Hemodialysis Procedures for Stable Incident and Prevalent Patients Optimize Hemodynamic Stability, Dialysis Dose, Electrolytes, and Fluid Balance
Abstract
:1. Introduction
2. Intradialytic Hypotension
3. Hemodialysis Procedures in Stable Incident and Prevalent Patients
3.1. Treatment Time and Frequency
3.2. Dialysis Membrane and Surface Area
3.3. Blood Flow Rate
3.4. Dialysate Flow Rate
4. Hemodialysis Procedures Aimed at Optimizing Hemodynamic Stability, Dialysis Dose, Electrolytes, and Fluid Balance
4.1. Dialysate Electrolytes
4.1.1. Dialysate Sodium
4.1.2. Dialysate Bicarbonates
4.1.3. Dialysate Calcium
4.1.4. Dialysate Potassium
4.1.5. Dialysate Magnesium
4.2. Dialysate Glucose
4.3. Dialysate Temperature
4.4. Dry Body Weight
4.5. Intradialytic Ultrafiltration
4.6. Dialysis Dose
5. Intra- and Extra-Dialytic Procedures
5.1. Eating during HD
5.2. Antihypertensive Drugs
5.3. Blood Pressure Monitoring
5.4. Blood Parameters
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jager, K.J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Kidney Int. 2019, 96, 1048–1050. [Google Scholar] [CrossRef] [PubMed]
- Bello, A.K.; Okpechi, I.G.; Levin, A.; Ye, F.; Damster, S.; Arruebo, S.; Donner, J.A.; Caskey, F.J.; Cho, Y.; Davids, M.R.; et al. An update on the global disparities in kidney disease burden and care across world countries and regions. Lancet Glob. Health 2024, 12, e382–e395. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, J.; Verboom, L.M.; Ipema, K.J.R.; Paans, W.; Krijnen, W.P.; Gaillard, C.; Westerhuis, R.; Franssen, C.F.M. The Prevalence of Intradialytic Hypotension in Patients on Conventional Hemodialysis: A Systematic Review with Meta-Analysis. Am. J. Nephrol. 2019, 49, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Ducharlet, K.; Weil, J.; Gock, H.; Philip, J. Kidney Clinicians’ Perceptions of Challenges and Aspirations to Improve End-of-Life Care Provision. Kidney Int. Rep. 2023, 8, 1627–1637. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.; Ginsburg, P.B.; Chertow, G.M.; Berns, J.S. The “Advancing American Kidney Health” Executive Order: Challenges and Opportunities for the Large Dialysis Organizations. Am. J. Kidney Dis. 2020, 76, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Bleyer, A.J.; Russell, G.B.; Satko, S.G. Sudden and cardiac death rates in hemodialysis patients. Kidney Int. 1999, 55, 1553–1559. [Google Scholar] [CrossRef] [PubMed]
- Foley, R.N. Clinical epidemiology of cardiac disease in dialysis patients: Left ventricular hypertrophy, ischemic heart disease, and cardiac failure. Semin. Dial. 2003, 16, 111–117. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, C.W. Update on Hemodialysis-Induced Multiorgan Ischemia: Brains and Beyond. J. Am. Soc. Nephrol. 2024, 35, 653–664. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Karumanchi, S.A.; Thadhani, R. Epidemiology and Mechanisms of Uremia-Related Cardiovascular Disease. Circulation 2016, 133, 518–536. [Google Scholar] [CrossRef] [PubMed]
- Odudu, A.; McIntyre, C.W. An Update on Intradialytic Cardiac Dysfunction. Semin. Dial. 2016, 29, 435–441. [Google Scholar] [CrossRef]
- Broers, N.J.; Cuijpers, A.C.; van der Sande, F.M.; Leunissen, K.M.; Kooman, J.P. The first year on haemodialysis: A critical transition. Clin. Kidney J. 2015, 8, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Maddux, D.W.; Usvyat, L.A.; Ketchersid, T.; Jiao, Y.; Blanchard, T.C.; Kotanko, P.; van der Sande, F.M.; Kooman, J.P.; Maddux, F.W. Clinical parameters before and after the transition to dialysis. Hemodial. Int. Int. Symp. Home Hemodial. 2018, 22, 235–244. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.P.; Kreuter, W.; O’Hare, A.M. Healthcare intensity at initiation of chronic dialysis among older adults. J. Am. Soc. Nephrol. 2014, 25, 143–149. [Google Scholar] [CrossRef]
