Artificial Intelligence in the Management of Women with Endometriosis and Adenomyosis: Can Machines Ever Be Worse Than Humans?
Abstract
:1. Introduction
2. Methods
3. Applications of AI to the Clinical Management of Endometriosis and Adenomyosis
3.1. Role in the Formulation of Clinical Diagnoses
3.2. Role in the Formulation of Radiological Diagnoses
3.3. Role in the Choice of Medical Treatments and in the Customized Management of Patients
3.4. Role in Surgical Treatment
3.5. Role in Reducing the Burden Linked to Administrative Work
4. Applications of AI to Endometriosis and Adenomyosis Research
5. Limitations and Challenges of AI
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dahl, R. The Great Automatic Grammatizator. In Someone Like You; Penguin: Harmondsworth, UK, 1986; p. 209. [Google Scholar]
- Weichert, J.; Welp, A.; Scharf, J.L.; Dracopoulos, C.; Becker, W.H.; Gembicki, M. The Use of Artificial Intelligence in Automation in the Fields of Gynaecology and Obstetrics—An Assessment of the State of Play. Geburtshilfe Frauenheilkd. 2021, 81, 1203–1216. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 20–25. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, B.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Sahni, N.R.; Carrus, B. Artificial Intelligence in U.S. Health Care Delivery. N. Engl. J. Med. 2023, 389, 348–358. [Google Scholar]
- Lee, J.H.; Kwon, S.Y.; Chang, J.; Yuk, J.S. Machine Learning Approach to find the relation between Endometriosis, benign breast disease, cystitis and non-toxic goiter. Sci. Rep. 2019, 9, 5410. [Google Scholar] [CrossRef]
- Babic, B.; Gerke, S.; Evgeniou, T.; Cohen, I.G. Beware explanations from AI in health care. Science 2021, 373, 284–286. [Google Scholar] [CrossRef]
- Jeyaraman, M.; Balaji, S.; Jeyaraman, N.; Yadav, S. Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare. Cureus 2023, 15, e43262. [Google Scholar] [CrossRef] [PubMed]
- Goodman, R.S.; Patrinely, J.R.; Stone, C.A.; Zimmerman, E.; Donald, R.R.; Chang, S.S.; Berkowitz, S.T.; Finn, A.P.; Jahangir, E.; Scoville, E.A.; et al. Accuracy and Reliability of Chatbot Responses to Physician Questions. JAMA Netw. Open 2023, 6, e2336483. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.; Bubeck, S.; Petro, J. Benefits, Limits, and Risks of GPT-4 as an AI Chatbot for Medicine. N. Engl. J. Med. 2023, 388, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Grünebaum, A.; Chervenak, J.; Pollet, S.L.; Katz, A.; Chervenak, F.A. The exciting potential for ChatGPT in obstetrics and gynecology. Am. J. Obstet. Gynecol. 2023, 228, 696–705. [Google Scholar] [CrossRef]
- Voelker, R. The Promise and Pitfalls of AI in the Complex World of Diagnosis, Treatment, and Disease Management. JAMA 2023, 330, 1416–1419. [Google Scholar] [CrossRef]
- Ayers, J.W.; Poliak, A.; Dredze, M.; Leas, E.C.; Zhu, Z.; Kelley, J.B.; Faix, D.J.; Goodman, A.M.; Longhurst, C.A.; Hogarth, M.; et al. Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum. JAMA Intern. Med. 2023, 183, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Minssen, T.; Vayena, E.; Cohen, I.G. The Challenges for Regulating Medical Use of ChatGPT and Other Large Language Models. JAMA 2023, 330, 315–316. [Google Scholar] [CrossRef] [PubMed]
- Cutler, D.M. What Artificial Intelligence Means for Health Care. JAMA Health Forum 2023, 4, e232652. [Google Scholar] [CrossRef] [PubMed]
- Menz, B.D.; Modi, N.D.; Sorich, M.J.; Hopkins, A.M. Health Disinformation Use Case Highlighting the Urgent Need for Artificial Intelligence Vigilance: Weapons of Mass Disinformation. JAMA Intern. Med. 2024, 184, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, A.F.; Lindsell, C.J. The Future of Clinical Trials: Artificial to Augmented to Applied Intelligence. JAMA 2023, 330, 2061–2063. [Google Scholar] [CrossRef] [PubMed]
