Intraoperative Neurophysiological Monitoring in Neurosurgery
Abstract
:1. Introduction
2. Methods
3. IONM Techniques in Neurosurgery
3.1. Electrocorticography (ECoG) and Stereo-Electroencephalography (SEEG)
3.2. Electromyography (EMG)
3.3. Somatosensory Evoked Potentials (SSEPs)
3.4. Motor Evoked Potentials (MEPs) and Direct Cortical Stimulation (DCS)
3.5. Brainstem Auditory Evoked Potentials (BAEPs)
3.6. Visual Evoked Potentials (VEPs)
4. Clinical Applications of Neuromonitoring
4.1. IONM in Intracranial Tumor Resection
4.2. IONM in Neurovascular Surgery
4.3. IONM in Epilepsy Surgery
4.4. IONM in Spinal Surgery
4.5. IONM in Peripheral Nerve Surgery
5. Anesthesia during IONM
6. Limitations of IONM
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grosland, J.O.; Todd, M.M.; Goldstein, P.A. Neuromonitoring in the ambulatory anesthesia setting: A pro-con discussion. Curr. Opin. Anaesthesiol. 2018, 31, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Zebian, B.; Vergani, F.; Lavrador, J.P.; Mukherjee, S.; Kitchen, W.J.; Stagno, V.; Chamilos, C.; Pettorini, B.; Mallucci, C. Recent technological advances in pediatric brain tumor surgery. CNS Oncol. 2017, 6, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Lall, R.R.; Hauptman, J.S.; Munoz, C.; Cybulski, G.R.; Koski, T.; Ganju, A.; Fessler, R.G.; Smith, Z.A. Intraoperative neurophysiological monitoring in spine surgery: Indications, efficacy, and role of the preoperative checklist. Neurosurg. Focus 2012, 33, E10. [Google Scholar] [CrossRef] [PubMed]
- Moehl, K.; Shandal, V.; Anetakis, K.; Paras, S.; Mina, A.; Crammond, D.; Balzer, J.; Thirumala, P.D. Predicting transient ischemic attack after carotid endarterectomy: The role of intraoperative neurophysiological monitoring. Clin. Neurophysiol. 2022, 141, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Szelenyi, A.; Fernandez-Conejero, I.; Kodama, K. Surgery and intraoperative neurophysiologic monitoring for aneurysm clipping. Handb. Clin. Neurol. 2022, 186, 375–393. [Google Scholar]
- Strommen, J.A.; Skinner, S.; Crum, B.A. Neurophysiology during peripheral nerve surgery. Handb. Clin. Neurol. 2022, 186, 295–318. [Google Scholar] [PubMed]
- Liu, W.; Li, Y.; Qiu, J.; Shi, B.; Liu, Z.; Sun, X.; Zhu, Z.; Qiu, Y. Intra-operative neurophysiological monitoring in patients with thoracic spinal stenosis: Its feasibility and high-risk factors for new neurological deficit. Orthop. Surg. 2023, 15, 1298–1303. [Google Scholar] [CrossRef]
- Jahangiri, F.R.; Blaylock, J.; Qadir, N.; Ramsey, J.A. Multimodality intraoperative neurophysiological monitoring (ionm) during shoulder surgeries. Neur. J. 2020, 60, 96–112. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, E.; Bruni, A.; Scalzi, G.; Curto, L.S.; Rovida, S.; Brescia, V.; Gervasi, R.; Navalesi, P.; Innaro, N.; Longhini, F. Low-dose of rocuronium during thyroid surgery: Effects on intraoperative nerve-monitoring and intubation. J. Surg. Res. 2021, 265, 131–138. [Google Scholar] [CrossRef]
- Edwards, B.M.; Kileny, P.R. Intraoperative neurophysiologic monitoring: Indications and techniques for common procedures in otolaryngology-head and neck surgery. Otolaryngol. Clin. N. Am. 2005, 38, 631–642, viii. [Google Scholar] [CrossRef]
- Timoney, N.; Rutka, J.T. Recent advances in epilepsy surgery and achieving best outcomes using high-frequency oscillations, diffusion tensor imaging, magnetoencephalography, intraoperative neuromonitoring, focal cortical dysplasia, and bottom of sulcus dysplasia. Neurosurgery 2017, 64, 1–10. [Google Scholar] [CrossRef]
- Epstein, N.E. Multidisciplinary in-hospital teams improve patient outcomes: A review. Surg. Neurol. Int. 2014, 5, S295–S303. [Google Scholar] [CrossRef] [PubMed]
- Tomasello, F.; Angileri, F.F.; Conti, A.; Scibilia, A.; Cardali, S.; La Torre, D.; Germano, A. Petrosal meningiomas: Factors affecting outcome and the role of intraoperative multimodal assistance to microsurgery. Neurosurgery 2019, 84, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Gunter, A.; Ruskin, K.J. Intraoperative neurophysiologic monitoring: Utility and anesthetic implications. Curr. Opin. Anaesthesiol. 2016, 29, 539–543. [Google Scholar] [CrossRef]
- Simon, M.V.; Nuwer, M.R.; Szelenyi, A. Electroencephalography, electrocorticography, and cortical stimulation techniques. Handb. Clin. Neurol. 2022, 186, 11–38. [Google Scholar]
- Cuisenier, P.; Testud, B.; Minotti, L.; El Bouzaidi Tiali, S.; Martineau, L.; Job, A.S.; Trebuchon, A.; Deman, P.; Bhattacharjee, M.; Hoffmann, D.; et al. Relationship between direct cortical stimulation and induced high-frequency activity for language mapping during seeg recording. J. Neurosurg. 2020, 134, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, I.S.; Loddenkemper, T. Electrocorticography for seizure foci mapping in epilepsy surgery. J. Clin. Neurophysiol. 2013, 30, 554–570. [Google Scholar] [CrossRef]
- Crowther, L.J.; Brunner, P.; Kapeller, C.; Guger, C.; Kamada, K.; Bunch, M.E.; Frawley, B.K.; Lynch, T.M.; Ritaccio, A.L.; Schalk, G. A quantitative method for evaluating cortical responses to electrical stimulation. J. Neurosci. Methods 2019, 311, 67–75. [Google Scholar] [CrossRef]
- Kalamangalam, G.P.; Tandon, N.; Slater, J.D. Dynamic mechanisms underlying afterdischarge: A human subdural recording study. Clin. Neurophysiol. 2014, 125, 1324–1338. [Google Scholar] [CrossRef]
