.; Hwang, R.F.; et al. Improved Axillary Evaluation Following Neoadjuvant Therapy for Patients With Node-Positive Breast Cancer Using Selective Evaluation of Clipped Nodes: Implementation of Targeted Axillary Dissection. J. Clin. Oncol. 2016, 34, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Barry, P.A.; Harborough, K.; Sinnett, V.; Heeney, A.; St John, E.R.; Gagliardi, T.; Bhaludin, B.N.; Downey, K.; Pope, R.; O’Connell, R.L.; et al. Clinical utility of axillary nodal markers in breast cancer. Eur. J. Surg. Oncol. 2023, 49, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Zatecky, J.; Coufal, O.; Zapletal, O.; Kubala, O.; Kepicova, M.; Faridova, A.; Raus, K.; Gatek, J.; Kosac, P.; Peteja, M. Ideal marker for targeted axillary dissection (IMTAD): A prospective multicentre trial. World J. Surg. Oncol. 2023, 21, 252. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; Jimenez, S.; Guzman, F.; Fernandez, M.; Arizaga, E.; Sanz, C. Evaluation of Axillary Lymph Node Marking with Magseed(R) before and after Neoadjuvant Systemic Therapy in Breast Cancer Patients: MAGNET Study. Breast J. 2022, 2022, 6111907. [Google Scholar] [CrossRef] [PubMed]
- Reitsamer, R.; Peintinger, F.; Forsthuber, E.; Sir, A. The applicability of Magseed(R) for targeted axillary dissection in breast cancer patients treated with neoadjuvant chemotherapy. Breast 2021, 57, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Simons, J.M.; Scoggins, M.E.; Kuerer, H.M.; Krishnamurthy, S.; Yang, W.T.; Sahin, A.A.; Shen, Y.; Lin, H.; Bedrosian, I.; Mittendorf, E.A.; et al. Prospective Registry Trial Assessing the Use of Magnetic Seeds to Locate Clipped Nodes After Neoadjuvant Chemotherapy for Breast Cancer Patients. Ann. Surg. Oncol. 2021, 28, 4277–4283. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.E.; Patil, N.; Li, P.; Freyvogel, M.; Greenwalt, I.; Rock, L.; Simpson, A.; Teresczuk, M.; Carlisle, S.; Penuela, M.; et al. Hospital System Adoption of Magnetic Seeds for Wireless Breast and Lymph Node Localization. Ann. Surg. Oncol. 2021, 28, 3223–3229. [Google Scholar] [CrossRef]
- Mariscal Martinez, A.; Vives Rosello, I.; Salazar Gomez, A.; Catanese, A.; Perez Molina, M.; Sola Suarez, M.; Pascual Miguel, I.; Blay Aulina, L.; Rios Gozalvez, C.; Julian Ibanez, J.F.; et al. Advantages of preoperative localization and surgical resection of metastatic axillary lymph nodes using magnetic seeds after neoadjuvant chemotherapy in breast cancer. Surg. Oncol. 2021, 36, 28–33. [Google Scholar] [CrossRef]
- Laws, A.; Dillon, K.; Kelly, B.N.; Kantor, O.; Hughes, K.S.; Gadd, M.A.; Smith, B.L.; Lamb, L.R.; Specht, M. Node-Positive Patients Treated with Neoadjuvant Chemotherapy Can Be Spared Axillary Lymph Node Dissection with Wireless Non-Radioactive Localizers. Ann. Surg. Oncol. 2020, 27, 4819–4827. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, H.I.; Wong, J.M.; Mukhtar, R.A.; Alvarado, M.D.; Price, E.R. Feasibility of Magnetic Seeds for Preoperative Localization of Axillary Lymph Nodes in Breast Cancer Treatment. AJR Am. J. Roentgenol. 2019, 213, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Gera, R.; Tayeh, S.; Al-Reefy, S.; Mokbel, K. Evolving Role of Magseed in Wireless Localization of Breast Lesions: Systematic Review and Pooled Analysis of 1559 Procedures. Anticancer. Res. 2020, 40, 1809–1815. [Google Scholar] [CrossRef] [PubMed]