- Chiappa, V.; Interlenghi, M.; Bogani, G.; Salvatore, C.; Bertolina, F.; Sarpietro, G.; Signorelli, M.; Ronzulli, D.; Castiglioni, I.; Raspagliesi, F. A decision support system based on radiomics and machine learning to predict the risk of malignancy of ovarian masses from transvaginal ultrasonography and serum CA-125. Eur. Radiol. Exp. 2021, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Sivajohan, B.; Elgendi, M.; Menon, C.; Allaire, C.; Yong, P.; Bedaiwy, M.A. Clinical use of artificial intelligence in endometriosis: A scoping review. npj Digit. Med. 2022, 5, 109. [Google Scholar] [CrossRef]
- Centini, G.; Lazzeri, L.; Dores, D.; Pianigiani, L.; Iannone, P.; Stefano, L.; Petraglia, F. Chronic pelvic pain and quality of life in women with and without endometriosis. J. Endometr. Pelvic Pain Disord. 2013, 5, 27–33. [Google Scholar] [CrossRef]
- Racine, M.; Dion, D.; Dupuis, G.; Guerriere, D.N.; Zagorski, B.; Choinière, M.; Canadian STOP-PAIN Research Group. The Canadian STOP-PAIN project: The burden of chronic pain-does sex really matter? Clin. J. Pain 2014, 30, 443–452. [Google Scholar] [CrossRef]
- Cetera, G.E.; Facchin, F.; Viganò, P.; Merli, C.E.M.M.; Frassineti, A.; Fiorini, J.; Somigliana, E.; Vercellini, P. “SO FAR AWAY” How doctors can contribute to making endometriosis hell on earth. A call for humanistic medicine and empathetic practice for genuine patient-centered care. Int. J. Womens Health 2024, 16, 273–287. [Google Scholar] [CrossRef]
- Greene, R.; Stratton, P.; Cleary, S.D.; Ballweg, M.L.; Sinaii, N. Diagnostic experience among 4,334 women reporting surgically diagnosed endometriosis. Fertil. Steril. 2009, 91, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Exacoustos, C.; Lazzeri, L.; Martire, F.G.; Russo, C.; Martone, S.; Centini, G.; Piccione, E.; Zupi, E. Ultrasound Findings of Adenomyosis in Adolescents: Type and Grade of the Disease. J. Minim. Invasive Gynecol. 2022, 29, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Kanjee, Z.; Crowe, B.; Rodman, A. Accuracy of a Generative Artificial Intelligence Model in a Complex Diagnostic Challenge. JAMA 2023, 330, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Kung, T.H.; Cheatham, M.; Medenilla, A.; Sillos, C.; De Leon, L.; Elepaño, C.; Madriaga, M.; Aggabao, R.; Diaz-Candido, G.; Maningo, J.; et al. Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. PLoS Digit. Health 2023, 2, e0000198. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, A.V.; Möller, S.; Ryg, J. Use of GPT-4 to Diagnose Complex Clinical Cases. NEJM AI 2023, 1, AIp2300031. [Google Scholar] [CrossRef]
- Becker, C.M.; Bokor, A.; Heikinheimo, O.; Horne, A.; Jansen, F.; Kiesel, L.; King, K.; Kvaskoff, M.; Nap, A.; Petersen, K.; et al. ESHRE guideline: Endometriosis. Hum. Reprod. Open 2022, 2022, hoac009. [Google Scholar] [CrossRef]
- Ozgor, B.Y.; Simavi, M.A. Accuracy and reproducibility of ChatGPT’s free version answers about endometriosis. Int. J. Gynaecol. Obstet. 2023, 165, 691–695. [Google Scholar] [CrossRef]
- Bendifallah, S.; Puchar, A.; Suisse, S.; Delbos, L.; Poilblanc, M.; Descamps, P.; Golfier, F.; Touboul, C.; Dabi, Y.; Daraï, E. Machine learning algorithms as new screening approach for patients with endometriosis. Sci. Rep. 2022, 12, 639. [Google Scholar] [CrossRef] [PubMed]
- Nnoaham, K.E.; Hummelshoj, L.; Kennedy, S.H.; Jenkinson, C.; Zondervan, K.T.; World Endometriosis Research Foundation Women’s Health Symptom Survey Consortium. Developing symptom-based predictive models of endometriosis as a clinical screening tool: Results from a multicenter study. Fertil. Steril. 2012, 98, 692–701. [Google Scholar] [CrossRef]
- Tore, U.; Abilgazym, A.; Asunsolo-Del-Barco, A.; Terzic, M.; Yemenkhan, Y.; Zollanvari, A.; Sarria-Santamera, A. Diagnosis of Endometriosis Based on Comorbidities: A Machine Learning Approach. Biomedicines 2023, 11, 3015. [Google Scholar] [CrossRef]