- Nossek, E.; Matot, I.; Shahar, T.; Barzilai, O.; Rapoport, Y.; Gonen, T.; Sela, G.; Grossman, R.; Korn, A.; Hayat, D.; et al. Intraoperative seizures during awake craniotomy: Incidence and consequences: Analysis of 477 patients. Neurosurgery 2013, 73, 135–140, discussion 140. [Google Scholar] [CrossRef]
- Sartorius, C.J.; Berger, M.S. Rapid termination of intraoperative stimulation-evoked seizures with application of cold ringer’s lactate to the cortex. Technical note. J. Neurosurg. 1998, 88, 349–351. [Google Scholar] [CrossRef] [PubMed]
- Iida, K.; Otsubo, H. Stereoelectroencephalography: Indication and efficacy. Neurol. Med. Chir. 2017, 57, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Tomasello, F.; Conti, A.; La Torre, D. 3d printing in neurosurgery. World Neurosurg. 2016, 91, 633–634. [Google Scholar] [CrossRef] [PubMed]
- Ghatol, D.; Widrich, J. Intraoperative Neurophysiological Monitoring; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Mandeville, R.; Sanchez, B.; Johnston, B.; Bazarek, S.; Thum, J.A.; Birmingham, A.; See, R.H.B.; Leochico, C.F.D.; Kumar, V.; Dowlatshahi, A.S.; et al. A scoping review of current and emerging techniques for evaluation of peripheral nerve health, degeneration, and regeneration: Part 1, neurophysiology. J. Neural Eng. 2023, 20, 37279730. [Google Scholar] [CrossRef] [PubMed]
- Taskiran, E.; Seidel, K. Current use of intraoperative neurophysiology in neurosurgery: Supratentorial part 1. Turk. Neurosurg. 2022, 32, 185–194. [Google Scholar] [CrossRef]
- Pajewski, T.N.; Arlet, V.; Phillips, L.H. Current approach on spinal cord monitoring: The point of view of the neurologist, the anesthesiologist and the spine surgeon. Eur. Spine J. 2007, 16 (Suppl. S2), S115–S129. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Ding, L.; Li, J.J.; Kim, H.; Liu, J.; Li, H.; Moberly, A.; Badea, T.C.; Duncan, I.D.; Son, Y.J.; et al. Modality-based organization of ascending somatosensory axons in the direct dorsal column pathway. J. Neurosci. 2013, 33, 17691–17709. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, D.B.; Dong, C.; Quatrale, R.; Sala, F.; Skinner, S.; Soto, F.; Szelenyi, A. Recommendations of the international society of intraoperative neurophysiology for intraoperative somatosensory evoked potentials. Clin. Neurophysiol. 2019, 130, 161–179. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.K.; Shils, J.L.; Sani, S.B.; Byrne, R.W. Intraoperative neuromonitoring. Neurol. Clin. 2022, 40, 375–389. [Google Scholar] [CrossRef]
- Szelenyi, A.; Langer, D.; Beck, J.; Raabe, A.; Flamm, E.S.; Seifert, V.; Deletis, V. Transcranial and direct cortical stimulation for motor evoked potential monitoring in intracerebral aneurysm surgery. Neurophysiol. Clin. 2007, 37, 391–398. [Google Scholar] [CrossRef]
- Rothwell, J.; Burke, D.; Hicks, R.; Stephen, J.; Woodforth, I.; Crawford, M. Transcranial electrical stimulation of the motor cortex in man: Further evidence for the site of activation. J. Physiol. 1994, 481 Pt 1, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Olmsted, Z.T.; Ryu, B.; Phayal, G.; Green, R.; Lo, S.L.; Sciubba, D.M.; Silverstein, J.W.; D’Amico, R.S. Direct wave intraoperative neuromonitoring for spinal tumor resection: A focused review. World Neurosurg. X 2023, 17, 100139. [Google Scholar] [CrossRef] [PubMed]
- Shigematsu, H.; Ando, M.; Kobayashi, K.; Yoshida, G.; Funaba, M.; Morito, S.; Takahashi, M.; Ushirozako, H.; Kawabata, S.; Yamada, K.; et al. Efficacy of d-wave monitoring combined with the transcranial motor-evoked potentials in high-risk spinal surgery: A retrospective multicenter study of the monitoring committee of the japanese society for spine surgery and related research. Global Spine J. 2023, 13, 2387–2395. [Google Scholar] [CrossRef] [PubMed]
- Ghadirpour, R.; Nasi, D.; Iaccarino, C.; Romano, A.; Motti, L.; Sabadini, R.; Valzania, F.; Servadei, F. Intraoperative neurophysiological monitoring for intradural extramedullary spinal tumors: Predictive value and relevance of d-wave amplitude on surgical outcome during a 10-year experience. J. Neurosurg. Spine 2018, 30, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Matsuyama, Y.; Shinomiya, K.; Kawabata, S.; Ando, M.; Kanchiku, T.; Saito, T.; Takahashi, M.; Ito, Z.; Muramoto, A.; et al. A new alarm point of transcranial electrical stimulation motor evoked potentials for intraoperative spinal cord monitoring: A prospective multicenter study from the spinal cord monitoring working group of the japanese society for spine surgery and related research. J. Neurosurg. Spine 2014, 20, 102–107. [Google Scholar] [PubMed]
- Costa, P.; Peretta, P.; Faccani, G. Relevance of intraoperative d wave in spine and spinal cord surgeries. Eur. Spine J. 2013, 22, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Kabir, S.S.; Jahangiri, F.R.; Rinesmith, C.; Vilches, C.S.; Chakarvarty, S. Intraoperative testing during the mapping of the language cortex. Cureus 2023, 15, e36718. [Google Scholar] [CrossRef] [PubMed]
- Gonen, T.; Gazit, T.; Korn, A.; Kirschner, A.; Perry, D.; Hendler, T.; Ram, Z. Intra-operative multi-site stimulation: Expanding methodology for cortical brain mapping of language functions. PLoS ONE 2017, 12, e0180740. [Google Scholar] [CrossRef] [PubMed]
- Legatt, A.D. Mechanisms of intraoperative brainstem auditory evoked potential changes. J. Clin. Neurophysiol. 2002, 19, 396–408. [Google Scholar] [CrossRef]
