Circulating Levels of Soluble α-Klotho and FGF23 in Childhood Cancer Survivors: Lack of Association with Nephro- and Cardiotoxicity—A Preliminary Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oeffinger, K.C.; Mertens, A.C.; Sklar, C.A.; Kawashima, T.; Hudson, M.M.; Meadows, A.T.; Friedman, D.L.; Marina, N.; Hobbie, W.; Kadan-Lottick, N.S.; et al. Chronic Health Conditions in Adult Survivors of Childhood Cancer. N. Engl. J. Med. 2006, 355, 1572–1582. [Google Scholar] [CrossRef] [PubMed]
- Kooijmans, E.C.; Bökenkamp, A.; Tjahjadi, N.S.; Tettero, J.M.; van Dulmen-den Broeder, E.; van der Pal, H.J.; Veening, M.A. Early and Late Adverse Renal Effects after Potentially Nephrotoxic Treatment for Childhood Cancer. Cochrane Database Syst. Rev. 2019, 3, CD008944. [Google Scholar] [CrossRef] [PubMed]
- Skinner, R. Late Renal Toxicity of Treatment for Childhood Malignancy: Risk Factors, Long-Term Outcomes, and Surveillance. Pediatr. Nephrol. 2018, 33, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Krawczuk-Rybak, M.; Kuźmicz, M.; Wysocka, J. Renal Function during and after Treatment for Acute Lymphoblastic Leukemia in Children. Pediatr. Nephrol. 2005, 20, 782–785. [Google Scholar] [CrossRef] [PubMed]
- Będzichowska, A.; Jobs, K.; Kloc, M.; Bujnowska, A.; Kalicki, B. The Assessment of the Usefulness of Selected Markers in the Diagnosis of Chronic Kidney Disease in Children. Biomark. Insights 2021, 16, 11772719211011173. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, K.; Nagano, N.; Nitta, K. Klotho/FGF23 Axis in CKD. In Contributions to Nephrology Chronic Kidney Diseases—Recent Advances in Clinical and Basic Research; Karger: Basel, Switzerland, 2015; Volume 185, pp. 56–65. [Google Scholar] [CrossRef]
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer Treatment and Survivorship Statistics, 2022. CA Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef] [PubMed]
- Koene, R.J.; Prizment, A.E.; Blaes, A.; Konety, S.H. Shared Risk Factors in Cardiovascular Disease and Cancer. Circulation 2016, 133, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Moslehi, J.J. Cardiovascular Toxic Effects of Targeted Cancer Therapies. N. Engl. J. Med. 2016, 375, 1457–1467. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Li, Y.; Qin, Z.; Zhang, Z.; Wang, L.; Yang, Q.; Su, B. Association between Serum Soluble α-Klotho and Urinary Albumin Excretion in Middle-Aged and Older US Adults: NHANES 2007–2016. J. Clin. Med. 2023, 12, 637. [Google Scholar] [CrossRef]
- Xu, Y.; Sun, Z. Molecular Basis of Klotho: From Gene to Function in Aging. Endocr. Rev. 2015, 36, 174–193. [Google Scholar] [CrossRef]
- Ho, B.B.; Bergwitz, C. FGF23 Signalling and Physiology. J. Mol. Endocrinol. 2021, 66, R23–R32. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Castañeda, J.R.; Rodelo-Haad, C.; Pendon-Ruiz de Mier, M.V.; Martin-Malo, A.; Santamaria, R.; Rodriguez, M. Klotho/FGF23 and Wnt Signaling as Important Players in the Comorbidities Associated with Chronic Kidney Disease. Toxins 2020, 12, 185. [Google Scholar] [CrossRef] [PubMed]
