Loco-Regional Anesthesia for Pain Management in Robotic Thoracic Surgery
Abstract
:1. Introduction
2. Materials and Methods
Study Selection
3. Local Infiltration
3.1. Technique
3.2. Advantages in Robotic Thoracic Surgery
3.3. Limitations and Challenges
4. Thoracic Epidural Anesthesia
4.1. Technique
4.2. Advantages in Robotic Thoracic Surgery
4.3. Limitations and Challenges
- -
- Hemodynamic Instability: The administration of local anesthetics into the epidural space can lead to sympathetic nerve blockade, which may result in vasodilation and hypotension. Careful monitoring and management of the patient’s fluid status and hemodynamics are required to prevent and treat hypotension [29,30].
- -
- Respiratory Compromise: TEA can affect intercostal muscles and, to a lesser extent, the diaphragm, which may reduce the patient’s ability to breathe deeply and cough effectively, potentially leading to atelectasis or pneumonia, especially in patients with pre-existing pulmonary conditions.
- -
- Infection: The introduction of a catheter for epidural anesthesia can increase the risk of infection, including epidural abscess or discitis.
- -
- Epidural Hematoma: This is a rare but serious complication, particularly in patients with coagulopathy or those on anticoagulant therapy. It can lead to spinal cord compression and requires immediate recognition and surgical intervention.
- -
- Catheter-Related Issues: Catheter migration, kinking, or dislodgement can result in inadequate analgesia. Proper securing of the catheter and monitoring of its function are important.
- -
- Technical Difficulties: The correct placement of an epidural catheter can be technically challenging, and inadvertent dural puncture may occur, potentially leading to a post-dural puncture headache.
- -
- Need for close monitoring: Patients receiving peridural anesthesia require close monitoring since the epidural catheter is in place. This includes regular assessments of pain control, motor and sensory block levels, hemodynamic parameters, and potential side effects or complications from the infusion. The need for close monitoring may also delay discharge after robotic thoracic surgery.
5. Paravertebral Block
5.1. Technique
5.2. Advantages in Robotic Thoracic Surgery
5.3. Limitations and Challenges
6. Intercostal Nerve Block
6.1. Technique
6.2. Advantages in Robotic Thoracic Surgery
6.3. Limitations and Challenges
7. Erector Spinae Plane Block
7.1. Technique
7.2. Advantages in Robotic Thoracic Surgery
7.3. Limitations and Challenges
8. Serratus Anterior Plane Block
8.1. Technique
8.2. Advantages in Robotic Thoracic Surgery
8.3. Limitations and Challenges
9. Local Anesthetics
10. Discussion
11. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burns, H.R.; McLennan, A.; Xue, E.Y.; Yu, J.Z.; Selber, J.C. Robotics in Microsurgery and Supermicrosurgery. Semin. Plast. Surg. 2023, 37, 206–216. [Google Scholar] [CrossRef]
- Mokhtari, L.; Hosseinzadeh, F.; Nourazarian, A. Biochemical implications of robotic surgery: A new frontier in the operating room. J. Robot. Surg. 2024, 18, 91. [Google Scholar] [CrossRef]
- Sicolo, E.; Zirafa, C.C.; Romano, G.; Brandolini, J.; De Palma, A.; Bongiolatti, S.; Gallina, F.T.; Ricciardi, S.; Maestri, M.; Guida, M.; et al. National Multicenter Study on the Comparison of Robotic and Open Thymectomy for Thymic Neoplasms in Myasthenic Patients: Surgical, Neurological and Oncological Outcomes. Cancers 2024, 16, 406. [Google Scholar] [CrossRef]
