Permanent and Persistent Atrial Fibrillations Are Independent Risk Factors of Mortality after Severe COVID-19
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Statistical Analysis
3. Results
3.1. Subsets of Patients with AF
3.2. Predictors of Death According to AF Status
3.3. Identification of Prognostic Factors of Death
3.4. Independent Risk Factors of Death
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.; Adil, S.F.; Alkhathlan, H.Z.; Tahir, M.N.; Saif, S.; Khan, M.; Khan, S.T. COVID-19: A Global challenge with old history, epidemiology and progress so far. Molecules 2020, 26, 39. [Google Scholar] [CrossRef] [PubMed]
- Terlecki, M.; Wojciechowska, W.; Klocek, M.; Olszanecka, A.; Stolarz-Skrzypek, K.; Grodzicki, T.; Małecki, M.; Katra, B.; Garlicki, A.; Bociąga-Jasik, M.; et al. Association between cardiovascular disease, cardiovascular drug therapy, and in-hospital outcomes in patients with COVID-19: Data from a large single-center registry in Poland. Kardiol. Pol. 2021, 79, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Cordero, A.; García-Gallego, C.S.; Bertomeu-González, V.; Fácila, L.; Rodríguez-Mañero, M.; Escribano, D.; Castellano, J.M.; Zuazola, P.; Núñez, J.; Badimón, J.J.; et al. Mortality associated with cardiovascular disease in patients with COVID-19. Rec. Cardioclinics 2021, 56, 30–38. [Google Scholar] [CrossRef]
- Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; et al. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical characterisation Protocol: Prospective observational cohort study. BMJ 2020, 369, m1985. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; the Northwell COVID-19 Research Consortium. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef] [PubMed]
- Wilk-Sledziewska, K.; Sielatycki, P.J.; Uscinska, N.; Bujno, E.; Rosolowski, M.; Kakareko, K.; Sledziewski, R.; Rydzewska-Rosolowska, A.; Hryszko, T.; Zbroch, E. The impact of cardiovascular Risk factors on the course of COVID-19. J. Clin. Med. 2022, 11, 2250. [Google Scholar] [CrossRef] [PubMed]
- Kabeerdoss, J.; Pilania, R.K.; Karkhele, R.; Kumar, T.S.; Danda, D.; Singh, S. Severe COVID-19, multisystem inflammatory syndrome in children, and Kawasaki disease: Immunological mechanisms, clinical manifestations and management. Rheumatol. Int. 2021, 41, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Babapoor-Farrokhran, S.; Gill, D.; Walker, J.; Rasekhi, R.T.; Bozorgnia, B.; Amanullah, A. Myocardial injury and COVID-19: Possible mechanisms. Life Sci. 2020, 253, 117723. [Google Scholar] [CrossRef] [PubMed]
- Inciardi, R.M.; Adamo, M.; Lupi, L.; Cani, D.S.; Di Pasquale, M.; Tomasoni, D.; Italia, L.; Zaccone, G.; Tedino, C.; Fabbricatore, D.; et al. Characteristics and outcomes of patients hospitalized for COVID-19 and cardiac disease in Northern Italy. Eur. Heart J. 2020, 41, 1821–1829. [Google Scholar] [CrossRef]
- Machowski, M.; Polańska, A.; Gałecka-Nowak, M.; Mamzer, A.; Skowrońska, M.; Perzanowska-Brzeszkiewicz, K.; Zając, B.; Ou-Pokrzewińska, A.; Pruszczyk, P.; Kasprzak, J.D. Age-adjusted D-dimer levels may improve diagnostic assessment for pulmonary embolism in COVID-19 patients. J. Clin. Med. 2022, 11, 3298. [Google Scholar] [CrossRef]