- Edmonston, D.; Grabner, A.; Wolf, M. FGF23 and Klotho at the Intersection of Kidney and Cardiovascular Disease. Nat. Rev. Cardiol. 2024, 21, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Ewendt, F.; Feger, M.; Föller, M. Role of Fibroblast Growth Factor 23 (FGF23) and αKlotho in Cancer. Front. Cell Dev. Biol. 2020, 8, 601006. [Google Scholar] [CrossRef]
- Savva, C.; Adhikaree, J.; Madhusudan, S.; Chokkalingam, K. Oncogenic Osteomalacia and Metastatic Breast Cancer: A Case Report and Review of the Literature. J. Diabetes Metab. Disord. 2019, 18, 267–272. [Google Scholar] [CrossRef]
- Latoch, E.; Konończuk, K.; Taranta-Janusz, K.; Muszyńska-Rosłan, K.; Sawicka, M.; Wasilewska, A.; Krawczuk-Rybak, M. Urinary Beta-2-Microglobulin and Late Nephrotoxicity in Childhood Cancer Survivors. J. Clin. Med. 2021, 10, 5279. [Google Scholar] [CrossRef] [PubMed]
- Latoch, E.; Konończuk, K.; Taranta-Janusz, K.; Muszyńska-Rosłan, K.; Szymczak, E.; Wasilewska, A.; Krawczuk-Rybak, M. Urine NGAL and KIM-1: Tubular Injury Markers in Acute Lymphoblastic Leukemia Survivors. Cancer Chemother. Pharmacol. 2020, 86, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Ligumsky, H.; Merenbakh-Lamin, K.; Keren-Khadmy, N.; Wolf, I.; Rubinek, T. The Role of α-Klotho in Human Cancer: Molecular and Clinical Aspects. Oncogene 2022, 41, 4487–4497. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.-X.; Li, S.-S.; Sha, M.-Y.; Kong, J.-W.; Ye, J.-M.; Liu, Q.-F. The Controversy of Klotho as a Potential Biomarker in Chronic Kidney Disease. Front. Pharmacol. 2022, 13, 931746. [Google Scholar] [CrossRef]
- Kuro-O, M. The Klotho Proteins in Health and Disease. Nat. Rev. Nephrol. 2019, 15, 27–44. [Google Scholar] [CrossRef]
- Wang, Q.; Su, W.; Shen, Z.; Wang, R. Correlation between Soluble α-Klotho and Renal Function in Patients with Chronic Kidney Disease: A Review and Meta-Analysis. Biomed. Res. Int. 2018, 2018, 9481475. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-F.; Ye, J.-M.; Yu, L.-X.; He, A.-L.; Sun, Q.; He, D.-W.; Li, S.-S. Plasma S-Klotho Is Related to Kidney Function and Predicts Adverse Renal Outcomes in Patients with Advanced Chronic Kidney Disease. J. Investig. Med. 2018, 66, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Neyra, J.A.; Moe, O.W.; Pastor, J.; Gianella, F.; Sidhu, S.S.; Sarnak, M.J.; Ix, J.H.; Drew, D.A. Performance of Soluble Klotho Assays in Clinical Samples of Kidney Disease. Clin. Kidney J. 2020, 13, 235–244. [Google Scholar] [CrossRef]
- Charoenngam, N.; Ponvilawan, B.; Ungprasert, P. Lower Circulating Soluble Klotho Level Is Associated with Increased Risk of All-Cause Mortality in Chronic Kidney Disease Patients: A Systematic Review and Meta-Analysis. Int. Urol. Nephrol. 2020, 52, 1543–1550. [Google Scholar] [CrossRef]
- Yang, K.; Yang, J.; Bi, X.; Yu, Z.; Xiao, T.; Huang, Y.; Liu, Y.; Xiong, J.; Zhao, J. Serum Klotho, Cardiovascular Events, and Mortality in Nondiabetic Chronic Kidney Disease. Cardiorenal Med. 2020, 10, 175–187. [Google Scholar] [CrossRef] [PubMed]