- Odeh, A.M.; Wyant, K.; Freeman, R.K.; Abdelsattar, Z.M. Tackling complex thoracic surgical operations with robotic solutions: A narrative review. J. Thorac. Dis. 2024, 16, 1521–1536. [Google Scholar] [CrossRef]
- Nabe, Y.; Inoue, M.; Yoshida, J. Perspectives on surgical treatment for thymic epithelial tumors: A narrative review. Gland. Surg. 2024, 13, 225–235. [Google Scholar] [CrossRef]
- Salahoru, P.; Grigorescu, C.; Hinganu, M.V.; Lunguleac, T.; Halip, A.I.; Hinganu, D. Thymus Surgery Prospectives and Perspectives in Myasthenia Gravis. J. Pers. Med. 2024, 14, 241. [Google Scholar] [CrossRef]
- Lucchi, M.; Davini, F.; Ricciardi, R.; Duranti, L.; Boldrini, L.; Palmiero, G.; Basolo, F.; Mussi, A. Management of pleural recurrence after curative resection of thymoma. J. Thorac. Cardiovasc. Surg. 2009, 137, 1185–1189. [Google Scholar] [CrossRef]
- Pauli, H.; Eladawy, M.; Park, J. Anesthesia for robotic thoracic surgery. Ann. Cardiothorac. Surg. 2019, 8, 263–268. [Google Scholar] [CrossRef]
- Elsayed, H.H.; Moharram, A.A. Tailored anaesthesia for thoracoscopic surgery promoting enhanced recovery: The state of the art. Anaesth. Crit. Care Pain Med. 2021, 40, 100846. [Google Scholar] [CrossRef] [PubMed]
- Scott, N.B. Wound infiltration for surgery. Anaesthesia 2010, 65 (Suppl. S1), 67–75. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, S.; Brookes, J.; Bourne, R. Local Infiltration Analgesia. Anesthesiol. Clin. 2011, 29, 329–342. [Google Scholar] [CrossRef]
- Srinivasan, A.K.; Shrivastava, D.; Kurzweil, R.E.; Weiss, D.A.; Long, C.J.; Shukla, A.R. Port Site Local Anesthetic Infiltration Vs Single-dose Intrathecal Opioid Injection to Control Perioperative Pain in Children Undergoing Minimal Invasive Surgery: A Comparative Analysis. Urology 2016, 97, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Sihoe, A.D.; Manlulu, A.V.; Lee, T.-W.; Thung, K.-H.; Yim, A.P. Pre-emptive local anesthesia for needlescopic video-assisted thoracic surgery: A randomized controlled trial. Eur. J. Cardio-Thoracic Surg. 2007, 31, 103–108. [Google Scholar] [CrossRef]
- Katlic, M.R. Video-Assisted Thoracic Surgery Utilizing Local Anesthesia and Sedation: How I Teach It. Ann. Thorac. Surg. 2017, 104, 727–730. [Google Scholar] [CrossRef]
- Katlic, M.R.; Facktor, M.A. Video-assisted thoracic surgery utilizing local anesthesia and sedation: 384 consecutive cases. Ann. Thorac. Surg. 2010, 90, 240–245. [Google Scholar] [CrossRef]
- Fukui, T.; Minami, K.; Wakatsuki, Y.; Matsukura, T. Thoracoscopic surgery under local anesthesia for high-risk intractable secondary spontaneous pneumothorax. Gen. Thorac. Cardiovasc. Surg. 2020, 68, 1148–1155. [Google Scholar] [CrossRef]
- Crettenand, F.; Assayed-Leonardi, N.; Rohrer, F. Is Continuous Wound Infiltration a Better Option for Postoperative Pain Management after Open Nephrectomy Compared to Thoracic Epidural Analgesia? J. Clin. Med. 2023, 12, 2974. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, T.J.P.; Rasburn, N.J.; Abdelnour-Berchtold, E.; Brunelli, A.; Cerfolio, R.J.; Gonzalez, M.; Ljungqvist, O.; Petersen, R.H.; Popescu, W.M.; Slinger, P.D.; et al. Guidelines for enhanced recovery after lung surgery: Recommendations of the Enhanced Recovery After Surgery (ERAS®) Society and the European Society of Thoracic Surgeons (ESTS). J. Clin. Med. 2019, 55, 91–115. [Google Scholar] [CrossRef] [PubMed]