- Holt, A.; Gislason, G.H.; Schou, M.; Zareini, B.; Biering-Sørensen, T.; Phelps, M.; Kragholm, K.; Andersson, C.; Fosbøl, E.L.; Hansen, M.L.; et al. New-onset atrial fibrillation: Incidence, characteristics, and related events following a national COVID-19 lockdown of 5.6 million people. Eur. Heart J. 2020, 41, 3072–3079. [Google Scholar] [CrossRef]
- Paris, S.; Inciardi, R.M.; Lombardi, C.M.; Tomasoni, D.; Ameri, P.; Carubelli, V.; Agostoni, P.; Canale, C.; Carugo, S.; Danzi, G.; et al. Implications of atrial fibrillation on the clinical course and outcomes of hospitalized COVID-19 patients: Results of the Cardio-COVID-Italy multicentre study. Europace 2021, 23, 1603–1611. [Google Scholar] [CrossRef] [PubMed]
- Denegri, A.; Morelli, M.; Pezzuto, G.; Malavasi, V.L.; Boriani, G. Atrial fibrillation is related to higher mortality in COVID-19/SARS-CoV-2 pneumonia infection. Cardiol. J. 2021, 28, 973–975. [Google Scholar] [CrossRef]
- Spinoni, E.G.; Mennuni, M.; Rognoni, A.; Grisafi, L.; Colombo, C.; Lio, V.; Renda, G.; Foglietta, M.; COVID-UPO Clinical Team. Contribution of atrial fibrillation to in-hospital mortality in patients with COVID-19. Circ. Arrhythm. Electrophysiol. 2021, 14, e009375. [Google Scholar] [CrossRef]
- Li, Z.; Shao, W.; Zhang, J.; Ma, J.; Huang, S.; Yu, P.; Zhu, W.; Liu, X. Prevalence of atrial fibrillation and associated mortality among hospitalized patients with COVID-19: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2021, 8, 720129. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, A.G.; Ayers, C.R.; Rao, A.; Howell, S.J.; Hendren, N.S.; Zadikany, R.H.; Ebinger, J.E.; Daniels, J.D.; Link, M.S.; de Lemos, J.A.; et al. New-onset atrial fibrillation in patients hospitalized with COVID-19: Results from the American Heart Association COVID-19 Cardiovascular Registry. Circ. Arrhythm. Electrophysiol. 2022, 15, e010666. [Google Scholar] [CrossRef] [PubMed]
- The CAPACITY-COVID Collaborative Consortium and LEOSS Study Group. Clinical presentation, disease course, and outcome of COVID-19 in hospitalized patients with and without pre-existing cardiac disease: A cohort study across 18 countries. Eur. Heart J. 2022, 43, 1104–1120. [Google Scholar] [CrossRef]
- de Vos, C.B.; Pisters, R.; Nieuwlaat, R.; Prins, M.H.; Tieleman, R.G.; Coelen, R.-J.S.; Heijkant, A.C.v.D.; Allessie, M.A.; Crijns, H.J. Progression from paroxysmal to persistent atrial fibrillation clinical correlates and prognosis. J. Am. Coll. Cardiol. 2010, 55, 725–731. [Google Scholar] [CrossRef]
- Talaei, F.; Banga, A.; Pursell, A. New-onset atrial fibrillation among COVID-19 patients: A narrative review. World J. Crit. Care Med. 2023, 12, 236–247. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, B.; Geng, T.; Liu, D.; Tian, Q.; Meng, X.; Zhang, Q.; Jiang, M.; Zhang, Y.; Song, M.; et al. Causal associations between COVID-19 and atrial fibrillation: A bidirectional Mendelian randomization study. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1001–1009. [Google Scholar] [CrossRef]
- Offerhaus, J.A.; Joosten, L.P.; van Smeden, M.; Linschoten, M.; Bleijendaal, H.; Tieleman, R.; Wilde, A.A.; Rutten, F.H.; Geersing, G.-J.; Remme, C.A. Sex- and age specific association of new-onset atrial fibrillation with in-hospital mortality in hospitalised COVID-19 patients. Int. J. Cardiol. Heart Vasc. 2022, 39, 100970. [Google Scholar] [CrossRef] [PubMed]