- Goldstein, A.; Cohen, S. Self-report symptom-based endometriosis prediction using machine learning. Sci. Rep. 2023, 13, 5499. [Google Scholar] [CrossRef] [PubMed]
- Kiser, A.C.; Schliep, K.C.; Hernandez, E.J.; Peterson, C.M.; Yandell, M.; Eilbeck, K. An artificial intelligence approach for investigating multifactorial pain-related features of endometriosis. PLoS ONE 2024, 19, e0297998. [Google Scholar] [CrossRef] [PubMed]
- Bendifallah, S.; Dabi, Y.; Suisse, S.; Jornea, L.; Bouteiller, D.; Touboul, C.; Puchar, A.; Daraï, E. MicroRNome analysis generates a blood-based signature for endometriosis. Sci. Rep. 2022, 12, 4051. [Google Scholar] [CrossRef] [PubMed]
- Vodolazkaia, A.; El-Aalamat, Y.; Popovic, D.; Mihalyi, A.; Bossuyt, X.; Kyama, C.M.; Fassbender, A.; Bokor, A.; Schols, D.; Huskens, D.; et al. Evaluation of a panel of 28 biomarkers for the non-invasive diagnosis of endometriosis. Hum. Reprod. 2012, 27, 2698–2711. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, H.; Yang, H.; Shuid, A.N.; Sandai, D.; Chen, X. Machine learning-based integrated identification of predictive combined diagnostic biomarkers for endometriosis. Front. Genet. 2023, 14, 1290036. [Google Scholar] [CrossRef] [PubMed]
- Dabi, Y.; Suisse, S.; Marie, Y.; Delbos, L.; Poilblanc, M.; Descamps, P.; Golfier, F.; Jornea, L.; Forlani, S.; Bouteiller, D.; et al. New class of RNA biomarker for endometriosis diagnosis: The potential of salivary piRNA expression. Eur. J. Obstet. Gynecol. Reprod. Biol. 2023, 291, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Akter, S.; Xu, D.; Nagel, S.C.; Bromfield, J.J.; Pelch, K.E.; Wilshire, G.B.; Joshi, T. GenomeForest: An Ensemble Machine Learning Classifier for Endometriosis. AMIA Jt. Summits Transl. Sci. Proc. 2020, 2020, 33–42. [Google Scholar]
- Ghazi, N.; Arjmand, M.; Akbari, Z.; Mellati, A.O.; Saheb-Kashaf, H.; Zamani, Z. [1]H NMR-based metabolomics approaches as non- invasive tools for diagnosis of endometriosis. Int. J. Reprod. Biomed. 2016, 14, 1–8. [Google Scholar] [CrossRef]
- Dutta, M.; Joshi, M.; Srivastava, S.; Lodh, I.; Chakravarty, B.; Chaudhury, K. A metabolomics approach as a means for identification of potential biomarkers for early diagnosis of endometriosis. Mol. Biosyst. 2012, 8, 3281–3287. [Google Scholar] [CrossRef]
- Braga, D.P.A.F.; Montani, D.A.; Setti, A.S.; Turco, E.G.L.; Oliveira-Silva, D.; Borges, E., Jr. Metabolomic profile as a noninvasive adjunct tool for the diagnosis of Grades III and IV endometriosis-related infertility. Mol. Reprod. Dev. 2019, 86, 1044–1052. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, W.; Mu, L.; Zhang, S.Z. Identifying biomarkers of endometriosis using serum protein fingerprinting and artificial neural networks. Int. J. Gynaecol. Obstet. 2008, 101, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Meng, L.; Xu, Y.; Wang, K.; Zhang, J. Revealing the diagnostic value and immune infiltration of senescence-related genes in endometriosis: A combined single-cell and machine learning analysis. Front. Pharmacol. 2023, 14, 1259467. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, F.; Ferrando, M.; Díaz-Gimeno, P.; Quintana, F.; Fernández, G.; Castells, I.; Simón, C. Lipidomic profiling of endometrial fluid in women with ovarian endometriosis†. Biol. Reprod. 2017, 96, 772–779. [Google Scholar] [CrossRef]
- Li, B.; Wang, S.; Duan, H.; Wang, Y.; Guo, Z. Discovery of gene module acting on ubiquitin-mediated proteolysis pathway by co-expression network analysis for endometriosis. Reprod. Biomed. Online 2021, 42, 429–441. [Google Scholar] [CrossRef]
- Fassbender, A.; Verbeeck, N.; Börnigen, D.; Kyama, C.M.; Bokor, A.; Vodolazkaia, A.; Peeraer, K.; Tomassetti, C.; Meuleman, C.; Gevaert, O.; et al. Combined mRNA microarray and proteomic analysis of eutopic endometrium of women with and without endometriosis. Hum. Reprod. 2012, 27, 2020–2029. [Google Scholar] [CrossRef]