- Neal, J.M.; Barrington, M.J.; Fettiplace, M.R.; Gitman, M.; Memtsoudis, S.G.; Mörwald, E.E.; Rubin, D.S.; Weinberg, G. The Third American Society of Regional Anesthesia and Pain Medicine Practice Advisory on Local Anesthetic Systemic Toxicity: Executive Summary 2017. Reg. Anesth. Pain Med. 2018, 43, 113–123. [Google Scholar] [CrossRef]
- Von Dossow, V.; Welte, M.; Zaune, U.; Martin, E.; Walter, M.; Rückert, J.; Kox, W.J.; Spies, C.D. Thoracic epidural anesthesia combined with general anesthesia: The preferred anesthetic technique for thoracic surgery. Obstet. Anesth. Dig. 2001, 92, 848–854. [Google Scholar] [CrossRef]
- Mineo, T.C. Epidural anesthesia in awake thoracic surgery. Eur. J. Cardio-Thoracic Surg. 2007, 32, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Groeben, H. Epidural anesthesia and pulmonary function. J. Anesth. 2006, 20, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Kawagoe, I.; Hayashida, M.; Satoh, D.; Kochiyama, T.; Fukuda, M.; Kishii, J. Postoperative analgesia in patients undergoing robot-assisted thoracic surgery: A comparison between thoracic epidural analgesia and intercostal nerve block combined with intravenous patient-controlled analgesia. Ann. Palliat. Med. 2021, 10, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- Kusano, Y.; Kawagoe, I.; Yamaguchi, A.; Kishii, J.; Morita, Y.; Fukuda, M.; Kochiyama, T.; Hayashida, M. Postoperative analgesia following robot-assisted thoracic surgery for mediastinal disease: Retrospective comparative study of general anesthesia alone, combined with epidural analgesia, and with ultrasound-guided thoracic paraspinal block. Ann. Transl. Med. 2023, 11, 206. [Google Scholar] [CrossRef] [PubMed]
- Fiorelli, A.; Mazzella, A.; Cascone, R.; Caronia, F.P.; Arrigo, E.; Santini, M. Bilateral thoracoscopic extended thymectomy versus sternotomy. Asian Cardiovasc. Thorac. Ann. 2016, 24, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Chow, T.K.F. PROSPECT Guidelines no Longer Recommend Thoracic Epidural Analgesia for Video-Assisted Thoracoscopic Surgery. Anaesthesia 2022, 77, 937. [Google Scholar] [CrossRef] [PubMed]
- Loop, T. Does thoracic epidural anaesthesia constitute over-instrumentation in video- and robotic-assisted thoracoscopic lung parenchyma resections? Curr. Opin. Anaesthesiol. 2021, 34, 199–203. [Google Scholar] [CrossRef] [PubMed]
- Sarridou, D.G.; Mouratoglou, S.A.; Mitchell, J.B.; Cox, F.; Boutou, A.; Braoudaki, M.; Lambrou, G.I.; Konstantinidou, M.; Argiriadou, H.; Walker, C.P.R. Post-Operative Thoracic Epidural Analgesia and Incidence of Major Complications according to Specific Safety Standardized Documentation: A Large Retrospective Dual Center Experience. J. Pers. Med. 2023, 13, 1672. [Google Scholar] [CrossRef] [PubMed]
- La Via, L.; Vasile, F.; Perna, F.; Zawadka, M. Prediction of fluid responsiveness in critical care: Current evidence and future perspective. Trends Anaesth. Crit. Care 2024, 54, 101316. [Google Scholar] [CrossRef]
- Messina, A.; La Via, L.; Milani, A.; Savi, M.; Calabrò, L.; Sanfilippo, F.; Negri, K.; Castellani, G.; Cammarota, G.; Robba, C.; et al. Spinal Anesthesia and Hypotensive Events in Hip Fracture Surgical Repair in Elderly Patients: A Meta-Analysis. J. Anesth. Analg. Crit. Care 2022, 2, 19. [Google Scholar] [CrossRef]