- Dashtban, A.; Mizani, M.A.; Denaxas, S.; Nitsch, D.; Quint, J.; Corbett, R.; Mamza, J.B.; Morris, T.; Mamas, M.; Lawlor, D.A.; et al. A retrospective cohort study predicting and validating impact of the COVID-19 pandemic in individuals with chronic kidney disease. Kidney Int. 2022, 102, 652–660. [Google Scholar] [CrossRef] [PubMed]
- Garbelli, M.; Ion-Titapiccolo, J.; Bellocchio, F.; Stuard, S.; Brancaccio, D.; Neri, L. Prolonged patient survival after implementation of a continuous quality improvement programme empowered by digital transformation in a large dialysis network. Nephrol. Dial. Transplant. 2022, 37, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Assimon, M.M.; Flythe, J.E. Definitions of intradialytic hypotension. Semin. Dial. 2017, 30, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Workgroup, K.D. K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am. J. Kidney Dis. 2005, 45, S1–S153. [Google Scholar]
- Kooman, J.; Basci, A.; Pizzarelli, F.; Canaud, B.; Haage, P.; Fouque, D.; Konner, K.; Martin-Malo, A.; Pedrini, L.; Tattersall, J.; et al. EBPG guideline on haemodynamic instability. Nephrol. Dial. Transplant. 2007, 22 (Suppl. S2), ii22–ii44. [Google Scholar] [CrossRef] [PubMed]
- Mactier, R.; Hoenich, N.; Breen, C. UK Renal Association Clinical Practice Guidelines: Haemodialysis 5th Edition. Guideline 8.1—HD: Symptomatic Dialysis-Related Hypotension Haemodialysis. 2009. Available online: https://ukkidney.org/sites/renal.org/files/haemodialysis-5th-edition.pdf (accessed on 19 May 2024).
- Hirakata, H.; Nitta, K.; Inaba, M.; Shoji, T.; Fujii, H.; Kobayashi, S.; Tabei, K.; Joki, N.; Hase, H.; Nishimura, M.; et al. Japanese Society for Dialysis Therapy guidelines for management of cardiovascular diseases in patients on chronic hemodialysis. Ther. Apher. Dial. 2012, 16, 387–435. [Google Scholar] [CrossRef]
- Sands, J.J.; Usvyat, L.A.; Sullivan, T.; Segal, J.H.; Zabetakis, P.; Kotanko, P.; Maddux, F.W.; Diaz-Buxo, J.A. Intradialytic hypotension: Frequency, sources of variation and correlation with clinical outcome. Hemodial. Int. Int. Symp. Home Hemodial. 2014, 18, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Reilly, R.F. Attending rounds: A patient with intradialytic hypotension. Clin. J. Am. Soc. Nephrol. 2014, 9, 798–803. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A. Why is Intradialytic Hypotension the Commonest Complication of Outpatient Dialysis Treatments? Kidney Int. Rep. 2023, 8, 405–418. [Google Scholar] [CrossRef] [PubMed]
- Daugirdas, J.T. Pathophysiology of dialysis hypotension: An update. Am. J. Kidney Dis. 2001, 38, S11–S17. [Google Scholar] [CrossRef] [PubMed]
- Kanbay, M.; Ertuglu, L.A.; Afsar, B.; Ozdogan, E.; Siriopol, D.; Covic, A.; Basile, C.; Ortiz, A. An update review of intradialytic hypotension: Concept, risk factors, clinical implications and management. Clin. Kidney J. 2020, 13, 981–993. [Google Scholar] [CrossRef] [PubMed]
- Shoji, T.; Tsubakihara, Y.; Fujii, M.; Imai, E. Hemodialysis-associated hypotension as an independent risk factor for two-year mortality in hemodialysis patients. Kidney Int. 2004, 66, 1212–1220. [Google Scholar] [CrossRef] [PubMed]
- Assa, S.; Hummel, Y.M.; Voors, A.A.; Kuipers, J.; Westerhuis, R.; de Jong, P.E.; Franssen, C.F. Hemodialysis-induced regional left ventricular systolic dysfunction: Prevalence, patient and dialysis treatment-related factors, and prognostic significance. Clin. J. Am. Soc. Nephrol. 2012, 7, 1615–1623. [Google Scholar] [CrossRef] [PubMed]