- Akter, S.; Xu, D.; Nagel, S.C.; Bromfield, J.J.; Pelch, K.; Wilshire, G.B.; Joshi, T. Machine Learning Classifiers for Endometriosis Using Transcriptomics and Methylomics Data. Front. Genet. 2019, 10, 766. [Google Scholar] [CrossRef]
- Su, D.; Guo, Y.; Yang, R.; Fang, Z.; Lu, X.; Xu, Q.; Teng, Y.; Sun, H.; Yang, C.; Dong, J.; et al. Identifying a panel of nine genes as novel specific model in endometriosis noninvasive diagnosis. Fertil. Steril. 2024, 121, 323–333. [Google Scholar] [CrossRef]
- Blass, I.; Sahar, T.; Shraibman, A.; Ofer, D.; Rappoport, N.; Linial, M. Revisiting the Risk Factors for Endometriosis: A Machine Learning Approach. J. Pers. Med. 2022, 12, 1114. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, S.; Pascual, M.; Ajossa, S.; Neri, M.; Musa, E.; Graupera, B.; Rodriguez, I.; Alcazar, J.L. Artificial intelligence (AI) in the detection of rectosigmoid deep endometriosis. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 261, 29–33. [Google Scholar] [CrossRef]
- Guo, Z.; Feng, P.; Chen, X.; Tang, R.; Yu, Q. Developing Preoperative Nomograms to Predict Any-Stage and Stage III-IV Endometriosis in Infertile Women. Front. Med. 2020, 7, 570483. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Lungren, M.P. The Current and Future State of AI Interpretation of Medical Images. N. Engl. J. Med. 2023, 388, 1981–1990. [Google Scholar] [CrossRef] [PubMed]
- Ferryman, K.; Mackintosh, M.; Ghassemi, M. Considering Biased Data as Informative Artifacts in AI-Assisted Health Care. N. Engl. J. Med. 2023, 389, 833–838. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, J.; Huemmer, C.; Ghesu, F.-C.; Mansoor, A.; Preuhs, A.; Fieselmann, A.; Fink, N.; Dinkel, J.; Koliogiannis, V.; Schwarze, V.; et al. Artificial intelligence in chest radiography reporting accuracy: Added clinical value in the emergency unit setting with- out 24/7 radiology coverage. Investig. Radiol. 2022, 57, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Christiansen, F.; Epstein, E.L.; Smedberg, E.; Åkerlund, M.; Smith, K.; Epstein, E. Ultrasound image analysis using deep neural networks for discriminating between benign and malignant ovarian tumors: Comparison with expert subjective assessment. Ultrasound Obstet. Gynecol. 2021, 57, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Gao, Y.; Zhang, Y.; Sun, K. Ultrasound image-based deep learning to differentiate tubal-ovarian abscess from ovarian endometriosis cyst. Front. Physiol. 2023, 14, 1101810. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.A.; Singh, H. Artificial Intelligence in Clinical Diagnosis: Opportunities, Challenges, and Hype. JAMA 2023, 330, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Littmann, M.; Selig, K.; Cohen-Lavi, L.; Frank, Y.; Hönigschmid, P.; Kataka, E.; Mösch, A.; Qian, K.; Ron, A.; Schmid, S.; et al. Validity of machine learning in biology and medicine increased through collaborations across fields of expertise. Nat. Mach. Intell. 2020, 2, 18–24. [Google Scholar] [CrossRef]
- Balica, A.; Dai, J.; Piiwaa, K.; Qi, X.; Green, A.N.; Philips, N.; Egan, S.; Hachihaliloglu, I. Augmenting endometriosis analysis from ultrasound data with deep learning. In Proceedings of the Medical Imaging 2023: Ultrasonic Imaging and Tomography, San Diego, CA, USA, 10 April 2023. [Google Scholar]
- Cullen, T.S. Adenomyoma of the rectovaginal septum. JAMA 1914, 62, 835–839. [Google Scholar] [CrossRef]
- Purohit, R.; Sharma, J.G.; Meher, D.; Rakh, S.R.; Malik, S. Completion of vaginal hysterectomy by electro surgery using anteroposterior approach in benign cases faced with obliterated posterior cul-de-sac. Int. J. Women’s Health 2018, 10, 529–536. [Google Scholar] [CrossRef]
- Leonardi, M.; Martin, E.; Reid, S.; Blanchette, G.; Condous, G. Deep endometriosis transvaginal ultrasound in the workup of patients with signs and symptoms of endometriosis: A cost analysis. BJOG 2019, 126, 1499–1506. [Google Scholar] [CrossRef]