- Tayeh, S.; Gera, R.; Perry, N.; Michell, M.; Malhotra, A.; Mokbel, K. The Use of Magnetic Seeds and Radiofrequency Identifier Tags in Breast Surgery for Non-palpable Lesions. Anticancer. Res. 2020, 40, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Langhans, L.; Tvedskov, T.F.; Klausen, T.L.; Jensen, M.B.; Talman, M.L.; Vejborg, I.; Benian, C.; Roslind, A.; Hermansen, J.; Oturai, P.S.; et al. Radioactive Seed Localization or Wire-guided Localization of Nonpalpable Invasive and In Situ Breast Cancer: A Randomized, Multicenter, Open-label Trial. Ann. Surg. 2017, 266, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Munck, F.; Andersen, I.S.; Vejborg, I.; Gerlach, M.K.; Lanng, C.; Kroman, N.T.; Tvedskov, T.H.F. Targeted Axillary Dissection with (125)I Seed Placement Before Neoadjuvant Chemotherapy in a Danish Multicenter Cohort. Ann. Surg. Oncol. 2023, 30, 4135–4142. [Google Scholar] [CrossRef] [PubMed]
- Wazir, U.; Tayeh, S.; Perry, N.; Michell, M.; Malhotra, A.; Mokbel, K. Wireless Breast Localization Using Radio-frequency Identification Tags: The First Reported European Experience in Breast Cancer. In Vivo 2020, 34, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Tayeh, S.; Muktar, S.; Heeney, J.; Michell, M.J.; Perry, N.; Suaris, T.; Evans, D.; Malhotra, A.; Mokbel, K. Reflector-guided Localization of Non-palpable Breast Lesions: The First Reported European Evaluation of the SAVI SCOUT(R) System. Anticancer. Res. 2020, 40, 3915–3924. [Google Scholar] [CrossRef]
- Hartmann, S.; Banys-Paluchowski, M.; Stickeler, E.; de Boniface, J.; Gentilini, O.D.; Kontos, M.; Seitz, S.; Kaltenecker, G.; Warnberg, F.; Zetterlund, L.H.; et al. Applicability of magnetic seeds for target lymph node biopsy after neoadjuvant chemotherapy in initially node-positive breast cancer patients: Data from the AXSANA study. Breast Cancer Res. Treat. 2023, 202, 497–504. [Google Scholar] [CrossRef]
- Friedewald, S.M. (Ed.) Breast Imaging, An Issue of Radiologic Clinics of North America; Elsevier: Philadelphia PA, USA, 2017. [Google Scholar]
- Mango, V.; Ha, R.; Gomberawalla, A.; Wynn, R.; Feldman, S. Evaluation of the SAVI SCOUT Surgical Guidance System for Localization and Excision of Nonpalpable Breast Lesions: A Feasibility Study. AJR Am. J. Roentgenol. 2016, 207, W69–W72. [Google Scholar] [CrossRef]
- Harvey, J.R.; Lim, Y.; Murphy, J.; Howe, M.; Morris, J.; Goyal, A.; Maxwell, A.J. Safety and feasibility of breast lesion localization using magnetic seeds (Magseed): A multi-centre, open-label cohort study. Breast Cancer Res. Treat. 2018, 169, 531–536. [Google Scholar] [CrossRef]
- Hayes, M.K. Update on Preoperative Breast Localization. Radiol. Clin. N. Am. 2017, 55, 591–603. [Google Scholar] [CrossRef]
- Samiei, S.; de Mooij, C.M.; Lobbes, M.B.I.; Keymeulen, K.; van Nijnatten, T.J.A.; Smidt, M.L. Diagnostic Performance of Noninvasive Imaging for Assessment of Axillary Response After Neoadjuvant Systemic Therapy in Clinically Node-positive Breast Cancer: A Systematic Review and Meta-analysis. Ann. Surg. 2021, 273, 694–700. [Google Scholar] [CrossRef]
- de Mooij, C.M.; Samiei, S.; Mitea, C.; Lobbes, M.B.I.; Kooreman, L.F.S.; Heuts, E.M.; Beets-Tan, R.G.H.; van Nijnatten, T.J.A.; Smidt, M.L. Axillary lymph node response to neoadjuvant systemic therapy with dedicated axillary hybrid (18)F-FDG PET/MRI in clinically node-positive breast cancer patients: A pilot study. Clin. Radiol. 2022, 77, e732–e740. [Google Scholar] [CrossRef]
- Potnis, K.C.; Ross, J.S.; Aneja, S.; Gross, C.P.; Richman, I.B. Artificial Intelligence in Breast Cancer Screening: Evaluation of FDA Device Regulation and Future Recommendations. JAMA Intern. Med. 2022, 182, 1306–1312. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Premarket Approval (PMA): M1000 IMAGECHECKER; U.S. Food and Drug Administration: Silver Spring, MD, USA, 1998.