- Fischer, G.; Fischer, C.; Remond, J. Hearing preservation in acoustic neurinoma surgery. J. Neurosurg. 1992, 76, 910–917. [Google Scholar] [CrossRef]
- Watanabe, E.; Schramm, J.; Strauss, C.; Fahlbusch, R. Neurophysiologic monitoring in posterior fossa surgery. II. Baep-waves I and V and preservation of hearing. Acta Neurochir. 1989, 98, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Gardner, G.; Robertson, J.H. Hearing preservation in unilateral acoustic neuroma surgery. Ann. Otol. Rhinol. Laryngol. 1988, 97, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Joo, B.E.; Lee, S.; Lee, J.A.; Hwang, J.H.; Kong, D.S.; Seo, D.W.; Park, K.; Lee, H.T. The critical warning sign of real-time brainstem auditory evoked potentials during microvascular decompression for hemifacial spasm. Clin. Neurophysiol. 2018, 129, 1097–1102. [Google Scholar] [CrossRef]
- Polo, G.; Fischer, C.; Sindou, M.P.; Marneffe, V. Brainstem auditory evoked potential monitoring during microvascular decompression for hemifacial spasm: Intraoperative brainstem auditory evoked potential changes and warning values to prevent hearing loss—prospective study in a consecutive series of 84 patients. Neurosurgery 2004, 54, 97–104, discussion 104–106. [Google Scholar]
- Legatt, A.D. Electrophysiology of cranial nerve testing: Auditory nerve. J. Clin. Neurophysiol. 2018, 35, 25–38. [Google Scholar] [CrossRef]
- De Moraes, C.G. Anatomy of the visual pathways. J. Glaucoma 2013, 22 (Suppl. S5), S2–S7. [Google Scholar] [CrossRef]
- Copenhaver, R.M.; Beinhocker, G.D. Evoked occipital potentials recorded from scalp electrodes in response to focal visual illumination. Investig. Ophthalmol. 1963, 2, 393–406. [Google Scholar] [PubMed]
- Rajashekar, D.; Lavrador, J.P.; Ghimire, P.; Keeble, H.; Harris, L.; Pereira, N.; Patel, S.; Beyh, A.; Gullan, R.; Ashkan, K.; et al. Simultaneous motor and visual intraoperative neuromonitoring in asleep parietal lobe surgery: Dual strip technique. J. Pers. Med. 2022, 12, 1478. [Google Scholar] [CrossRef] [PubMed]
- Ota, T.; Kawai, K.; Kamada, K.; Kin, T.; Saito, N. Intraoperative monitoring of cortically recorded visual response for posterior visual pathway. J. Neurosurg. 2010, 112, 285–294. [Google Scholar] [CrossRef]
- Farrell, D.F.; Leeman, S.; Ojemann, G.A. Study of the human visual cortex: Direct cortical evoked potentials and stimulation. J. Clin. Neurophysiol. 2007, 24, 1–10. [Google Scholar] [CrossRef]
- Gutzwiller, E.M.; Cabrilo, I.; Radovanovic, I.; Schaller, K.; Boex, C. Intraoperative monitoring with visual evoked potentials for brain surgeries. J. Neurosurg. 2018, 130, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Olmsted, Z.T.; Silverstein, J.W.; Einstein, E.H.; Sowulewski, J.; Nelson, P.; Boockvar, J.A.; D’Amico, R.S. Evolution of flash visual evoked potentials to monitor visual pathway integrity during tumor resection: Illustrative cases and literature review. Neurosurg. Rev. 2023, 46, 46. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Regli, L.; Bozinov, O.; Sarnthein, J. Clinical utility and limitations of intraoperative monitoring of visual evoked potentials. PLoS ONE 2015, 10, e0120525. [Google Scholar]
- Sasaki, T.; Itakura, T.; Suzuki, K.; Kasuya, H.; Munakata, R.; Muramatsu, H.; Ichikawa, T.; Sato, T.; Endo, Y.; Sakuma, J.; et al. Intraoperative monitoring of visual evoked potential: Introduction of a clinically useful method. J. Neurosurg. 2010, 112, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Mattogno, P.P.; D’Alessandris, Q.G.; Rigante, M.; Granata, G.; Di Domenico, M.; Perotti, V.; Montano, N.; Giordano, M.; Chiloiro, S.; Doglietto, F.; et al. Reliability of intraoperative visual evoked potentials (iveps) in monitoring visual function during endoscopic transsphenoidal surgery. Acta Neurochir. 2023, 165, 3421–3429. [Google Scholar] [CrossRef] [PubMed]
- Silverstein, J.W.; Shah, H.A.; Greisman, J.D.; Dadario, N.B.; Barbarevech, K.; Park, J.; D’Amico, R.S. Adjustable, dynamic subcortical stimulation technique for brain tumor resection: A case-series. Oper. Neurosurg. 2023, 25, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Shiban, E.; Krieg, S.M.; Obermueller, T.; Wostrack, M.; Meyer, B.; Ringel, F. Continuous subcortical motor evoked potential stimulation using the tip of an ultrasonic aspirator for the resection of motor eloquent lesions. J. Neurosurg. 2015, 123, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Seidel, K.; Beck, J.; Stieglitz, L.; Schucht, P.; Raabe, A. The warning-sign hierarchy between quantitative subcortical motor mapping and continuous motor evoked potential monitoring during resection of supratentorial brain tumors. J. Neurosurg. 2013, 118, 287–296. [Google Scholar] [CrossRef]
- Silverstein, J.W.; Shah, H.A.; Unadkat, P.; Vilaysom, S.; Boockvar, J.A.; Langer, D.J.; Ellis, J.A.; D’Amico, R.S. Short and long-term prognostic value of intraoperative motor evoked potentials in brain tumor patients: A case series of 121 brain tumor patients. J. Neurooncol. 2023, 161, 127–133. [Google Scholar] [CrossRef]
- Raabe, A.; Beck, J.; Schucht, P.; Seidel, K. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: Evaluation of a new method. J. Neurosurg. 2014, 120, 1015–1024. [Google Scholar] [CrossRef]