- Maicas, G.; Leonardi, M.; Avery, J.; Panuccio, C.; Carneiro, G.; Hull, M.L.; Condous, G. Deep learning to diagnose pouch of Douglas obliteration with ultrasound sliding sign. Reprod. Fertil. 2021, 2, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Menakaya, U.; Infante, F.; Lu, C.; Phua, C.; Model, A.; Messyne, F.; Brainwood, M.; Reid, S.; Condous, G. Interpreting the real-time dynamic ‘sliding sign’ and predicting pouch of douglas obliteration: An interobserver, intraobserver, diagnostic-accuracy and learning- curve study. Ultrasound Obstet. Gynecol. 2016, 48, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Leonardi, M.; Martins, W.P.; Espada, M.; Georgousopoulou, E.; Condous, G. Prevalence of negative sliding sign representing pouch of douglas obliteration during pelvic transvaginal ultrasound for any indication. Ultrasound Obstet. Gynecol. 2020, 56, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Raimondo, D.; Raffone, A.; Aru, A.C.; Giorgi, M.; Giaquinto, I.; Spagnolo, E.; Travaglino, A.; Galatolo, F.A.; Cimino, M.G.C.A.; Lenzi, J.; et al. Application of Deep Learning Model in the Sonographic Diagnosis of Uterine Adenomyosis. Int. J. Environ. Res. Public Health 2023, 20, 1724. [Google Scholar] [CrossRef] [PubMed]
- Makary, M.A.; Daniel, M. Medical error-the third leading cause of death in the US. BMJ 2016, 353, i2139. [Google Scholar] [CrossRef] [PubMed]
- Vercellini, P.; Bandini, V.; Viganò, P.; Ambruoso, D.; Cetera, G.E.; Somigliana, E. Proposal for targeted, neo-evolutionary-oriented secondary prevention of early-onset endometriosis and adenomyosis. Part II: Medical interventions. Hum. Reprod. 2024, 39, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Ozdegirmenci, O.; Kayikcioglu, F.; Akgul, M.A.; Kaplan, M.; Karcaaltincaba, M.; Haberal, A.; Akyol, M. Comparison of levonorgestrel intrauterine system versus hysterectomy on efficacy and quality of life in patients with adenomyosis. Fertil. Steril. 2011, 95, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Mansukhani, N.; Unni, J.; Dua, M.; Darbari, R.; Malik, S.; Verma, S.; Bathla, S. Are women satisfied when using levonorgestrel-releasing intrauterine system for treatment of abnormal uterine bleeding? J. Midlife Health 2013, 4, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Etrusco, A.; Barra, F.; Chiantera, V.; Ferrero, S.; Bogliolo, S.; Evangelisti, G.; Oral, E.; Pastore, M.; Izzotti, A.; Venezia, R.; et al. Current Medical Therapy for Adenomyosis: From Bench to Bedside. Drugs 2023, 83, 1595–1611. [Google Scholar] [CrossRef] [PubMed]
- Pino, I.; Belloni, G.M.; Barbera, V.; Solima, E.; Radice, D.; Angioni, S.; Arena, S.; Bergamini, V.; Candiani, M.; Maiorana, A.; et al. “Better late than never but never late is better”, especially in young women. A multicenter Italian study on diagnostic delay for symptomatic endometriosis. Eur. J. Contracept. Reprod. Health Care 2023, 28, 10–16. [Google Scholar] [CrossRef]
- Neriishi, K.; Hirata, T.; Fukuda, S.; Izumi, G.; Nakazawa, A.; Yamamoto, N.; Harada, M.; Hirota, Y.; Koga, K.; Wada-Hiraike, O.; et al. Long-term dienogest administration in patients with symptomatic adenomyosis. J. Obstet. Gynaecol. Res. 2018, 44, 1439–1444. [Google Scholar] [CrossRef]
- Osuga, Y.; Watanabe, M.; Hagino, A. Long-term use of dienogest in the treatment of painful symptoms in adenomyosis. J. Obstet. Gynaecol. Res. 2017, 43, 1441–1448. [Google Scholar] [CrossRef] [PubMed]