- Keen, J.D.; Keen, J.M.; Keen, J.E. Utilization of Computer-Aided Detection for Digital Screening Mammography in the United States, 2008 to 2016. J. Am. Coll. Radiol. 2018, 15, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Muralidhar, G.S.; Haygood, T.M.; Stephens, T.W.; Whitman, G.J.; Bovik, A.C.; Markey, M.K. Computer-aided detection of breast cancer—Have all bases been covered? Breast Cancer 2008, 2, 5–9. [Google Scholar] [CrossRef]
- Soffer, S.; Ben-Cohen, A.; Shimon, O.; Amitai, M.M.; Greenspan, H.; Klang, E. Convolutional Neural Networks for Radiologic Images: A Radiologist’s Guide. Radiology 2019, 290, 590–606. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Kitajima, K.; Hirata, K.; Togo, R.; Takenaka, J.; Miyoshi, Y.; Kudo, K.; Ogawa, T.; Haseyama, M. Preliminary study of AI-assisted diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer. EJNMMI Res. 2021, 11, 10. [Google Scholar] [CrossRef]
- Tahmasebi, A.; Qu, E.; Sevrukov, A.; Liu, J.B.; Wang, S.; Lyshchik, A.; Yu, J.; Eisenbrey, J.R. Assessment of Axillary Lymph Nodes for Metastasis on Ultrasound Using Artificial Intelligence. Ultrason. Imaging 2021, 43, 329–336. [Google Scholar] [CrossRef]
- Ge, S.; Ye, Q.; Xie, W.; Sun, D.; Zhang, H.; Zhou, X.; Yuan, K. AI-assisted Method for Efficiently Generating Breast Ultrasound Screening Reports. Curr. Med. Imaging 2023, 19, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cui, Z.; Shi, Z.; Jiang, Y.; Zhang, Z.; Dai, X.; Yang, Z.; Gu, Y.; Zhou, L.; Han, C.; et al. A robust and efficient AI assistant for breast tumor segmentation from DCE-MRI via a spatial-temporal framework. Patterns 2023, 4, 100826. [Google Scholar] [CrossRef]
- Fisher, B.; Anderson, S.; Bryant, J.; Margolese, R.G.; Deutsch, M.; Fisher, E.R.; Jeong, J.H.; Wolmark, N. Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N. Engl. J. Med. 2002, 347, 1233–1241. [Google Scholar] [CrossRef]
- Ozmen, T.; Ozmen, V. Treatment Changes in Breast Cancer Management and De-Escalation of Breast Surgery. Eur. J. Breast Health 2023, 19, 186–190. [Google Scholar] [CrossRef]
- Rana, M.; Weiss, A.; Laws, A.; Mita, C.; King, T.A. Long-term outcomes of sentinel lymph node biopsy following neoadjuvant chemotherapy for initially node-positive breast cancer: A systematic review and meta-analysis. In Proceedings of the San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 5–9 December 2023. [Google Scholar]
- Chun, J.W.; Kim, J.; Chung, I.Y.; Ko, B.S.; Kim, H.J.; Lee, J.W.; Son, B.H.; Ahn, S.H.; Lee, S.B. Sentinel node biopsy alone for breast cancer patients with residual nodal disease after neoadjuvant chemotherapy. Sci. Rep. 2021, 11, 9056. [Google Scholar] [CrossRef] [PubMed]
- Kuemmel, S.; Heil, J.; Bruzas, S.; Breit, E.; Schindowski, D.; Harrach, H.; Chiari, O.; Hellerhoff, K.; Bensmann, E.; Hanf, V.; et al. Safety of Targeted Axillary Dissection After Neoadjuvant Therapy in Patients With Node-Positive Breast Cancer. JAMA Surg. 2023, 158, 807–815. [Google Scholar] [CrossRef]
- Wu, S.Y.; Li, J.W.; Wang, Y.J.; Jin, K.R.; Yang, B.L.; Li, J.J.; Yu, X.L.; Mo, M.; Hu, N.; Shao, Z.M.; et al. Clinical feasibility and oncological safety of non-radioactive targeted axillary dissection after neoadjuvant chemotherapy in biopsy-proven node-positive breast cancer: A prospective diagnostic and prognostic study. Int. J. Surg. 2023, 109, 1863–1870. [Google Scholar] [CrossRef]