- Konstantinidou, M.; Argiriadou, H.; Walker, C.P.R.; Unic-Stojanovic, D.; Babic, S.; Jovic, M. Benefits, risks and complications of perioperative use of epidural anesthesia. J. Pers. Med. 2012, 66, 340–343. [Google Scholar] [CrossRef]
- Chenesseau, J.; Fourdrain, A.; Pastene, B.; Charvet, A.; Rivory, A.; Baumstarck, K.; Bouabdallah, I.; Trousse, D.; Boulate, D.; Brioude, G.; et al. Effectiveness of Surgeon-Performed Paravertebral Block Analgesia for Minimally Invasive Thoracic Surgery: A Randomized Clinical Trial. JAMA Surg. 2023, 158, 1255–1263. [Google Scholar] [CrossRef] [PubMed]
- Theeuwen, H.; Kim, A.W. The Delineation of Another Standard for Postoperative Pain Management Following Thoracic Surgery. JAMA Surg. 2023, 158, 1263–1264. [Google Scholar] [CrossRef] [PubMed]
- Krediet, A.C.; Moayeri, N.; van Geffen, G.-J.; Bruhn, J.; Renes, S.; Bigeleisen, P.E.; Groen, G.J. Different Approaches to Ultrasound-guided Thoracic Paravertebral Block: An Illustrated Review. Anesthesiology 2015, 123, 459–474. [Google Scholar] [CrossRef] [PubMed]
- Feray, S.; Lubach, J.; Joshi, G.P.; Bonnet, F.; Van de Velde, M.; the PROSPECT Working Group of the European Society of Regional Anaesthesia and Pain Therapy. PROSPECT Guidelines for Video-Assisted Thoracoscopic Surgery: A Systematic Review and Procedure-Specific Postoperative Pain Management Recommendations. Anaesthesia 2022, 77, 311–325. [Google Scholar] [CrossRef] [PubMed]
- Harky, A.; Clarke, C.G.; Kar, A.; Bashir, M. Epidural analgesia versus paravertebral block in video-assisted thoracoscopic surgery. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 404–406. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J.H.; Gates, S.; Naidu, B.V.; Wilson, M.J.; Smith, F.G. Paravertebral block versus thoracic epidural for patients undergoing thoracotomy. Emergencias 2016, 2016, CD009121. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; Qiao, Q.; Chen, R.; Xu, Q.; Zhang, Y.; Tian, Y. The effect of ultrasound-guided intercostal nerve block, single-injection erector spinae plane block and multiple-injection paravertebral block on postoperative analgesia in thoracoscopic surgery: A randomized, double-blinded, clinical trial. J. Clin. Anesth. 2020, 59, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Tajè, R.; Gallina, F.T.; Forcella, D.; Alessandrini, G.; Papale, M.; Sardellitti, F.; Pierconti, F.; Coccia, C.; Ambrogi, V.; Facciolo, F.; et al. Multimodal evaluation of locoregional anaesthesia efficacy on postoperative pain after robotic pulmonary lobectomy for NSCLC: A pilot study. J. Robot. Surg. 2023, 17, 1705–1713. [Google Scholar] [CrossRef]
- Davies, R.G.; Myles, P.S.; Graham, J.M. A comparison of the analgesic efficacy and side-effects of paravertebral vs epidural blockade for thoracotomy—A systematic review and meta-analysis of randomized trials. Br. J. Anaesth. 2006, 96, 418–426. [Google Scholar] [CrossRef]
- Luyet, C.; Eichenberger, U.; Greif, R.; Vogt, A.; Farkas, Z.S.; Moriggl, B. Ultrasound-guided paravertebral puncture and placement of catheters in human cadavers: An imaging study. Br. J. Anaesth. 2009, 102, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Lönnqvist, P.A.; MacKenzie, J.; Soni, A.K.; Conacher, I.D. Paravertebral blockade. Failure rate and complications. Anaesthesia 1995, 50, 813–815. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, D.; Wang, Z.-Z.; Wang, B.; Dai, T. The efficacy of thoracic paravertebral block for thoracoscopic surgery: A meta-analysis of randomized controlled trials. Medicine 2018, 97, e13771. [Google Scholar] [CrossRef] [PubMed]