- Berlanda, N.; Somigliana, E.; Viganò, P.; Vercellini, P. Safety of medical treatments for endometriosis. Expert Opin. Drug Saf. 2016, 15, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Goshtasebi, A.; Subotic Brajic, T.; Scholes, D.; Beres Lederer Goldberg, T.; Berenson, A.; Prior, J.C. Adolescent use of combined hormonal contraception and peak bone mineral density accrual: A meta-analysis of international prospective controlled studies. Clin. Endocrinol. 2019, 90, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Gersten, J.; Hsieh, J.; Weiss, H.; Ricciotti, N.A. Effect of Extended 30 μg Ethinyl Estradiol with Continuous Low-Dose Ethinyl Estradiol and Cyclic 20 μg Ethinyl Estradiol Oral Contraception on Adolescent Bone Density: A Randomized Trial. J. Pediatr. Adolesc. Gynecol. 2016, 29, 635–642. [Google Scholar] [CrossRef] [PubMed]
- Lidegaard, Ø.; Nielsen, L.H.; Skovlund, C.W.; Skjeldestad, F.E.; Løkkegaard, E. Risk of venous thromboembolism from use of oral contraceptives containing different progestogens and oestrogen doses: Danish cohort study, 2001-9. BMJ 2011, 343, d6423. [Google Scholar] [CrossRef] [PubMed]
- Lidegaard, Ø.; Milsom, I.; Geirsson, R.T.; Skjeldestad, F.E. Hormonal contraception and venous thromboembolism. Acta Obstet. Gynecol. Scand. 2012, 91, 769–778. [Google Scholar] [CrossRef] [PubMed]
- Haverinen, A.H.; Luiro, K.M.; Szanto, T.; Kangasniemi, M.H.; Hiltunen, L.; Sainio, S.; Piltonen, T.T.; Lassila, R.; Tapanainen, J.S.; Heikinheimo, O. Combined oral contraceptives containing estradiol valerate vs ethinylestradiol on coagulation: A randomized clinical trial. Acta Obstet. Gynecol. Scand. 2022, 101, 1102–1111. [Google Scholar] [CrossRef] [PubMed]
- Champaloux, S.W.; Tepper, N.K.; Monsour, M.; Curtis, K.M.; Whiteman, M.K.; Marchbanks, P.A.; Jamieson, D.J. Use of combined hormonal contraceptives among women with migraines and risk of ischemic stroke. Am. J. Obstet. Gynecol. 2017, 216, 489.e1–489.e7. [Google Scholar] [CrossRef]
- Ben-Sira, Z. The function of the professional’s affective behavior in client satisfaction: A revised approach to social interaction theory. J. Health Soc. Behav. 1976, 17, 3–11. [Google Scholar] [CrossRef]
- DiMatteo, M.R.; Taranta, A.; Friedman, H.S.; Prince, L.M. Predicting patient satisfaction from physicians’ nonverbal communication skills. Med. Care 1980, 18, 376–387. [Google Scholar] [CrossRef] [PubMed]
- Chao, X.; Wang, S.; Lang, J.; Leng, J.; Fan, Q. The application of risk models based on machine learning to predict endometriosis-associated ovarian cancer in patients with endometriosis. Acta Obstet. Gynecol. Scand. 2022, 101, 1440–1449. [Google Scholar] [CrossRef] [PubMed]
- Awaysheh, A.; Wilcke, J.; Elvinger, F.; Rees, L.; Fan, W.; Zimmerman, K.L. Review of Medical Decision Support and Machine-Learning Methods. Vet. Pathol. 2019, 56, 512–525. [Google Scholar] [CrossRef] [PubMed]
- Loukas, C.; Varytimidis, C.; Rapantzikos, K.; Kanakis, M.A. Keyframe extraction from laparoscopic videos based on visual saliency detection. Comput. Methods Programs Biomed. 2018, 165, 13–23. [Google Scholar] [CrossRef]
- Teixeira, J. One Hundred Years of Evolution in Surgery: From Asepsis to Artificial Intelligence. Surg. Clin. N. Am. 2020, 100, XV–XVI. [Google Scholar] [CrossRef] [PubMed]
- Hernández, A.; de Zulueta, P.R.; Spagnolo, E.; Soguero, C.; Cristobal, I.; Pascual, I.; López, A.; Ramiro-Cortijo, D. Deep Learning to Measure the Intensity of Indocyanine Green in Endometriosis Surgeries with Intestinal Resection. J. Pers. Med. 2022, 12, 982. [Google Scholar] [CrossRef] [PubMed]
- Adler-Milstein, J.; Zhao, W.; Willard-Grace, R.; Knox, M.; Grumbach, K. Electronic health records and burnout: Time spent on the electronic health record after hours and message volume associated with exhaustion but not with cynicism among primary care clinicians. J. Am. Med. Inform. Assoc. 2020, 27, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Rotenstein, L.S.; Landman, A.; Bates, D.W. The Electronic Inbox-Benefits, Questions, and Solutions for the Road Ahead. JAMA 2023, 330, 1735–1736. [Google Scholar] [CrossRef]