- Mamounas, E.; Bandos, H.; White, J.; Julian, T.B.; Khan, A.; Shaitelman, S. GS02-07 Loco-regional irradiation in patients with biopsy-proven axillary node involvement at presentation who become pathologically node-negative after neoadjuvant chemotherapy: Primary outcomes of NRG Oncology/NSABP B-51/RTOG 1304. In Proceedings of the 2023 San Antonio Breast Cancer Symposium, San Antonio, TX, USA, 5–9 December 2023. [Google Scholar]
- van Hemert, A.; van Loevezijn, A.A.; Baas, M.S.P.D.; Stokkel, M.P.M.; Groen, E.; Loo, C.; van der Noort, V.; Sonke, G.S.; Russell, N.S.; van Duijnhoven, F.H.; et al. Omission of axillary lymph node dissection in cN2-3 breast cancer patients with an excellent response on primary systemic treatment is safe: 4-year oncologic outcome of the MARI protocol. Eur. J. Cancer 2024, 200, 113618. [Google Scholar] [CrossRef]
- Banys-Paluchowski, M.; Untch, M.; Krawczyk, N.; Thurmann, M.; Kuhn, T.; Sehouli, J.; Gasparri, M.L.; de Boniface, J.; Gentilini, O.D.; Stickeler, E.; et al. Current trends in diagnostic and therapeutic management of the axilla in breast cancer patients receiving neoadjuvant therapy: Results of the German-wide NOGGO MONITOR 24 survey. Arch. Gynecol. Obstet. 2023, 307, 1547–1556. [Google Scholar] [CrossRef]
- Gradishar, W.J.; Moran, M.S.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K.H.; Anderson, B.; Burstein, H.J.; Chew, H.; Dang, C.; et al. Breast Cancer, Version 3.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 691–722. [Google Scholar] [CrossRef]
- Struik, G.M.; Schermers, B.; Mares, I.; Lont, H.E.; Bradshaw, J.W.; Ten Haken, B.; Ruers, T.J.M.; Mourik, J.E.M.; Birnie, E.; Klem, T. Randomized controlled trial comparing magnetic marker localization (MaMaLoc) with wire-guided localization in the treatment of early-stage breast cancer. Breast J. 2021, 27, 638–650. [Google Scholar] [CrossRef] [PubMed]
Study | Citation | Number of Patients | Mean Age (Years) | pCR | Retrieval Rate | Localisation Rate | Migration Rate | Mean Implantation Duration (Days) | Median Number of Nodes Harvested | SLNB-MLNB Concordance Rate | FNR of MLNB | FNR of SLNB |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Barry et al. (2023) (Retrospective) | [14] | 128 (9 × 2 magseeds) (74 post and 54 pre-NST) | 59.1 | 75/128 (59%) | 128/128 (100%) | (Post-NST 56/74 = 75.7%) (pre-NST 53/54 = 98.2%) | - | 20 (89–188) | 2 | 75/128 (59%) | 5/53 (9.4%) | 12/53 (22.6%) |
Zatecky et al. (2023) (Prospective) | [15] | 30 | 49.4 (26–80) | 12/30 (40%) | 30/30 100% | 30/30 (100%) | 0 | 138.5 | 3.5 (1–10) | 25/30 (83.3) | 0/18 | - |
Martinez et al. (2022) (Prospective) | [16] | 81 (37 post- and 44 pre- NST) | 47 (29–78) | 37/81 (45.6%) | 81/81 100% | 81/81 (100%) | 0 | - | 1 (1–8) | 66/81 (81.5%) | 0/45 | 5/45 (11.1%) |
Reitsamer et al. (2021) (Prospective) | [17] | 40 | 52 (29–81) | 27/40 (67.5%) | 40/40 (100%) | 40/40 (100) | 0 | - | 2.3 (1–9) | 26/40 (65%) | 0/13 | 2/13 (15.4%) |
Simons et al. (2021) (Retrospective) | [18] | 50 | 22/50 (44.0%) | 50/50 (100%) | 49/50 (98%) | - | 0–30 | 1.3 (1–6) | 40/50 (80%) | - | - | |
Miller et al. (2021) (Retrospective) | [19] | 89 | 58 (17–92) | 27/89 (30%) | 84/89 (94.1%) | 84/89 (94.1%) | - | - | - | - | - | - |
Mariscal Martinez et al. (2021) (Prospective) | [20] | 29 (1 patient bilateral) | 55 (30–78) | 14/29 (48.3%) | 29/29 100% | 29/29 (100%) | - | 10 (1–26) | 1.2 (0–2) | 15/30 (50%) | 1/14 | 3/14 |
Laws et al. (2020) (Retrospective) | [21] | 12 | 51 (30–73) | 6/12 (50%) | 12/12 (100%) | 9/12 (75%) | (0–22) | 3 (1–11) | ||||
Greenwood et al. (2019) (Retrospective) | [22] | 35 (38 localisation) | 56 (32–78) | 37/38 (97%) | 37/38 (97%) | 5 (0–31) | ||||||
Total | 494 (497 procedures) | 53 (17–92) | 220/459 (47.9%) | 491/497 (98.8%) | 468/497 (94.2%) | 0 | 37(0–188) | 1.8 (1–11) | 247/359 (68.8%) | 6/143 (4.2%) | 22/125 (17.6%) |