- Gawalko, M.; Kaplon-Cieslicka, A.; Hohl, M.; Dobrev, D.; Linz, D. COVID-19 associated atrial fibrillation: Incidence, putative mechanisms and potential clinical implications. Int. J. Cardiol. Heart Vasc. 2020, 30, 100631. [Google Scholar] [PubMed]
- Satterfield, B.A.; Bhatt, D.L.; Gersh, B.J. Cardiac involvement in the long-term implications of COVID-19. Nat. Rev. Cardiol. 2022, 19, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Kapusta, J.; Babicki, M.; Pieniawska-Smiech, K.; Kaluzinska-Kolat, Z.; Kolat, D.; Jankowski, P.; Kasprzak, J.D.; Wejner-Mik, P.; Bianek-Bodzak, A.; Chudzik, M. Clinical and electrocardiographic correlates of myocardial dysfunction after COVID-19 in nonhospitalised patients in long-term follow-up. Data from the polish long-covid cardiovascular study. J. Med. Virol. 2023, 95, e29331. [Google Scholar] [CrossRef] [PubMed]
- Wranicz, J.K.; Drożdż, J.; Różycka-Kosmalska, M.; Kasprzak, J.D.; Lubiński, A.; Piotrowski, G.; Kosmalski, M.; Życiński, P.; Ciurus, T.; Ptaszyński, P.; et al. Impact of the COVID-19 pandemic on the performance of selected cardiac electrotherapy and electrophysiology procedures. Kardiol. Pol. 2021, 79, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Drożdż, J.; Piotrowski, G.; Zielińska, M.; Wranicz, J.K.; Lubiński, A.; Krekora, J.; Krejca, M.; Ptaszyński, P.; Kaźmierczak, J.; Kasprzak, J.D. Hospitalizations and interventional procedures in cardiology departments in the region of 2.5 million inhabitants during the SARS-CoV-2 pandemic. Kardiol. Pol. 2021, 79, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Nadarajah, R.; Wu, J.; Hurdus, B.; Asma, S.; Bhatt, D.L.; Biondi-Zoccai, G.; Mehta, L.S.; Ram, C.V.S.; Ribeiro, A.L.P.; Van Spall, H.G.C.; et al. The collateral damage of COVID-19 to cardiovascular services: A meta-analysis. Eur. Heart J. 2022, 43, 3164–3178. [Google Scholar] [CrossRef]
- Izzo, C.; Visco, V.; Gambardella, J.; Ferruzzi, G.J.; Rispoli, A.; Rusciano, M.R.; Toni, A.L.; Virtuoso, N.; Carrizzo, A.; Di Pietro, P.; et al. Cardiovascular implications of microRNAs in coronavirus disease 2019. J. Pharmacol. Exp. Ther. 2022, 384, 102–108. [Google Scholar] [CrossRef]
Characteristics | All N = 199 | AF Negative N = 131 | AF Positive N = 68 | p Value |
---|---|---|---|---|
Age (years) | 70 (61–77) | 67 (55–74) | 75 (69–81) | <0.001 |
Gender (female) | 72 (36%) | 44 (34%) | 28 (41%) | 0.29 |
Body mass index (kg/m2) | 28 (25–32) | 27.9 (24.9–32.2) | 27.6 (25–31) | 0.66 |
C-reactive protein—day 1 (mg/L) | 54 (12–119) | 52 (10–114) | 70.6 (19–124) | 0.23 |
Interleukin-6—day 1 (pg/mL) | 42 (12–82) | 38 (10–75) | 47.5 (24–104) | 0.12 |
White blood cells—day 1 (n/µL) | 7.4 (5.5–10.5) | 7.20 (5.4–11) | 8.1 (6.2–10.6) | 0.4 |
Procalcitonin—day 1 (ng/mL) | 0.1 (0.07–0.3) | 0.11 (0.06–0.2) | 0.18 (0.09–0.6) | 0.003 |
NT-proBNP—day-1 (pg/mL) | 1334 (347–4399) | 846 (150–2292) | 3340 (1073–10214) | <0.001 |
D-dimer—day 1 (µg/L) | 1534 (725–4413) | 1224 (691–2780) | 2413 (749–4753) | 0.08 |
Left ventricular ejection fraction (%) | 54 (42–60) | 56 (47–60) | 49 (35–58) | <0.001 |
Chronic kidney disease (CKD 3–5) | 88 (44%) | 43 (33%) | 45 (66%) | <0.001 |
Glomerular filtration rate—day 1 | 63 (42–88) | 74 (53–97) | 48 (36–69) | <0.001 |
Severe course of COVID-19 | 98 (49%) | 62 (47%) | 36 (53%) | 0.45 |
Initial saturation—day 1 (%) | 93 (90–97) | 93 (90–97) | 90 (88–95) | 0.17 |