- O’Hara, R.; Rowe, H.; Fisher, J. Managing endometriosis: A cross-sectional survey of women in Australia. J. Psychosom. Obstet. Gynaecol. 2022, 43, 265–272. [Google Scholar] [CrossRef]
- Patient empowerment–who empowers whom? Lancet 2012, 379, 1677, Erratum in: Lancet 2012, 380, 650. [CrossRef]
- Ellingsen, D.M.; Isenburg, K.; Jung, C.; Lee, J.; Gerber, J.; Mawla, I.; Sclocco, R.; Grahl, A.; Anzolin, A.; Edwards, R.R.; et al. Brain-to-brain mechanisms underlying pain empathy and social modulation of pain in the patient-clinician interaction. Proc. Natl. Acad. Sci. USA 2023, 120, e2212910120. [Google Scholar] [CrossRef] [PubMed]
- Hswen, Y.; Abbasi, J. AI Will-and Should-Change Medical School, Says Harvard’s Dean for Medical Education. JAMA 2023, 330, 1820–1823. [Google Scholar] [CrossRef] [PubMed]
- Pandya, A. Adding Cost-effectiveness to Define Low-Value Care. JAMA 2018, 319, 1977–1978. [Google Scholar] [CrossRef] [PubMed]
- Vercellini, P.; Giudice, L.C.; Evers, J.L.; Abrao, M.S. Reducing low-value care in endometriosis between limited evidence and unresolved issues: A proposal. Hum. Reprod. 2015, 30, 1996–2004. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, M.; Jeyaraman, N.; Nallakumarasamy, A.; Yadav, S.; Bondili, S.K. ChatGPT in Medical Education and Research: A Boon or a Bane? Cureus 2023, 15, e44316. [Google Scholar] [CrossRef] [PubMed]
- Matta, K.; Vigneau, E.; Cariou, V.; Mouret, D.; Ploteau, S.; Le Bizec, B.; Antignac, J.P.; Cano-Sancho, G. Associations between persistent organic pollutants and endometriosis: A multipollutant assessment using machine learning algorithms. Environ. Pollut. 2020, 260, 114066. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Zhang, T.; Liu, F.; Zhou, J.; Ni, X.; Huo, R.; Shi, Z. The differential expression of mRNAs and long noncoding RNAs between ectopic and eutopic endometria provides new insights into adenomyosis. Mol. Biosyst. 2016, 12, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Shen, H.; Ren, X.; Wang, A.; Zhu, S.; Zheng, Y.; Wang, X. Multi-omics analysis reveals the interaction between the complement system and the coagulation cascade in the development of endometriosis. Sci. Rep. 2021, 11, 11926. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lu, Y.; Sun, G.; Fang, Z.; Xing, Z.; Nong, W.; Wei, Y.; Wang, S.; Shi, G.; Dong, M.; et al. Machine learning algorithms for a novel cuproptosis-related gene signature of diagnostic and immune infiltration in endometriosis. Sci. Rep. 2023, 13, 21603. [Google Scholar] [CrossRef]
- Giudice, L.C.; Oskotsky, T.T.; Falako, S.; Opoku-Anane, J.; Sirota, M. Endometriosis in the era of precision medicine and impact on sexual and reproductive health across the lifespan and in diverse populations. FASEB J. 2023, 37, e23130. [Google Scholar] [CrossRef]
- Zielinski, C.; Winker, M.; Aggarwal, R.; Ferris, L.; Heinemann, M.; Lapeña, J.F.; Pai, S.; Ing, E.; Citrome, L. Chatbots, ChatGPT, and Scholarly Manuscripts: WAME Recommendations on ChatGPT and Chatbots in relation to scholarly publications. Natl. Med. J. India 2023, 36, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Flanagin, A.; Bibbins-Domingo, K.; Berkwits, M.; Christiansen, S.L. Nonhuman “Authors” and Implications for the Integrity of Scientific Publication and Medical Knowledge. JAMA 2023, 329, 637–639. [Google Scholar] [CrossRef] [PubMed]
- World Health Organizaion. Ethics and Governance of Artificial Intelligence for Health: WHO Guidance; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Haupt, C.E.; Marks, M. AI-Generated Medical Advice-GPT and Beyond. JAMA 2023, 329, 1349–1350. [Google Scholar] [CrossRef] [PubMed]
- Singhal, K.; Azizi, S.; Tu, T.; Mahdavi, S.S.; Wei, J.; Chung, H.W.; Scales, N.; Tanwani, A.; Cole-Lewis, H.; Pfohl, S.; et al. Large language models encode clinical knowledge. Nature 2023, 620, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Voelker, R.; Hswen, Y. Clinical AI Tools Must Be Fed the Right Data, Stanford Health Care’s Chief Data Scientist Says. JAMA 2023, 330, 2137–2139. [Google Scholar] [CrossRef] [PubMed]