- Mehta, R.; Cai, X.; Lee, J.; Scialla, J.J.; Bansal, N.; Sondheimer, J.H.; Chen, J.; Hamm, L.L.; Ricardo, A.C.; Navaneethan, S.D.; et al. Association of Fibroblast Growth Factor 23 With Atrial Fibrillation in Chronic Kidney Disease, From the Chronic Renal Insufficiency Cohort Study. JAMA Cardiol. 2016, 1, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Chua, W.; Purmah, Y.; Cardoso, V.R.; Gkoutos, G.V.; Tull, S.P.; Neculau, G.; Thomas, M.R.; Kotecha, D.; Lip, G.Y.H.; Kirchhof, P.; et al. Data-Driven Discovery and Validation of Circulating Blood-Based Biomarkers Associated with Prevalent Atrial Fibrillation. Eur. Heart J. 2019, 40, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Song, T.; Huang, S.; Liu, M.; Ma, J.; Zhang, J.; Yu, P.; Liu, X. Relationship between Serum Growth Differentiation Factor 15, Fibroblast Growth Factor-23 and Risk of Atrial Fibrillation: A Systematic Review and Meta-Analysis. Front. Cardiovasc. Med. 2022, 9, 899667. [Google Scholar] [CrossRef]
- Mulder, R.L.; Knijnenburg, S.L.; Geskus, R.B.; van Dalen, E.C.; van der Pal, H.J.H.; Koning, C.C.E.; Bouts, A.H.; Caron, H.N.; Kremer, L.C.M. Glomerular Function Time Trends in Long-Term Survivors of Childhood Cancer: A Longitudinal Study. Cancer Epidemiol. Biomarkers Prev. 2013, 22, 1736–1746. [Google Scholar] [CrossRef]
Number (%) a | Mean ± SD b | |
---|---|---|
Patients | 66 (100) | |
Male | 29 (43.9) | |
Female | 37 (56.1) | |
Age at diagnosis (years) | 5.06 ± 3.60 | |
Age at study (years) | 14.22 ± 4.48 | |
Follow-up after treatment (years) | 8.41 ± 3.76 | |
Patients with hypertension | 18 (27.27) | |
Patients without hypertension | 48 (72.72) | |
Diagnosis | ||
Leukemia | 46 (69.7) | |
Lymphoma | 5 (7.6) | |
Solid tumor | 15 (22.7) | |
Chemotherapy | ||
Methotrexate—cumulative dose (mg/m2) | 44 (66.7) | 11,023.81 ± 7445.70 |
Cumulative corticosteroid dose (mg/m2) c | 50 (75.8) | 3378 ± 1293.89 |
Prednisone—cumulative dose (mg/m2) | 50 (75.8) | 1606.22 ± 287.56 |
Dexamethasone—cumulative dose (mg/m2) | 42 (63.6) | 283.33 ± 163.43 |
Cyclophosphamide—cumulative dose (mg/m2) | 48 (72.7) | 3702.17 ± 1990.48 |
Cisplatin—cumulative dose (mg/m2) | 7 (10.6) | 360 ± 132.67 |
Ifosfamide—cumulative dose (mg/m2) | 3 (4.5) | 5033.33 ± 3000.56 |
Radiotherapy | 21 (31.8) | |
Cranial radiotherapy (CRT)—cumulative dose (Gy) | 11 (16.7) | 13.09 ± 2.43 |
Total body irradiation (TBI) | 5 (7.6) | 12 ± 0.00 |
Abdominal radiotherapy (ART) | 8 (12.1) | 19.95 ± 2.07 |
Chest radiotherapy (ChRT) | 2 (3.0) | 19.80 ± 0.00 |
No | 45 (68.2) | |
Nephrectomy | 7 (10.6) | |
HSCT | 10 (15.2) |
Total | eGFR >90 mL/min/1.73 m2 | eGFR <90 mL/min/1.73 m2 | p Value |
---|---|---|---|
Number of patients | 53 | 8 | |
Gender (M/F) | 21/32 | 4/4 | |
Age at start of treatment (years) | 5.03 (2.40; 7.02) | 4.90 (3.08; 6.41) | 0.924 |
Age at the time of the study (years) | 14.2 (10.68; 17.78) | 15.31 (14.72; 16.29) | 0.487 |
Follow-up time (years) | 8.41 (5.74; 10.27) | 9.5 (7.61; 12.08) | 0.399 |
Klotho (pg/mL) | 1251 (693.7; 1656.0) | 1615 (967.50; 1953.00) | 0.205 |
FGF23 (pg/mL) | 43.5 (31.25; 52.41) | 43.70 (35.50; 49.65) | 0.979 |