- Palmisciano, P.; Haider, A.S.; Balasubramanian, K.; Dadario, N.B.; Robertson, F.C.; Silverstein, J.W.; D’Amico, R.S. Supplementary motor area syndrome after brain tumor surgery: A systematic review. World Neurosurg. 2022, 165, 160–171.e162. [Google Scholar] [CrossRef] [PubMed]
- Tarapore, P.E.; Tate, M.C.; Findlay, A.M.; Honma, S.M.; Mizuiri, D.; Berger, M.S.; Nagarajan, S.S. Preoperative multimodal motor mapping: A comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J. Neurosurg. 2012, 117, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Krieg, S.M.; Shiban, E.; Buchmann, N.; Gempt, J.; Foerschler, A.; Meyer, B.; Ringel, F. Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J. Neurosurg. 2012, 116, 994–1001. [Google Scholar] [CrossRef]
- Julkunen, P.; Saisanen, L.; Danner, N.; Niskanen, E.; Hukkanen, T.; Mervaala, E.; Kononen, M. Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials. Neuroimage 2009, 44, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.Y.; Shi, J.X.; Wang, H.D.; Hang, C.H.; Cheng, H.L.; Wu, W. Intraoperative indocyanine green angiography in intracranial aneurysm surgery: Microsurgical clipping and revascularization. Clin. Neurol. Neurosurg. 2009, 111, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Dashti, R.; Laakso, A.; Niemela, M.; Porras, M.; Hernesniemi, J. Microscope-integrated near-infrared indocyanine green videoangiography during surgery of intracranial aneurysms: The helsinki experience. Surg. Neurol. 2009, 71, 543–550, discussion 550. [Google Scholar] [CrossRef]
- de Oliveira, J.G.; Beck, J.; Seifert, V.; Teixeira, M.J.; Raabe, A. Assessment of flow in perforating arteries during intracranial aneurysm surgery using intraoperative near-infrared indocyanine green videoangiography. Neurosurgery 2008, 62, 1300–1310. [Google Scholar] [CrossRef]
- Kirk, H.J.; Rao, P.J.; Seow, K.; Fuller, J.; Chandran, N.; Khurana, V.G. Intra-operative transit time flowmetry reduces the risk of ischemic neurological deficits in neurosurgery. Br. J. Neurosurg. 2009, 23, 40–47. [Google Scholar] [CrossRef]
- Kapsalaki, E.Z.; Lee, G.P.; Robinson, J.S., 3rd; Grigorian, A.A.; Fountas, K.N. The role of intraoperative micro-doppler ultrasound in verifying proper clip placement in intracranial aneurysm surgery. J. Clin. Neurosci. 2008, 15, 153–157. [Google Scholar] [CrossRef]
- Amin-Hanjani, S.; Meglio, G.; Gatto, R.; Bauer, A.; Charbel, F.T. The utility of intraoperative blood flow measurement during aneurysm surgery using an ultrasonic perivascular flow probe. Neurosurgery 2006, 58, ONS-305–312, discussion ONS-312. [Google Scholar]
- Stendel, R.; Pietila, T.; Al Hassan, A.A.; Schilling, A.; Brock, M. Intraoperative microvascular doppler ultrasonography in cerebral aneurysm surgery. J. Neurol. Neurosurg. Psychiatry 2000, 68, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Klopfenstein, J.D.; Spetzler, R.F.; Kim, L.J.; Feiz-Erfan, I.; Han, P.P.; Zabramski, J.M.; Porter, R.W.; Albuquerque, F.C.; McDougall, C.G.; Fiorella, D.J. Comparison of routine and selective use of intraoperative angiography during aneurysm surgery: A prospective assessment. J. Neurosurg. 2004, 100, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Chappell, E.T.; Moure, F.C.; Good, M.C. Comparison of computed tomographic angiography with digital subtraction angiography in the diagnosis of cerebral aneurysms: A meta-analysis. Neurosurgery 2003, 52, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Chiang, V.L.; Gailloud, P.; Murphy, K.J.; Rigamonti, D.; Tamargo, R.J. Routine intraoperative angiography during aneurysm surgery. J. Neurosurg. 2002, 96, 988–992. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.R.; Ashour, R.; Sullender, C.T.; Dunn, A.K. Continuous blood flow visualization with laser speckle contrast imaging during neurovascular surgery. Neurophotonics 2022, 9, 021908. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.; Inoue, T.; Ishihara, H.; Koizumi, H.; Suehiro, E.; Oka, F.; Suzuki, M. Reliability of laser speckle flow imaging for intraoperative monitoring of cerebral blood flow during cerebrovascular surgery: Comparison with cerebral blood flow measurement by single photon emission computed tomography. World Neurosurg. 2014, 82, e753–e757. [Google Scholar] [CrossRef] [PubMed]
- Hecht, N.; Woitzik, J.; Konig, S.; Horn, P.; Vajkoczy, P. Laser speckle imaging allows real-time intraoperative blood flow assessment during neurosurgical procedures. J. Cereb. Blood Flow. Metab. 2013, 33, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Hecht, N.; Woitzik, J.; Dreier, J.P.; Vajkoczy, P. Intraoperative monitoring of cerebral blood flow by laser speckle contrast analysis. Neurosurg. Focus 2009, 27, E11. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Arnulphi, M.; Alaraj, A.; Amin-Hanjani, S.; Mantulin, W.W.; Polzonetti, C.M.; Gratton, E.; Charbel, F.T. Detection of cerebral ischemia in neurovascular surgery using quantitative frequency-domain near-infrared spectroscopy. J. Neurosurg. 2007, 106, 283–290. [Google Scholar] [CrossRef]
- Debatisse, D.; Pralong, E.; Dehdashti, A.R.; Regli, L. Simultaneous multilobar electrocorticography (mecog) and scalp electroencephalography (scalp eeg) during intracranial vascular surgery: A new approach in neuromonitoring. Clin. Neurophysiol. 2005, 116, 2734–2740. [Google Scholar] [CrossRef]