- Flythe, J.E.; Xue, H.; Lynch, K.E.; Curhan, G.C.; Brunelli, S.M. Association of mortality risk with various definitions of intradialytic hypotension. J. Am. Soc. Nephrol. 2015, 26, 724–734. [Google Scholar] [CrossRef] [PubMed]
- Burton, J.O.; Jefferies, H.J.; Selby, N.M.; McIntyre, C.W. Hemodialysis-induced repetitive myocardial injury results in global and segmental reduction in systolic cardiac function. Clin. J. Am. Soc. Nephrol. 2009, 4, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Tisler, A.; Akocsi, K.; Borbas, B.; Fazakas, L.; Ferenczi, S.; Gorogh, S.; Kulcsar, I.; Nagy, L.; Samik, J.; Szegedi, J.; et al. The effect of frequent or occasional dialysis-associated hypotension on survival of patients on maintenance haemodialysis. Nephrol. Dial. Transplant. 2003, 18, 2601–2605. [Google Scholar] [CrossRef] [PubMed]
- van der Sande, F.M.; Dekker, M.J.; Leunissen, K.M.L.; Kooman, J.P. Novel Insights into the Pathogenesis and Prevention of Intradialytic Hypotension. Blood Purif. 2018, 45, 230–235. [Google Scholar] [CrossRef]
- Barth, C.; Boer, W.; Garzoni, D.; Kuenzi, T.; Ries, W.; Schaefer, R.; Schneditz, D.; Tsobanelis, T.; van der Sande, F.; Wojke, R.; et al. Characteristics of hypotension-prone haemodialysis patients: Is there a critical relative blood volume? Nephrol. Dial. Transplant. 2003, 18, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- Worthley, L.I. Shock: A review of pathophysiology and management. Part II. Crit. Care Resusc. 2000, 2, 66–84. [Google Scholar] [CrossRef] [PubMed]
- Funk, D.J.; Jacobsohn, E.; Kumar, A. The role of venous return in critical illness and shock-part I: Physiology. Crit. Care Med. 2013, 41, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, L.D.; Montgomery, R.W.; Gerth, W.A.; Lew, S.Q.; Klein, M.D.; Stewart, J.M.; Medow, M.S.; Velasquez, M.T. Bioimpedance monitoring of cellular hydration during hemodialysis therapy. Hemodial. Int. Int. Symp. Home Hemodial. 2017, 21, 575–584. [Google Scholar] [CrossRef]
- Tattersall, J.; Martin-Malo, A.; Pedrini, L.; Basci, A.; Canaud, B.; Fouque, D.; Haage, P.; Konner, K.; Kooman, J.; Pizzarelli, F.; et al. EBPG guideline on dialysis strategies. Nephrol. Dial. Transplant. 2007, 22 (Suppl. S2), ii5–ii21. [Google Scholar] [CrossRef] [PubMed]
- Ashby, D.; Borman, N.; Burton, J.; Corbett, R.; Davenport, A.; Farrington, K.; Flowers, K.; Fotheringham, J.; Andrea Fox, R.N.; Franklin, G.; et al. Renal Association Clinical Practice Guideline on Haemodialysis. BMC Nephrol. 2019, 20, 379. [Google Scholar] [CrossRef] [PubMed]
- National Kidney Foundation. KDOQI Clinical Practice Guideline for Hemodialysis Adequacy: 2015 Update. Am. J. Kidney Dis. 2015, 66, 884–930. [Google Scholar] [CrossRef] [PubMed]
- Tentori, F.; Zhang, J.; Li, Y.; Karaboyas, A.; Kerr, P.; Saran, R.; Bommer, J.; Port, F.; Akiba, T.; Pisoni, R.; et al. Longer dialysis session length is associated with better intermediate outcomes and survival among patients on in-center three times per week hemodialysis: Results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). Nephrol. Dial. Transplant. 2012, 27, 4180–4188. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Matsumoto, T.; Ohmori, H.; Takemoto, M.; Ikeda, M.; Sumimoto, R.; Kobayashi, T.; Kato, A.; Ohdan, H. Effect of increased blood flow rate on renal anemia and hepcidin concentration in hemodialysis patients. BMC Nephrol. 2021, 22, 221. [Google Scholar] [CrossRef] [PubMed]
- Leypoldt, J.K.; Cheung, A.K.; Agodoa, L.Y.; Daugirdas, J.T.; Greene, T.; Keshaviah, P.R. Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. The Hemodialysis (HEMO) Study. Kidney Int. 1997, 51, 2013–2017. [Google Scholar] [CrossRef] [PubMed]