Vitamin D (ng/mL) | 19.66 (15.76; 24.1) | 22.75 (12.30; 29.93) | 0.609 |
ACR (mg/g) | 381.49 (24.07; 131.12) | 153.55 (32.04; 239.06) | 0.648 |
Serum creatinine (mg/dL) | 0.57 (0.43; 0.66) | 0.86 (0.78; 0.96) | 0.0001 |
Urine creatinine (mg/dL) | 138.92 (76.81; 187.38) | 100.38 (63.05; 131.90) | 0.117 |
r | p | |
---|---|---|
Age at diagnosis (years) | −0.126 | 0.313 |
Age at study (years) | −0.366 | 0.002 |
Follow up after treatment (years) | −0.173 | 0.164 |
Methotrexate (cumulative dose (mg/m2)) | −0.056 | 0.725 |
Prednisone (cumulative dose (mg/m2)) | 0.197 | 0.195 |
Dexamethasone (cumulative dose (mg/m2)) | −0.050 | 0.753 |
Cyclophosphamide (cumulative dose (mg/m2)) | −0.115 | 0.445 |
Cisplatin (cumulative dose (mg/m2)) | −0.463 | 0.296 |
Serum creatinine | −0.321 | 0.010 |
Urine Creatinine | −0.182 | 0.154 |
ACR | 0.155 | 0.226 |
eGFR | 0.074 | 0.569 |
r | p | |
---|---|---|
Age at diagnosis (years) | −0.160 | 0.199 |
Age at study (years) | 0.158 | 0.206 |
Follow up after treatment (years) | 0.278 | 0.024 |
Methotrexate (cumulative dose (mg/m2)) | −0.458 | 0.002 |
Prednisone (cumulative dose (mg/m2)) | −0.206 | 0.174 |
Dexamethasone (cumulative dose (mg/m2)) | −0.124 | 0.435 |
Cyclophosphamide (cumulative dose (mg/m2)) | 0.015 | 0.920 |
Cisplatin (cumulative dose (mg/m2)) | 0.000 | 1 |
Serum creatinine | 0.205 | 0.108 |
Urine Creatinine | 0.412 | 0.001 |
ACR | −0.202 | 0.112 |
eGFR | −0.148 | 0.255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozłowski, K.; Konończuk, K.; Muszyńska-Rosłan, K.; Żelazowska-Rutkowska, B.; Taranta-Janusz, K.; Werbel, K.; Krawczuk-Rybak, M.; Latoch, E. Circulating Levels of Soluble α-Klotho and FGF23 in Childhood Cancer Survivors: Lack of Association with Nephro- and Cardiotoxicity—A Preliminary Study. J. Clin. Med. 2024, 13, 2968. https://doi.org/10.3390/jcm13102968
Kozłowski K, Konończuk K, Muszyńska-Rosłan K, Żelazowska-Rutkowska B, Taranta-Janusz K, Werbel K, Krawczuk-Rybak M, Latoch E. Circulating Levels of Soluble α-Klotho and FGF23 in Childhood Cancer Survivors: Lack of Association with Nephro- and Cardiotoxicity—A Preliminary Study. Journal of Clinical Medicine. 2024; 13(10):2968. https://doi.org/10.3390/jcm13102968
Chicago/Turabian StyleKozłowski, Kacper, Katarzyna Konończuk, Katarzyna Muszyńska-Rosłan, Beata Żelazowska-Rutkowska, Katarzyna Taranta-Janusz, Katarzyna Werbel, Maryna Krawczuk-Rybak, and Eryk Latoch. 2024. "Circulating Levels of Soluble α-Klotho and FGF23 in Childhood Cancer Survivors: Lack of Association with Nephro- and Cardiotoxicity—A Preliminary Study" Journal of Clinical Medicine 13, no. 10: 2968. https://doi.org/10.3390/jcm13102968
APA StyleKozłowski, K., Konończuk, K., Muszyńska-Rosłan, K., Żelazowska-Rutkowska, B., Taranta-Janusz, K., Werbel, K., Krawczuk-Rybak, M., & Latoch, E. (2024). Circulating Levels of Soluble α-Klotho and FGF23 in Childhood Cancer Survivors: Lack of Association with Nephro- and Cardiotoxicity—A Preliminary Study. Journal of Clinical Medicine, 13(10), 2968. https://doi.org/10.3390/jcm13102968