- Dehdashti, A.R.; Pralong, E.; Debatisse, D.; Regli, L. Multilobar electrocorticography monitoring during intracranial aneurysm surgery. Neurocrit. Care 2006, 4, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Bacigaluppi, S.; Fontanella, M.; Manninen, P.; Ducati, A.; Tredici, G.; Gentili, F. Monitoring techniques for prevention of procedure-related ischemic damage in aneurysm surgery. World Neurosurg. 2012, 78, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Young, W.L.; Solomon, R.A.; Pedley, T.A.; Ross, L.; Schwartz, A.E.; Ornstein, E.; Matteo, R.S.; Ostapkovich, N. Direct cortical eeg monitoring during temporary vascular occlusion for cerebral aneurysm surgery. Anesthesiology 1989, 71, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Carter, L.P.; Raudzens, P.A.; Gaines, C.; Crowell, R.M. Somatosensory evoked potentials and cortical blood flow during craniotomy for vascular disease. Neurosurgery 1984, 15, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K. Who are the better candidates for epilepsy surgery? J. Epilepsy Res. 2023, 13, 37–41. [Google Scholar] [CrossRef]
- Stone, S.S.; Rutka, J.T. Utility of neuronavigation and neuromonitoring in epilepsy surgery. Neurosurg. Focus 2008, 25, E17. [Google Scholar] [CrossRef]
- Sugano, H.; Shimizu, H.; Sunaga, S. Efficacy of intraoperative electrocorticography for assessing seizure outcomes in intractable epilepsy patients with temporal-lobe-mass lesions. Seizure 2007, 16, 120–127. [Google Scholar] [CrossRef]
- Szelenyi, A.; Joksimovic, B.; Seifert, V. Intraoperative risk of seizures associated with transient direct cortical stimulation in patients with symptomatic epilepsy. J. Clin. Neurophysiol. 2007, 24, 39–43. [Google Scholar] [CrossRef]
- Moiyadi, A.; Velayutham, P.; Shetty, P.; Seidel, K.; Janu, A.; Madhugiri, V.; Singh, V.K.; Patil, A.; John, R. Combined motor evoked potential monitoring and subcortical dynamic mapping in motor eloquent tumors allows safer and extended resections. World Neurosurg. 2018, 120, e259–e268. [Google Scholar] [CrossRef]
- Berg, A.T.; Vickrey, B.G.; Langfitt, J.T.; Sperling, M.R.; Walczak, T.S.; Shinnar, S.; Bazil, C.W.; Pacia, S.V.; Spencer, S.S. The multicenter study of epilepsy surgery: Recruitment and selection for surgery. Epilepsia 2003, 44, 1425–1433. [Google Scholar] [CrossRef]
- Yang, T.; Hakimian, S.; Schwartz, T.H. Intraoperative electrocorticography (ecog): Indications, techniques, and utility in epilepsy surgery. Epileptic Disord. 2014, 16, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Freund, B.E.; Feyissa, A.M.; Khan, A.; Middlebrooks, E.H.; Grewal, S.S.; Sabsevitz, D.; Sherman, W.J.; Quinones-Hinojosa, A.; Tatum, W.O. Early postoperative seizures following awake craniotomy and functional brain mapping for lesionectomy. World Neurosurg. 2024, 181, e732–e742. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Tan, T.K. Anaesthetic considerations and challenges during awake craniotomy. Singapore Med. J. 2024; online ahead of print. [Google Scholar]
- Isnard, J.; Taussig, D.; Bartolomei, F.; Bourdillon, P.; Catenoix, H.; Chassoux, F.; Chipaux, M.; Clemenceau, S.; Colnat-Coulbois, S.; Denuelle, M.; et al. French guidelines on stereoelectroencephalography (seeg). Neurophysiol. Clin. 2018, 48, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Reames, D.L.; Smith, J.S.; Fu, K.M.; Polly, D.W., Jr.; Ames, C.P.; Berven, S.H.; Perra, J.H.; Glassman, S.D.; McCarthy, R.E.; Knapp, R.D., Jr.; et al. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: A review of the scoliosis research society morbidity and mortality database. Spine 2011, 36, 1484–1491. [Google Scholar] [CrossRef] [PubMed]
- Lavano, A.; Della Torre, A.; Guzzi, G.; Domenico, L.T. Plica mediana dorsalis as a potential risk for spine surgery. J. Neurosurg. Sci. 2023, 23, 37878248. [Google Scholar] [CrossRef] [PubMed]
- Vitale, M.G.; Moore, D.W.; Matsumoto, H.; Emerson, R.G.; Booker, W.A.; Gomez, J.A.; Gallo, E.J.; Hyman, J.E.; Roye, D.P., Jr. Risk factors for spinal cord injury during surgery for spinal deformity. J. Bone Jt. Surg. Am. 2010, 92, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Fehlings, M.G.; Brodke, D.S.; Norvell, D.C.; Dettori, J.R. The evidence for intraoperative neurophysiological monitoring in spine surgery: Does it make a difference? Spine 2010, 35, S37–S46. [Google Scholar] [CrossRef] [PubMed]
- Breinin, G.M.; Sadovnikoff, N.; Pfeffer, R.; Davidowitz, J.; Chiarandini, D.J. Cadmium reduces extraocular muscle contractility in vitro and in vivo. Investig. Ophthalmol. Vis. Sci. 1985, 26, 1639–1642. [Google Scholar]
- Langeloo, D.D.; Lelivelt, A.; Louis Journee, H.; Slappendel, R.; de Kleuver, M. Transcranial electrical motor-evoked potential monitoring during surgery for spinal deformity: A study of 145 patients. Spine 2003, 28, 1043–1050. [Google Scholar] [CrossRef]
- Pelosi, L.; Lamb, J.; Grevitt, M.; Mehdian, S.M.; Webb, J.K.; Blumhardt, L.D. Combined monitoring of motor and somatosensory evoked potentials in orthopaedic spinal surgery. Clin. Neurophysiol. 2002, 113, 1082–1091. [Google Scholar] [CrossRef]