Need for high-flow oxygen | 15 (8%) | 12 (9%) | 3 (4%) | 0.21 |
Need for intubation | 38 (19%) | 23 (18%) | 15 (22%) | 0.45 |
Pneumonia in computer tomography >50% lung volume | 18 (9%) | 10 (8%) | 8 (12%) | 0.34 |
Hypertension | 142 (71%) | 93 (74%) | 49 (75%) | 0.6 |
Chronic coronary syndrome | 89 (45%) | 56 (42%) | 33 (48%) | 0.53 |
Diabetes | 58 (29%) | 37 (28%) | 21 (31%) | 0.54 |
Nicotinism | 27 (13%) | 19 (15%) | 8 (12%) | 0.55 |
90 days—mortality | 82 (41%) | 44 (34%) | 38 (56%) | 0.0025 |
Medications during hospitalization: | ||||
LMWH | 165 (83%) | 129 (98%) | 36 (52%) | <0.001 |
UFH | 12 (6%) | 2 (1.5%) | 10 (15%) | <0.001 |
Oral anticoagulants | 54 (27%) | 32 (24%) | 22 (32%) | 0.4 |
Covid-specific therapy | 27 (14%) | 21 (16%) | 6 (9%) | 0.19 |
Characteristics | Paroxysmal AF N = 34 | Persistent AF N = 15 | Permanent AF N = 19 | p Value |
---|---|---|---|---|
Age (years) | 74 (70–77) | 71 (65–80) | 80 (69–84) | <0.001 |
Gender (female) | 15 (44%) | 6 (40%) | 7(37%) | 0.71 |
Body mass index (kg/m2) | 27 (24–29) | 29 (26–34) | 28 (26–35) | 0.18 |
C-reactive protein—day 1 (mg/L) | 91 (34–133) | 17 (6–71) | 68 (21–124) | 0.06 |
Interleukin-6—day 1 (pg/mL) | 51 (37–113) | 36 (6–113) | 47 (2–89) | 0.16 |
White blood cells—day 1 (n/µL) | 8 (4.5–10.5) | 8.8 (7–117) | 7.2 (6.1–10.6) | 0.47 |
Procalcitonin—day 1 (ng/mL) | 0.14 (0.08–0.5) | 0.2 (0.1–0.8) | 0.3 (0.1–0.7) | 0.01 |
NT-proBNP—day 1 (pg/mL) | 2757 (935–7573) | 4666 (2948–14,787) | 6029 (1334–13,754) | <0.001 |
D-dimer—day 1 (µg/L) | 3470 (1563–4595) | 3948 (747–5702) | 805 (470–1894) | 0.004 |
Left ventricular ejection fraction (%) | 48 (38–55) | 44 (30–58) | 58 (37–59) | <0.001 |
Chronic kidney disease (CKD 3, 4, 5) | 12 (35%) | 5 (33%) | 5 (26%) | <0.001 |
Glomerular filtration rate—day 1 | 59 (42–72) | 44 (29–54) | 41 (32–48) | <0.001 |
Severe course of COVID-19 | 13 (38%) | 9 (60%) | 14 (74%) | 0.06 |
Initial saturation—day 1 (%) | 92 (90–94) | 90 (89–93) | 91 (89–95) | 0.17 |
Need for high-flow oxygen | 2 (7%) | 0 | 1 (5%) | 0.37 |
Need for intubation | 9 (26%) | 3 (20%) | 3 (16%) | 0.69 |
Pneumonia in computer tomography >50% lung volume | 4 (14%) | 3 (20%) | 1 (5%) | 0.44 |
90 days—mortality | 15 (45%) | 10 (67%) | 13 (68%) | 0.004 |
Characteristics | AF Present during Hospitalization N = 51 | AF Absent during Hospitalization N = 148 | p Value |
---|---|---|---|
Age (years) | 75 (70–82) | 68 (56–75) | <0.001 |
Gender (female) | 21 (41%) | 51 (34%) | 0.39 |
Body mass index (kg/m2) | 27.62 (26–32.8) | 27.9 (24.5–32.8) | 0.31 |
C-reactive protein—day 1 (mg/L) | 69.43 (18–129) | 52.4 (10–112) | 0.58 |
Interleukin-6—day 1 (pg/mL) | 44.79 (21–113) | 42.3 (10.6–78) | 0.52 |
White blood cells—day 1 (n/µL) | 8.2 (6.4–10.6) | 7.2 (5.4–10.5) | 0.59 |
Procalcitonin—day 1 (ng/mL) | 0.2 (0.1–0.7) | 0.1 (0.06–0.2) | 0.61 |
NT-proBNP—day 1 (pg/mL) | 4002 (1334–11,334) | 926 (189–2788) | 0.13 |
D-dimer—day 1 (µg/L) | 2459 (752–5149) | 1318 (691–3470) | 0.92 |
Left ventricular ejection fraction (%) | 50 (36–58) | 55 (45–60) | 0.031 |
Chronic kidney disease (CKD 3, 4, 5) | 16 (31%) | 68 (46%) | 0.66 |
Glomerular filtration rate—day 1 | 46 (35–59) | 72 (53–95) | <0.001 |
Severe course of COVID-19 | 30 (59%) | 68 (46%) | 0.11 |
Initial saturation—day 1 (%) | 74 (74–88) | 91 (74–97) | <0.001 |
Need for high-flow oxygen | 3 (6%) | 12 (8%) | 0.59 |