- Albalate, M.; Pérez-García, R.; de Sequera, P.; Corchete, E.; Alcazar, R.; Ortega, M.; Puerta, M. Is it useful to increase dialysate flow rate to improve the delivered Kt? BMC Nephrol. 2015, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Mesic, E.; Bock, A.; Major, L.; Vaslaki, L.; Berta, K.; Wikstrom, B.; Canaud, B.; Wojke, R. Dialysate saving by automated control of flow rates: Comparison between individualized online hemodiafiltration and standard hemodialysis. Hemodial. Int. Int. Symp. Home Hemodial. 2011, 15, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Covic, A.; Chazot, C.; Leunissen, K.; Luño, J.; Yaqoob, M. Optimal composition of the dialysate, with emphasis on its influence on blood pressure. Nephrol. Dial. Transplant. 2004, 19, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Lindley, E.J. Reducing sodium intake in hemodialysis patients. Semin. Dial. 2009, 22, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Raimann, J.G.; Thijssen, S.; Usvyat, L.A.; Levin, N.W.; Kotanko, P. Sodium alignment in clinical practice—Implementation and implications. Semin. Dial. 2011, 24, 587–592. [Google Scholar] [CrossRef]
- Canaud, B.; Kooman, J.; Selby, N.M.; Taal, M.; Francis, S.; Kopperschmidt, P.; Maierhofer, A.; Kotanko, P.; Titze, J. Sodium and water handling during hemodialysis: New pathophysiologic insights and management approaches for improving outcomes in end-stage kidney disease. Kidney Int. 2019, 95, 296–309. [Google Scholar] [CrossRef] [PubMed]
- Hussein, W.F.; Schiller, B. Dialysate sodium and intradialytic hypotension. Semin. Dial. 2017, 30, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; La Milia, V.; Violo, L.; Del Vecchio, L.; Di Filippo, S. Optimizing haemodialysate composition. Clin. Kidney J. 2015, 8, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Miskulin, D.C.; Tighiouart, H.; Hsu, C.M.; Weiner, D.E. Dialysate Sodium Lowering in Maintenance Hemodialysis A Randomized Clinical Trial. Clin. J. Am. Soc. Nephrol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Lindley, E.; Tattersall, J. What Is the Optimal Dialysate Sodium Concentration? Kidney Dial. 2021, 1, 157–160. [Google Scholar] [CrossRef]
- Hecking, M.; Karaboyas, A.; Rayner, H.; Saran, R.; Sen, A.; Inaba, M.; Bommer, J.; Hörl, W.H.; Pisoni, R.L.; Robinson, B.M.; et al. Dialysate sodium prescription and blood pressure in hemodialysis patients. Am. J. Hypertens. 2014, 27, 1160–1169. [Google Scholar] [CrossRef]
- Canaud, B. A Personal and Practical Answer From a Clinical Perspective. Kidney Dial. 2021, 1, 149–151. [Google Scholar] [CrossRef]
- Canaud, B.; Kooman, J.; Maierhofer, A.; Raimann, J.; Titze, J.; Kotanko, P. Sodium First Approach, to Reset Our Mind for Improving Management of Sodium, Water, Volume and Pressure in Hemodialysis Patients, and to Reduce Cardiovascular Burden and Improve Outcomes. Front. Nephrol. 2022, 2, 935388. [Google Scholar] [CrossRef] [PubMed]
- Raimann, J.G.; Ficociello, L.H.; Usvyat, L.A.; Zhang, H.; Pacelli, L.; Moore, S.; Sheppard, P.; Xiao, Q.; Wang, Y.; Mullon, C.; et al. Effects of dialysate to serum sodium (Na(+)) alignment in chronic hemodialysis (HD) patients: Retrospective cohort study from a quality improvement project. BMC Nephrol. 2018, 19, 75. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, U.; Maierhofer, A.; Canaud, B.; Hoyer, J.; Gross, M. Zero Diffusive Sodium Balance in Hemodialysis Provided by an Algorithm-Based Electrolyte Balancing Controller: A Proof of Principle Clinical Study. Artif. Organs 2019, 43, 150–158. [Google Scholar] [CrossRef]