- Pace, M.M.; Sharma, B.; Anderson-Dam, J.; Fleischmann, K.; Warren, L.; Stefanovich, P. Ultrasound-Guided Thoracic Paravertebral Blockade: A Retrospective Study of the Incidence of Complications. Obstet. Anesth. Dig. 2016, 122, 1186–1191. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.; Lönnqvist, P.A.; Naja, Z. Bilateral thoracic paravertebral block: Potential and practice. Br. J. Anaesth. 2011, 106, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.C. Intercostal nerve block for postoperative somatic pain following surgery of thorax and upper abdomen. Br. J. Anaesth. 1975, 47, 284–286. [Google Scholar] [PubMed]
- Lopez-Rincon, R.M.; Hendrix, J.M.; Kumar, V. Ultrasound-Guided Intercostal Nerve Block. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2023. [Google Scholar]
- Ohgoshi, Y.; Ino, K.; Matsukawa, M. Ultrasound-guided parasternal intercostal nerve block. J. Anesth. 2016, 30, 916. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-W.; Su, F.-W.; Ting, C.-K.; Yang, C.-F.; Yang, C.-W.; Tsou, M.-Y.; Chiang, H.K. Intercostal Nerve Block Using an Innovative Intraneedle Ultrasound Transducer: A Proof-of-Concept study. Ultrasound Med. Biol. 2021, 47, 1881–1892. [Google Scholar] [CrossRef] [PubMed]
- Guerra-Londono, C.E.; Privorotskiy, A.; Cozowicz, C.; Hicklen, R.S.; Memtsoudis, S.G.; Mariano, E.R.; Cata, J.P. Assessment of Intercostal Nerve Block Analgesia for Thoracic Surgery: A Systematic Review and Meta-analysis. JAMA Netw. Open 2021, 4, e2133394. [Google Scholar] [CrossRef]
- Neal, J.M.; Gerancher, J.C.; Hebl, J.R.; Ilfeld, B.M.; McCartney, C.J.L.; Franco, C.D.; Hogan, Q.H. Upper extremity regional anesthesia: Essentials of our current understanding, 2008. Reg. Anesth. Pain Med. 2009, 34, 134–170. [Google Scholar] [CrossRef]
- Naja, Z.; Lonnqvist, P.-A. Somatic paravertebral nerve blockade Incidence of failed block and complications. Anaesthesia 2001, 56, 1184–1188. [Google Scholar] [CrossRef]
- Karmakar, M.K.; Booker, P.D.; Franks, R.; Pozzi, M. Continuous extrapleural paravertebral infusion of bupivacaine for post-thoracotomy analgesia in young infants. Br. J. Anaesth. 1996, 76, 811–815. [Google Scholar] [CrossRef] [PubMed]
- Sihoe, A.D.; Lee, T.-W.; Wan, I.Y.; Thung, K.-H.; Yim, A.P. The use of gabapentin for post-operative and post-traumatic pain in thoracic surgery patients. Eur. J. Cardio-Thoracic Surg. 2006, 29, 795–799. [Google Scholar] [CrossRef] [PubMed]
- Conacher, I.D. Pain relief after thoracotomy. Br. J. Anaesth. 1990, 65, 806–812. [Google Scholar] [CrossRef]
- Forero, M.; Adhikary, S.D.; Lopez, H.; Tsui, C.; Chin, K.J. The Erector Spinae Plane Block: A Novel Analgesic Technique in Thoracic Neuropathic Pain. Reg. Anesth. Pain Med. 2016, 41, 621–627. [Google Scholar] [CrossRef]
- Das Adhikary, S.; Bernard, S.; Lopez, H.; Chin, K.J. Erector Spinae Plane Block Versus Retrolaminar Block: A Magnetic Resonance Imaging and Anatomical Study. Reg. Anesth. Pain Med. 2018, 43, 756–762. [Google Scholar] [CrossRef]