Localisation System | Salient Features | Advantages | Disadvantages |
---|---|---|---|
Radioactive seed localisation (RSL) | Seed placed in the lesion and accurately detected with handheld gamma probe [25]. | Cost-effective and can improve oncological outcomes of image-guided surgery [31]. TAD with 125I achieved 99.3% identification rate [26]. | Placed 5–7 days before surgery [25]. Radioactive. Requires licensing and strict regulatory requirements |
Magnetic seed (Magseed; Endomagnetics Inc., Cambridge, UK) [24]. | Inducible ferromagnetic seed made of surgical-grade stainless steel. Reliable detection at 4 cm depth, can be up to 12 cm according to manufacturer. Sentimag probe induces and detects the magnetic field of a Magseed with audio signal [10]. | Non-radioactive, wireless, and can be deployed at the time of biopsy. Localisation 99.86% [23]. TAD with Magseed localisation achieved 96.0% in the AXANA trial [29]. Audio reading only. | High cost. May interfere with MRI. Inability to adjust the position of the marker once deployed. Limitations in deep (>6 cm) non-palpable lesions [32]. Necessitates the removal of all metal equipment before localisation [30]. |
Radiofrequency identification (RFID) tags (LOCalizer; Hologic, Santa Carla, CA, USA) [27]. | Ferrite rod covered with copper and wrapped with a microprocessor and glass casing detected by a radiofrequency reader [30]. | Non-radioactive wireless. Can be deployed at the time of biopsy. Audiovisual reading. 91.0% retrieval rate [21]. | High cost. Utilises a wider introducer than Magseed. Can interfere with MRI. Susceptibility to migration [33]. |
SAVI SCOUT (Cianna Medical Inc., Aliso Viejo, CA, USA) [28]. | A reflector which uses micro-impulse infra-red radar [31]. | Non-radioactive, wireless, and can be deployed at the time of biopsy. Does not interfere with MRI. Audiovisual reading. | High cost. Inability to adjust the position of the marker once deployed. Inability to generate audible signals at excessive depths. Larger than Magseed [31]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamoodi, M.; Wazir, U.; Sakr, R.A.; Venkataraman, J.; Mokbel, K.; Mokbel, K. Evaluating Magnetic Seed Localization in Targeted Axillary Dissection for Node-Positive Early Breast Cancer Patients Receiving Neoadjuvant Systemic Therapy: A Comprehensive Review and Pooled Analysis. J. Clin. Med. 2024, 13, 2908. https://doi.org/10.3390/jcm13102908
Alamoodi M, Wazir U, Sakr RA, Venkataraman J, Mokbel K, Mokbel K. Evaluating Magnetic Seed Localization in Targeted Axillary Dissection for Node-Positive Early Breast Cancer Patients Receiving Neoadjuvant Systemic Therapy: A Comprehensive Review and Pooled Analysis. Journal of Clinical Medicine. 2024; 13(10):2908. https://doi.org/10.3390/jcm13102908
Chicago/Turabian StyleAlamoodi, Munaser, Umar Wazir, Rita A. Sakr, Janhavi Venkataraman, Kinan Mokbel, and Kefah Mokbel. 2024. "Evaluating Magnetic Seed Localization in Targeted Axillary Dissection for Node-Positive Early Breast Cancer Patients Receiving Neoadjuvant Systemic Therapy: A Comprehensive Review and Pooled Analysis" Journal of Clinical Medicine 13, no. 10: 2908. https://doi.org/10.3390/jcm13102908
APA StyleAlamoodi, M., Wazir, U., Sakr, R. A., Venkataraman, J., Mokbel, K., & Mokbel, K. (2024). Evaluating Magnetic Seed Localization in Targeted Axillary Dissection for Node-Positive Early Breast Cancer Patients Receiving Neoadjuvant Systemic Therapy: A Comprehensive Review and Pooled Analysis. Journal of Clinical Medicine, 13(10), 2908. https://doi.org/10.3390/jcm13102908