- Chandra, A.A.; Vaishnav, A.; Shahi, P.; Song, J.; Mok, J.; Alluri, R.K.; Chen, D.; Gang, C.H.; Qureshi, S. The role of intraoperative neuromonitoring modalities in anterior cervical spine surgery. HSS J. 2023, 19, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.; Anania, C.D.; Agrillo, U.; Roberto, A.; Claudio, B.; Simona, B.; Daniele, B.; Carlo, B.; Barbara, C.; Ardico, C.; et al. Cervical spondylotic myelopathy: From the world federation of neurosurgical societies (wfns) to the italian neurosurgical society (sinch) recommendations. Neurospine 2023, 20, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Bajamal, A.H.; Kim, S.H.; Arifianto, M.R.; Faris, M.; Subagio, E.A.; Roitberg, B.; Udo-Inyang, I.; Belding, J.; Zileli, M.; Parthiban, J. Posterior surgical techniques for cervical spondylotic myelopathy: Wfns spine committee recommendations. Neurospine 2019, 16, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Deora, H.; Kim, S.H.; Behari, S.; Rudrappa, S.; Rajshekhar, V.; Zileli, M.; Parthiban, J. Anterior surgical techniques for cervical spondylotic myelopathy: Wfns spine committee recommendations. Neurospine 2019, 16, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Zileli, M.; Borkar, S.A.; Sinha, S.; Reinas, R.; Alves, O.L.; Kim, S.H.; Pawar, S.; Murali, B.; Parthiban, J. Cervical spondylotic myelopathy: Natural course and the value of diagnostic techniques -wfns spine committee recommendations. Neurospine 2019, 16, 386–402. [Google Scholar] [CrossRef] [PubMed]
- Zileli, M. Recommendations of wfns spine committee. Neurospine 2019, 16, 383–385. [Google Scholar] [CrossRef]
- Funaba, M.; Kanchiku, T.; Yoshida, G.; Machino, M.; Ushirozako, H.; Kawabata, S.; Ando, M.; Yamada, K.; Iwasaki, H.; Shigematsu, H.; et al. Impact of preoperative motor status for the positive predictive value of transcranial motor-evoked potentials alerts in thoracic spine surgery: A prospective multicenter study by the monitoring committee of the japanese society for spine surgery and related research. Global Spine J. 2023, 22, 21925682231196454. [Google Scholar]
- D’Ercole, M.; D’Alessandris, Q.G.; Di Domenico, M.; Burattini, B.; Menna, G.; Izzo, A.; Polli, F.M.; Della Pepa, G.M.; Olivi, A.; Montano, N. Is there a role for intraoperative neuromonitoring in intradural extramedullary spine tumors? Results and indications from an institutional series. J. Pers. Med. 2023, 13, 1103. [Google Scholar] [CrossRef] [PubMed]
- Hockel, J.L. The face bow: A primary diagnostic aid to gaining an organic occlusion, the goal of orthopedic gnathology. Int. J. Orthod. 1980, 18, 13–16. [Google Scholar]
- Rijs, K.; Klimek, M.; Scheltens-de Boer, M.; Biesheuvel, K.; Harhangi, B.S. Intraoperative neuromonitoring in patients with intramedullary spinal cord tumor: A systematic review, meta-analysis, and case series. World Neurosurg. 2019, 125, 498–510 e492. [Google Scholar] [CrossRef]
- van der Wal, E.C.; Klimek, M.; Rijs, K.; Scheltens-de Boer, M.; Biesheuvel, K.; Harhangi, B.S. Intraoperative neuromonitoring in patients with intradural extramedullary spinal cord tumor: A single-center case series. World Neurosurg. 2021, 147, e516–e523. [Google Scholar] [CrossRef] [PubMed]
- Ushirozako, H.; Yoshida, G.; Imagama, S.; Machino, M.; Ando, M.; Kawabata, S.; Yamada, K.; Kanchiku, T.; Fujiwara, Y.; Taniguchi, S.; et al. Role of transcranial motor evoked potential monitoring during traumatic spinal injury surgery: A prospective multicenter study of the monitoring committee of the Japanese society for spine surgery and related research. Spine 2023, 48, 1388–1396. [Google Scholar] [CrossRef] [PubMed]
- Ajiboye, R.M.; Zoller, S.D.; Sharma, A.; Mosich, G.M.; Drysch, A.; Li, J.; Reza, T.; Pourtaheri, S. Intraoperative neuromonitoring for anterior cervical spine surgery: What is the evidence? Spine 2017, 42, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Atesok, K.; Smith, W.; Jones, R.; Niemeier, T.; Manoharan, S.R.R.; McGwin, G.; Pittman, J.; Theiss, S. The significance of upper extremity neuromonitoring changes during thoracolumbar spine surgery. Clin. Spine Surg. 2018, 31, E422–E426. [Google Scholar] [CrossRef] [PubMed]
- Pusat, S.; Kural, C.; Solmaz, I.; Temiz, C.; Kacar, Y.; Tehli, O.; Kutlay, M.; Daneyemez, M.; Izci, Y. Comparison of electrophysiological outcomes of tethered cord syndrome and spinal intradural tumors: A retrospective clinical study. Turk. Neurosurg. 2017, 27, 797–803. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, S.H.; Kim, E.S.; Eoh, W. Analysis of multimodal intraoperative monitoring during intramedullary spinal ependymoma surgery. World Neurosurg. 2018, 120, e169–e180. [Google Scholar] [CrossRef] [PubMed]
- Gruenbaum, B.F.; Gruenbaum, S.E. Neurophysiological monitoring during neurosurgery: Anesthetic considerations based on outcome evidence. Curr. Opin. Anaesthesiol. 2019, 32, 580–584. [Google Scholar] [CrossRef] [PubMed]
- James, G. Mental handicap: As the tide turns. Community Outlook 1987, 14, 36–38. [Google Scholar]
- Guo, L.; Holdefer, R.N.; Kothbauer, K.F. Monitoring spinal surgery for extramedullary tumors and fractures. Handb. Clin. Neurol. 2022, 186, 245–255. [Google Scholar]
- Skinner, S.; Guo, L. Intraoperative neuromonitoring during surgery for lumbar stenosis. Handb. Clin. Neurol. 2022, 186, 205–227. [Google Scholar]
- Visalli, C.; Cavallaro, M.; Concerto, A.; La Torre, D.; Di Salvo, R.; Mazziotti, S.; Salamone, I. Ultrasonography of traumatic injuries to limb peripheral nerves: Technical aspects and spectrum of features. Jpn. J. Radiol. 2018, 36, 592–602. [Google Scholar] [CrossRef] [PubMed]