- Sung, C.-S.; Wei, T.-J.; Hung, J.-J.; Su, F.-W.; Ho, S.-I.; Lin, M.-W.; Chan, K.-C.; Wu, C.-Y. Comparisons in analgesic effects between ultrasound-guided erector spinae plane block and surgical intercostal nerve block after video-assisted thoracoscopic surgery: A randomized controlled trial. J. Clin. Anesth. 2024, 95, 111448. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.; Saxena, P.; Borkar, N.; Rangaiah, M.; Arora, N.; Mohanty, P.K. Erector spinae plane block for postoperative analgesia in cardiac surgeries—A systematic review and meta-analysis. Ann. Card. Anaesth. 2023, 26, 247–259. [Google Scholar] [CrossRef]
- Tulgar, S.; Selvi, O.; Senturk, O.; Ermis, M.N.; Cubuk, R.; Ozer, Z. Clinical experiences of ultrasound-guided lumbar erector spinae plane block for hip joint and proximal femur surgeries. J. Clin. Anesth. 2018, 47, 5–6. [Google Scholar] [CrossRef]
- Vidal, E.; Gimenez, H.; Forero, M.; Fajardo, M. Erector spinae plane block: A cadaver study to determine its mechanism of action. Rev. Espanola Anestesiol. Reanim. 2018, 65, 514–519. [Google Scholar] [CrossRef]
- Durey, B.; Djerada, Z.; Boujibar, F.; Besnier, E.; Montagne, F.; Baste, J.-M.; Dusseaux, M.-M.; Compere, V.; Clavier, T.; Selim, J. Erector Spinae Plane Block versus Paravertebral Block after Thoracic Surgery for Lung Cancer: A Propensity Score Study. Cancers 2023, 15, 2306. [Google Scholar] [CrossRef] [PubMed]
- Finnerty, D.T.; McMahon, A.; McNamara, J.R.; Hartigan, S.D.; Griffin, M.; Buggy, D.J. Comparing erector spinae plane block with serratus anterior plane block for minimally invasive thoracic surgery: A randomised clinical trial. Cancers 2020, 125, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Cavaleri, M.; Tigano, S.; Nicoletti, R.; La Rosa, V.; Terminella, A.; Cusumano, G.; Sanfilippo, F.; Astuto, M. Continuous Erector Spinae Plane Block as Postoperative Analgesic Technique for Robotic-Assisted Thoracic Surgery: A Case Series. J. Pain Res. 2021, 14, 3067–3072. [Google Scholar] [CrossRef]
- Chin, K.J.; Adhikary, S.; Sarwani, N.; Forero, M. The analgesic efficacy of pre-operative bilateral erector spinae plane (ESP) blocks in patients having ventral hernia repair. Anaesthesia 2017, 72, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Krishna, S.N.; Chauhan, S.; Bhoi, D.; Kaushal, B.; Hasija, S.; Sangdup, T.; Bisoi, A.K. Bilateral Erector Spinae Plane Block for Acute Post-Surgical Pain in Adult Cardiac Surgical Patients: A Randomized Controlled Trial. J. Cardiothorac. Vasc. Anesth. 2019, 33, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.A.; Palazzi, L.; Lapalma, J.; Forero, M.; Chin, K.J. Erector Spinae Plane Block for Surgery of the Posterior Thoracic Wall in a Pediatric Patient. Reg. Anesth. Pain Med. 2018, 43, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Parras, T.; McDonnell, J.G.; Prats-Galino, A. Serratus plane block: A novel ultrasound-guided thoracic wall nerve block. Anaesthesia 2013, 68, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Kunigo, T.; Murouchi, T.; Yamamoto, S.; Yamakage, M. Injection Volume and Anesthetic Effect in Serratus Plane Block. Reg. Anesth. Pain Med. 2017, 42, 737–740. [Google Scholar] [CrossRef] [PubMed]
- Ökmen, K.; Ökmen, B.M. The efficacy of serratus anterior plane block in analgesia for thoracotomy: A retrospective study. J. Anesth. 2017, 31, 579–585. [Google Scholar] [CrossRef]
- Pai, P.; Hong, J.; Phillips, A.; Lin, H.-M.; Lai, Y.H. Serratus Anterior Plane Block Versus Intercostal Block with Incision Infiltration in Robotic-Assisted Thoracoscopic Surgery: A Randomized Controlled Pilot Trial. J. Cardiothorac. Vasc. Anesth. 2022, 36, 2287–2294. [Google Scholar] [CrossRef]