- Kanter, G.P.; Packel, E.A. Health Care Privacy Risks of AI Chatbots. JAMA 2023, 330, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Duffourc, M.; Gerke, S. Generative AI in Health Care and Liability Risks for Physicians and Safety Concerns for Patients. JAMA 2023, 330, 313–314. [Google Scholar] [CrossRef] [PubMed]
- Hswen, Y.; Voelker, R. New AI Tools Must Have Health Equity in Their DNA. JAMA 2023, 330, 1604–1607. [Google Scholar] [CrossRef]
- Ueda, D.; Kakinuma, T.; Fujita, S.; Kamagata, K.; Fushimi, Y.; Ito, R.; Matsui, Y.; Nozaki, T.; Nakaura, T.; Fujima, N.; et al. Fairness of artificial intelligence in healthcare: Review and recommendations. Jpn. J. Radiol. 2024, 42, 3–15. [Google Scholar] [CrossRef]
- Seyyed-Kalantari, L.; Zhang, H.; McDermott, M.B.A.; Chen, I.Y.; Ghassemi, M. Under- diagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 2021, 27, 2176–2182. [Google Scholar] [CrossRef]
Possible Role of AI | Consequences on Disease Management | |
---|---|---|
Formulation of clinical diagnoses | Providing updated medical knowledge accessible to physicians and to the public |
|
Providing algorithms for the prediction of the likelihood of endometriosis in women with CPP or infertility |
| |
Formulation of radiological diagnoses | Detection of anomalies in US and MRI images and performance of diagnoses in a few seconds |
|
Choice of medical treatments and customized patient management | Recognizing drug-disease and drug–drug interactions |
|
Prediction of reproductive prognosis and cancer risk |
| |
Surgical treatment | Overlapping robotic surgical evaluations with pre-operatory imaging data |
|
Comparing surgeons’ movements with those of experts |
| |
Warning of the risk of complications |
| |
Administrative work | Providing summaries of medical records, filtering and drafting notes and e-mails, generating prescription orders, cataloguing diseases according to their ICD at a greater speed than humans and with greater accuracy |
|
Managing operation room slots and scheduling appointments |
| |
Creating large datasets of electronic health records from all medical institutions |
| |
Endometriosis and adenomyosis research | Engaging with participants and with researchers in chat, audio or avatar modes. |
|
Analyzing vast amounts of data, classifying highly complex data, identifying patterns, producing reports and searching the literature |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cetera, G.E.; Tozzi, A.E.; Chiappa, V.; Castiglioni, I.; Merli, C.E.M.; Vercellini, P. Artificial Intelligence in the Management of Women with Endometriosis and Adenomyosis: Can Machines Ever Be Worse Than Humans? J. Clin. Med. 2024, 13, 2950. https://doi.org/10.3390/jcm13102950
Cetera GE, Tozzi AE, Chiappa V, Castiglioni I, Merli CEM, Vercellini P. Artificial Intelligence in the Management of Women with Endometriosis and Adenomyosis: Can Machines Ever Be Worse Than Humans? Journal of Clinical Medicine. 2024; 13(10):2950. https://doi.org/10.3390/jcm13102950
Chicago/Turabian StyleCetera, Giulia Emily, Alberto Eugenio Tozzi, Valentina Chiappa, Isabella Castiglioni, Camilla Erminia Maria Merli, and Paolo Vercellini. 2024. "Artificial Intelligence in the Management of Women with Endometriosis and Adenomyosis: Can Machines Ever Be Worse Than Humans?" Journal of Clinical Medicine 13, no. 10: 2950. https://doi.org/10.3390/jcm13102950
APA StyleCetera, G. E., Tozzi, A. E., Chiappa, V., Castiglioni, I., Merli, C. E. M., & Vercellini, P. (2024). Artificial Intelligence in the Management of Women with Endometriosis and Adenomyosis: Can Machines Ever Be Worse Than Humans? Journal of Clinical Medicine, 13(10), 2950. https://doi.org/10.3390/jcm13102950