- La Torre, D.; Raffa, G.; Pino, M.A.; Fodale, V.; Rizzo, V.; Visalli, C.; Guzzi, G.; Della Torre, A.; Lavano, A.; Germano, A. A novel diagnostic and prognostic tool for simple decompression of ulnar nerve in cubital tunnel syndrome. World Neurosurg. 2018, 118, e964–e973. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Constatntini, S.; Browd, S.R.; Zhan, Q.; Jiang, W.; Mei, R. The role of intra-operative neuroelectrophysiological monitoring in single-level approach selective dorsal rhizotomy. Childs Nerv. Syst. 2020, 36, 1925–1933. [Google Scholar] [CrossRef] [PubMed]
- Noland, S.S.; Bishop, A.T.; Spinner, R.J.; Shin, A.Y. Adult traumatic brachial plexus injuries. J. Am. Acad. Orthop. Surg. 2019, 27, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.C.; Yamasaki, D.S. Intraoperative nerve monitoring during nerve decompression surgery in the lower extremity. Clin. Podiatr. Med. Surg. 2016, 33, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Plata-Bello, J.; Perez-Lorensu, P.J.; Brage, L.; Hernandez-Hernandez, V.; Doniz, A.; Roldan-Delgado, H.; Febles, P.; Garcia-Conde, M.; Perez-Orribo, L.; Garcia-Marin, V. Electrical stimulation threshold in chronically compressed lumbar nerve roots: Observational study. Clin. Neurol. Neurosurg. 2015, 139, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Kurup, A.N.; Morris, J.M.; Boon, A.J.; Strommen, J.A.; Schmit, G.D.; Atwell, T.D.; Carter, R.E.; Brown, M.J.; Wass, C.T.; Rose, P.S.; et al. Motor evoked potential monitoring during cryoablation of musculoskeletal tumors. J. Vasc. Interv. Radiol. 2014, 25, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Conejero, I.; Ulkatan, S.; Sen, C.; Deletis, V. Intra-operative neurophysiology during microvascular decompression for hemifacial spasm. Clin. Neurophysiol. 2012, 123, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Sughrue, M.E.; Yang, I.; Rutkowski, M.J.; Aranda, D.; Parsa, A.T. Preservation of facial nerve function after resection of vestibular schwannoma. Br. J. Neurosurg. 2010, 24, 666–671. [Google Scholar] [CrossRef]
- Abrosimov, V.N.; Garmash, V. The hyperventilation syndrome. Ter. Arkh 1988, 60, 136–140. [Google Scholar]
- Zelenski, N.A.; Oishi, T.; Shin, A.Y. Intraoperative neuromonitoring for peripheral nerve surgery. J. Hand Surg. Am. 2023, 48, 396–401. [Google Scholar] [CrossRef] [PubMed]
- Robert, E.G.; Happel, L.T.; Kline, D.G. Intraoperative nerve action potential recordings: Technical considerations, problems, and pitfalls. Neurosurgery 2009, 65, A97–A104. [Google Scholar] [CrossRef]
- Nunes, R.R.; Bersot, C.D.A.; Garritano, J.G. Intraoperative neurophysiological monitoring in neuroanesthesia. Curr. Opin. Anaesthesiol. 2018, 31, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Prathapadas, U.; Hrishi, A.P.; Appavoo, A.; Vimala, S.; Sethuraman, M. Effect of low-dose dexmedetomidine on the anesthetic and recovery profile of sevoflurane-based anesthesia in patients presenting for supratentorial neurosurgeries: A randomized double-blind placebo-controlled trial. J. Neurosci. Rural. Pract. 2020, 11, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, M.T.; Brinkman, N.J.; Pasternak, J.J.; Abcejo, A.S. The role of remimazolam in neurosurgery and in patients with neurological diseases: A narrative review. J. Neurosurg. Anesthesiol. 2024, 36, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Eisenried, A.; Schuttler, J.; Lerch, M.; Ihmsen, H.; Jeleazcov, C. Pharmacokinetics and pharmacodynamics of remimazolam (cns 7056) after continuous infusion in healthy male volunteers: Part ii. Pharmacodynamics of electroencephalogram effects. Anesthesiology 2020, 132, 652–666. [Google Scholar] [CrossRef]
- Shirozu, K.; Nobukuni, K.; Tsumura, S.; Imura, K.; Nakashima, K.; Takamori, S.; Higashi, M.; Yamaura, K. Neurological sedative indicators during general anesthesia with remimazolam. J. Anesth. 2022, 36, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, R.; Sato, A.; Shinohara, K.; Shiratori, T.; Kiuchi, C.; Murakami, T.; Sasao, J. Comparison of sensory evoked potentials during neurosurgery under remimazolam anesthesia with those under propofol anesthesia. Minerva Anestesiol. 2022, 88, 81–82. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Toyota, Y.; Narasaki, S.; Watanabe, T.; Miyoshi, H.; Saeki, N.; Tsutsumi, Y.M. Intraoperative responses of motor evoked potentials to the novel intravenous anesthetic remimazolam during spine surgery: A report of two cases. JA Clin. Rep. 2020, 6, 97. [Google Scholar] [CrossRef]
- Zhang, X.; Hu, H.; Yan, R.; Li, T.; Wang, W.; Yang, W. Effects of rocuronium dosage on intraoperative neurophysiological monitoring in patients undergoing spinal surgery. J. Clin. Pharm. Ther. 2022, 47, 313–320. [Google Scholar] [CrossRef]
- Namizato, D.; Iwasaki, M.; Ishikawa, M.; Nagaoka, R.; Genda, Y.; Kishikawa, H.; Sugitani, I.; Sakamoto, A. Anesthetic considerations of intraoperative neuromonitoring in thyroidectomy. J. Nippon. Med. Sch. 2019, 86, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.D.; Liang, F.; Chen, P. Dosage effect of rocuronium on intraoperative neuromonitoring in patients undergoing thyroid surgery. Cell Biochem. Biophys. 2015, 71, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Lu, I.C.; Tsai, C.J.; Wu, C.W.; Cheng, K.I.; Wang, F.Y.; Tseng, K.Y.; Chiang, F.Y. A comparative study between 1 and 2 effective doses of rocuronium for intraoperative neuromonitoring during thyroid surgery. Surgery 2011, 149, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Empis de Vendin, O.; Schmartz, D.; Brunaud, L.; Fuchs-Buder, T. Recurrent laryngeal nerve monitoring and rocuronium: A selective sugammadex reversal protocol. World J. Surg. 2017, 41, 2298–2303. [Google Scholar] [CrossRef] [PubMed]