- Dusseaux, M.-M.; Grego, V.; Baste, J.-M.; Besnier, E.; Boujibar, F.; Koscianski, G.; Ben Yahia, M.M.; Compere, V.; Clavier, T.; Vannier, M.; et al. Paravertebral block combined with serratus anterior plane block after video-assisted thoracic surgery: A prospective randomized controlled trial. Eur. J. Cardio-Thoracic Surg. 2023, 64, ezad170. [Google Scholar] [CrossRef]
- Abdallah, F.W.; Chan, V.W.; Brull, R. Transversus abdominis plane block: A systematic review. Eur. J. Cardio-Thorac. Surg. Off. J. Eur. Assoc. Cardio-Thorac. Surg. 2012, 37, 193–209. [Google Scholar] [CrossRef]
- Khalil, A.E.; Abdallah, N.M.; Bashandy, G.M.; Kaddah, T.A.-H. Ultrasound-Guided Serratus Anterior Plane Block Versus Thoracic Epidural Analgesia for Thoracotomy Pain. J. Cardiothorac. Vasc. Anesth. 2017, 31, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Semyonov, M.; Fedorina, E.; Grinshpun, J.; Dubilet, M.; Refaely, Y.; Ruderman, L.; Koyfman, L.; Friger, M.; Zlotnik, A.; Klein, M.; et al. Ultrasound-guided serratus anterior plane block for analgesia after thoracic surgery. J. Pain Res. 2019, 12, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Madabushi, R.; Tewari, S.; Gautam, S.K.; Agarwal, A.; Agarwal, A. Serratus anterior plane block: A new analgesic technique for post-thoracotomy pain. Pain Physician 2015, 18, E421–E424. [Google Scholar] [PubMed]
- Ventham, N.T.; Hughes, M.; O’Neill, S.; Johns, N.; Brady, R.R.; Wigmore, S.J. Systematic review and meta-analysis of continuous local anaesthetic wound infiltration versus epidural analgesia for postoperative pain following abdominal surgery. Br. J. Surg. 2013, 100, 1280–1289. [Google Scholar] [CrossRef]
- Kodia, K.; Razi, S.S.; Stephens-McDonnough, J.A.; Szewczyk, J.; Villamizar, N.R.; Nguyen, D.M. Liposomal Bupivacaine Versus Bupivacaine/Epinephrine Intercostal Nerve Block as Part of an Enhanced Recovery After Thoracic Surgery (ERATS) Care Pathway for Robotic Thoracic Surgery. J. Cardiothorac. Vasc. Anesth. 2021, 35, 2283–2293. [Google Scholar] [CrossRef] [PubMed]
- Rice, D.C.; Cata, J.P.; Mena, G.E.; Rodriguez-Restrepo, A.; Correa, A.M.; Mehran, R.J. Posterior Intercostal Nerve Block with Liposomal Bupivacaine: An Alternative to Thoracic Epidural Analgesia. Ann. Thorac. Surg. 2015, 99, 1953–1960. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.M.; Van Helmond, N.; Kilzi, G.M.; Patel, A.; Bowen, F.W.; Shersher, D.D.; Trivedi, K.; Desai, R.G. Liposomal Bupivacaine Versus Bupivacaine for Intercostal Nerve Blocks in Thoracic Surgery: A Retrospective Analysis. Pain Physician 2020, 23, E251–E258. [Google Scholar] [CrossRef]
- Xuan, W.; Hankin, J.; Zhao, H.; Yao, S.; Ma, D. The potential benefits of the use of regional anesthesia in cancer patients. Int. J. Cancer 2014, 137, 2774–2784. [Google Scholar] [CrossRef]
- Liu, S.S.; Ngeow, J.E.; YaDeau, J.T. Ultrasound-guided regional anesthesia and analgesia: A qualitative systematic review. Reg. Anesth. Pain Med. 2009, 34, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.M.; Choi, Y.J.; Kwon, H.J.; Cho, T.H.; Kim, S.H. Comparison of Injectate Spread and Nerve Involvement between Retrolaminar and Erector Spinae Plane Blocks in the Thoracic Region: A Cadaveric Study. Anaesthesia 2018, 73, 1244–1250. [Google Scholar] [CrossRef] [PubMed]