Need for intubation | 12 (24%) | 26 (18%) | 0.36 |
Pneumonia in computer tomography >50% lung volume | 7 (14%) | 11 (7%) | 0.19 |
90 days—mortality | 31 (61%) | 51 (34%) | 0.001 |
Characteristics | Non-Survivors (N = 72) | Survivors (N = 127) | p-Value |
---|---|---|---|
Age (years) | 75 (68–82) | 67 (55–74) | <0.001 |
C-reactive protein—day 1 (mg/L) | 90 (38–142) | 36 (7–99) | <0.001 |
Interleukin-6—day 1 (pg/mL) | 62 (40–168) | 29 (8–60) | <0.001 |
White blood cells—day 1 (n/µL) | 9.1 (6.4–12) | 6.8 (5.4–9.2) | <0.001 |
Procalcitonin—day 1 (ng/mL) | 0.2 (0.1–0.7) | 0.08 (0.06–0.2) | <0.001 |
NT-proBNP—day 1 (pg/mL) | 3181 (1033–10,883) | 855 (169–2432) | <0.001 |
D-dimer—day 1 (µg/L) | 2073 (1014–4886) | 1236 (628–3721) | 0.02 |
Left ventricular ejection fraction (%) | 49.5 (38–58) | 57 (47–60) | <0.001 |
Glomerular filtration rate | 43 (33–62) | 75 (58–96) | <0.001 |
History of AF | 35 (48%) | 33 (26%) | 0.001 |
AF present during hospitalization | 29 (40%) | 22 (17%) | 0.001 |
AF persistent or permanent | 27 (29%) | 12 (10%) | <0.001 |
Characteristics | p Value |
---|---|
Age (years) | <0.001 |
C-reactive protein—day 1 (mg/L) | 0.37 |
Interleukin-6—day 1 (pg/mL) | 0.57 |
White blood cells—day 1 (n/µL) | 0.005 |
Procalcitonin—day 1 (ng/mL) | 0.96 |
NT-proBNP—day 1 (pg/mL) | 0.012 |
D-dimer—day 1 (µg/L) | 0.85 |
Left ventricular ejection fraction (%) | 0.89 |
Glomerular filtration rate | 0.028 |
History of atrial fibrillation | 0.19 |
Characteristics | p Value |
---|---|
Age (years) | 0.007 |
C-reactive protein—day 1 (mg/L) | 0.14 |
Interleukin-6—day 1 (pg/mL) | 0.19 |
White blood cells—day 1 (n/µL) | <0.001 |
Procalcitonin—day 1 (ng/mL) | 0.46 |
NT-proBNP—day 1 (pg/mL) | 0.08 |
D-dimer—day 1 (µg/L) | 0.76 |
Glomerular filtration rate | 0.01 |
Left ventricular ejection fraction (%) | 0.99 |
Permanent or persistent atrial fibrillation vs. paroxysmal or absent | 0.035 |
Characteristics | p Value |
---|---|
Age (years) | <0.001 |
C-reactive protein—day 1 (mg/L) | 0.37 |
Interleukin-6—day 1 (pg/mL) | 0.57 |
White blood cells—day 1 (n/µL) | 0.004 |
Procalcitonin—day 1 (ng/mL) | 0.95 |
NT-proBNP—day 1 (pg/mL) | 0.014 |
D-dimer—day 1 (µg/L) | 0.87 |
Glomerular filtration rate | 0.04 |
Left ventricular ejection fraction (%) | 0.73 |
Atrial fibrillation present during hospitalization | 0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zając, A.; Wrona, E.; Kasprzak, J.D. Permanent and Persistent Atrial Fibrillations Are Independent Risk Factors of Mortality after Severe COVID-19. J. Clin. Med. 2024, 13, 3112. https://doi.org/10.3390/jcm13113112
Zając A, Wrona E, Kasprzak JD. Permanent and Persistent Atrial Fibrillations Are Independent Risk Factors of Mortality after Severe COVID-19. Journal of Clinical Medicine. 2024; 13(11):3112. https://doi.org/10.3390/jcm13113112
Chicago/Turabian StyleZając, Agnieszka, Ewa Wrona, and Jarosław D. Kasprzak. 2024. "Permanent and Persistent Atrial Fibrillations Are Independent Risk Factors of Mortality after Severe COVID-19" Journal of Clinical Medicine 13, no. 11: 3112. https://doi.org/10.3390/jcm13113112
APA StyleZając, A., Wrona, E., & Kasprzak, J. D. (2024). Permanent and Persistent Atrial Fibrillations Are Independent Risk Factors of Mortality after Severe COVID-19. Journal of Clinical Medicine, 13(11), 3112. https://doi.org/10.3390/jcm13113112