- Fahy, B.G.; Chau, D.F. The technology of processed electroencephalogram monitoring devices for assessment of depth of anesthesia. Anesth. Analg. 2018, 126, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Longhini, F.; Pasin, L.; Montagnini, C.; Konrad, P.; Bruni, A.; Garofalo, E.; Murabito, P.; Pelaia, C.; Rondi, V.; Dellapiazza, F.; et al. Intraoperative protective ventilation in patients undergoing major neurosurgical interventions: A randomized clinical trial. BMC Anesthesiol. 2021, 21, 184. [Google Scholar] [CrossRef] [PubMed]
- Citerio, G.; Pesenti, A.; Latini, R.; Masson, S.; Barlera, S.; Gaspari, F.; Franzosi, M.G. A multicentre, randomised, open-label, controlled trial evaluating equivalence of inhalational and intravenous anaesthesia during elective craniotomy. Eur. J. Anaesthesiol. 2012, 29, 371–379. [Google Scholar] [CrossRef]
- Lotto, M.L.; Banoub, M.; Schubert, A. Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials. J. Neurosurg. Anesthesiol. 2004, 16, 32–42. [Google Scholar] [CrossRef]
- Sloan, T.B.; Heyer, E.J. Anesthesia for intraoperative neurophysiologic monitoring of the spinal cord. J. Clin. Neurophysiol. 2002, 19, 430–443. [Google Scholar] [CrossRef]
- Adhikary, S.D.; Manickam, B.P. Unusual waveforms during ssep monitoring--facts and artifacts. J. Neurosurg. Anesthesiol. 2008, 20, 207. [Google Scholar] [CrossRef]
- Scott, R.N.; McLean, L.; Parker, P.A. Stimulus artefact in somatosensory evoked potential measurement. Med. Biol. Eng. Comput. 1997, 35, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Sloan, T.B. Nondepolarizing neuromuscular blockade does not alter sensory evoked potentials. J. Clin. Monit. 1994, 10, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Farajidavar, A.; Seifert, J.L.; Delgado, M.R.; Sparagana, S.; Romero-Ortega, M.I.; Chiao, J.C. Electromagnetic interference in intraoperative monitoring of motor evoked potentials and a wireless solution. Med. Eng. Phys. 2016, 38, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, A.A.; Akopian, V.; Lagoa, I.; Shilian, P.; Parikh, P. Crossover phenomena in motor evoked potentials during intraoperative neurophysiological monitoring of cranial surgeries. J. Clin. Neurophysiol. 2019, 36, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Lopez, P.D.; Montalvo-Afonso, A.; Araus-Galdos, E.; Isidro-Mesa, F.; Martin-Alonso, J.; Martin-Velasco, V.; Castilla-Diez, J.M.; Rodriguez-Salazar, A. Need for head and neck repositioning to restore electrophysiological signal changes at positioning for cervical myelopathy surgery. Neurocirugia 2022, 33, 209–218. [Google Scholar] [CrossRef]
- Appel, S.; Korn, A.; Biron, T.; Goldstein, K.; Rand, N.; Millgram, M.; Floman, Y.; Ashkenazi, E. Efficacy of head repositioning in restoration of electrophysiological signals during cervical spine procedures. J. Clin. Neurophysiol. 2017, 34, 174–178. [Google Scholar] [CrossRef]
Aim of the Technique | Evidence-Based Indications in Neurosurgery | |
---|---|---|
Electro-corticography (ECoG) | Identification and preservation of cerebral cortical areas | Neurovascular surgery, epilepsy surgery |
Stereo-electroencephalography (SEEG) | Identification of epileptogenic zones and the “eloquent cortex” | Intracranial tumor resection, neurovascular surgery, epilepsy surgery |
Electromyography (EMG) | Identification and preservation of peripheral nerves | Spinal surgery, peripheral nerve surgery |
Somatosensory evoked potentials (SSEPs) | Warning of potential damage to the sensory pathways | Intracranial tumor resection, spinal surgery |
Motor evoked potentials (MEPs) | Evaluation of the motor pathways | Intracranial tumor resection, spinal surgery |
Direct cortical stimulation (DCS) | Evaluation of the motor pathways through direct stimulation of the cortex | Intracranial tumor resection, epilepsy surgery |
Brainstem auditory evoked potentials (BAEPs) | Monitoring the functionality of the auditory nerve and the auditory pathways within the brainstem | Intracranial tumor resection |
Visual evoked potentials (VEPs) | Assessing the functional integrity of the optic pathways | Intracranial tumor resection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzzi, G.; Ricciuti, R.A.; Della Torre, A.; Lo Turco, E.; Lavano, A.; Longhini, F.; La Torre, D. Intraoperative Neurophysiological Monitoring in Neurosurgery. J. Clin. Med. 2024, 13, 2966. https://doi.org/10.3390/jcm13102966
Guzzi G, Ricciuti RA, Della Torre A, Lo Turco E, Lavano A, Longhini F, La Torre D. Intraoperative Neurophysiological Monitoring in Neurosurgery. Journal of Clinical Medicine. 2024; 13(10):2966. https://doi.org/10.3390/jcm13102966
Chicago/Turabian StyleGuzzi, Giusy, Riccardo Antonio Ricciuti, Attilio Della Torre, Erica Lo Turco, Angelo Lavano, Federico Longhini, and Domenico La Torre. 2024. "Intraoperative Neurophysiological Monitoring in Neurosurgery" Journal of Clinical Medicine 13, no. 10: 2966. https://doi.org/10.3390/jcm13102966
APA StyleGuzzi, G., Ricciuti, R. A., Della Torre, A., Lo Turco, E., Lavano, A., Longhini, F., & La Torre, D. (2024). Intraoperative Neurophysiological Monitoring in Neurosurgery. Journal of Clinical Medicine, 13(10), 2966. https://doi.org/10.3390/jcm13102966