- Voscopoulos, C.; Palaniappan, D.; Zeballos, J.; Ko, H.; Janfaza, D.; Vlassakov, K. The ultrasound-guided retrolaminar block. Can. J. Anaesth. 2013, 60, 888–895. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Zhang, G.; Zhu, Y.; Liu, X.; Xu, S.; He, M.; Chen, S.; An, K.; Liang, G.; Zhu, Z. Effectiveness of Ultrasound-Guided Retrolaminar Block and Erector Spinae Plane Block in Retroperitoneal Laparoscopic Surgery: A Randomized Controlled Trial. J. Pain Res. 2022, 15, 815–826. [Google Scholar] [CrossRef]
- Nobukuni, K.; Hatta, M.; Nakagaki, T.; Yoshino, J.; Obuchi, T.; Fujimura, N. Retrolaminar Versus Epidural Block for Postoperative Analgesia after Minor Video-Assisted Thoracic Surgery: A Retrospective, Matched, Non-Inferiority study. J. Thorac. Dis. 2021, 13, 2758–2767. [Google Scholar] [CrossRef]
- Castroman, P.; Quiroga, O.; Rojals, V.M.; Gomez, M.; Moka, E.; Pergolizzi, J.; Varrassi, G. Reimagining How We Treat Acute Pain: A Narrative Review. Cureus 2022, 14, e23992. [Google Scholar] [CrossRef] [PubMed]
- LA Via, L.; Santonocito, C.; Bartolotta, N.; Lanzafame, B.; Morgana, A.; Continella, C.; Cirica, G.; Astuto, M.; Sanfilippo, F. α-2 Agonists vs. Fentanyl as Adjuvants for Spinal Anesthesia in Elective Cesarean Section: A Meta-Analysis. Minerva Anestesiol. 2023, 89, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Yao, R.; Heng, L.; Pang, B.; Sun, F.-G.; Shen, Y.; Zhong, J.-F.; Zhao, P.-P.; Wu, C.-Y.; Li, B.-P. Ultrasound-guided continuous thoracic paravertebral block alleviates postoperative delirium in elderly patients undergoing esophagectomy: A randomized controlled trial. Medicine 2020, 99, e19896. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Koyyalamudi, V.; Smith, D.D.; Weis, R.A.; Molloy, M.; Spence, A.L.; Kaye, A.J.; Labrie-Brown, C.C.; Hall, O.M.; Cornett, E.M.; et al. The role of regional anesthesia in the propagation of cancer: A comprehensive review. Best Pract. Res. Clin. Anaesthesiol. 2019, 33, 507–522. [Google Scholar] [CrossRef]
- Helwani, M.A.; Avidan, M.S.; Ben Abdallah, A.; Kaiser, D.J.; Clohisy, J.C.; Hall, B.L.; Kaiser, H.A. Effects of regional versus general anesthesia on outcomes after total hip arthroplasty: A retrospective propensity-matched cohort study. J. Bone Jt. Surg. 2015, 97, 186–193. [Google Scholar] [CrossRef]
Loco-Regional Technique | Advantages | Limitations |
---|---|---|
Local Wound Infiltration |
|
|
Thoracic Epidural Analgesia |
|
|
Paravertebral Block |
|
|
Intercostal Nerve Block |
|
|
Erector Spinae Plane Block |
|
|
Serratus Anterior Plane Block |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Via, L.; Cavaleri, M.; Terminella, A.; Sorbello, M.; Cusumano, G. Loco-Regional Anesthesia for Pain Management in Robotic Thoracic Surgery. J. Clin. Med. 2024, 13, 3141. https://doi.org/10.3390/jcm13113141
La Via L, Cavaleri M, Terminella A, Sorbello M, Cusumano G. Loco-Regional Anesthesia for Pain Management in Robotic Thoracic Surgery. Journal of Clinical Medicine. 2024; 13(11):3141. https://doi.org/10.3390/jcm13113141
Chicago/Turabian StyleLa Via, Luigi, Marco Cavaleri, Alberto Terminella, Massimiliano Sorbello, and Giacomo Cusumano. 2024. "Loco-Regional Anesthesia for Pain Management in Robotic Thoracic Surgery" Journal of Clinical Medicine 13, no. 11: 3141. https://doi.org/10.3390/jcm13113141
APA StyleLa Via, L., Cavaleri, M., Terminella, A., Sorbello, M., & Cusumano, G. (2024). Loco-Regional Anesthesia for Pain Management in Robotic Thoracic Surgery. Journal of Clinical Medicine, 13(11), 3141. https://doi.org/10.3390/jcm13113141