- Ponce, P.; Pinto, B.; Wojke, R.; Maierhofer, A.P.; Gauly, A. Evaluation of intradialytic sodium shifts during sodium controlled hemodialysis. Int. J. Artif. Organs 2020, 43, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Sagova, M.; Wojke, R.; Maierhofer, A.; Gross, M.; Canaud, B.; Gauly, A. Automated individualization of dialysate sodium concentration reduces intradialytic plasma sodium changes in hemodialysis. Artif. Organs 2019, 43, 1002–1013. [Google Scholar] [CrossRef]
- Leunissen, K.M.; van den Berg, B.W.; van Hooff, J.P. Ionized calcium plays a pivotal role in controlling blood pressure during haemodialysis. Blood Purif. 1989, 7, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Tovbin, D.; Sherman, R.A. Correcting Acidosis during Hemodialysis: Current Limitations and a Potential Solution. Semin. Dial. 2016, 29, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Abramowitz, M.K. Bicarbonate Balance and Prescription in ESRD. J. Am. Soc. Nephrol. 2017, 28, 726–734. [Google Scholar] [CrossRef] [PubMed]
- Lomashvili, K.; Garg, P.; O’Neill, W.C. Chemical and hormonal determinants of vascular calcification in vitro. Kidney Int. 2006, 69, 1464–1470. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, F.J.; Lopez, I.; Montes de Oca, A.; Perez, J.; Rodriguez, M.; Aguilera-Tejero, E. Metabolic acidosis inhibits soft tissue calcification in uremic rats. Kidney Int. 2008, 73, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Mudunuru, S.A.; Navarrete, J.; O’Neill, W.C. Metabolic alkalosis in hemodialysis patients. Semin. Dial. 2023, 36, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q. Acid-base alterations in ESRD and effects of hemodialysis. Semin. Dial. 2018, 31, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Bozikas, A.; Kiriakoutzik, I.; Petrou, I.; Touroutzis, T.; Kitoukidi, E.; Pisanidou, P.; Vakiani, S.; Georgilas, N.; Martika, A.; Pangidis, P.; et al. Aiming for the optimal bicarbonate prescription for maintenance hemodialysis therapy in end-stage renal disease. Hemodial. Int. Int. Symp. Home Hemodial. 2019, 23, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, A.; Kikuchi, K.; Kawamura, Y. Heart rate variability, arrhythmia and magnesium in hemodialysis patients. Clin. Calcium 2005, 15, 226–232. [Google Scholar] [PubMed]
- Wieliczko, M.; Małyszko, J. Acid-base balance in hemodialysis patients in everyday practice. Ren. Fail. 2022, 44, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Tentori, F.; Karaboyas, A.; Robinson, B.M.; Morgenstern, H.; Zhang, J.; Sen, A.; Ikizler, T.A.; Rayner, H.; Fissell, R.B.; Vanholder, R.; et al. Association of dialysate bicarbonate concentration with mortality in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2013, 62, 738–746. [Google Scholar] [CrossRef]
- Gabutti, L.; Ferrari, N.; Giudici, G.; Mombelli, G.; Marone, C. Unexpected haemodynamic instability associated with standard bicarbonate haemodialysis. Nephrol. Dial. Transplant. 2003, 18, 2369–2376. [Google Scholar] [CrossRef] [PubMed]
- K/DOQI clinical practice guidelines for bone metabolism and disease in chronic kidney disease. Am. J. Kidney Dis. 2003, 42, S1–S201. [CrossRef]
- Drüeke, T.B.; Touam, M. Calcium balance in haemodialysis--do not lower the dialysate calcium concentration too much (con part). Nephrol. Dial. Transplant. 2009, 24, 2990–2993. [Google Scholar] [CrossRef] [PubMed]
- Maynard, J.C.; Cruz, C.; Kleerekoper, M.; Levin, N.W. Blood pressure response to changes in serum ionized calcium during hemodialysis. Ann. Intern. Med. 1986, 104, 358–361. [Google Scholar] [CrossRef] [PubMed]
- van der Sande, F.M.; Cheriex, E.C.; van Kuijk, W.H.; Leunissen, K.M. Effect of dialysate calcium concentrations on intradialytic blood pressure course in cardiac-compromised patients. Am. J. Kidney Dis. 1998, 32, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int. Suppl. 2017, 7, 1–59, Erratum in Kidney Int. Suppl. 2017, 7, e1. [Google Scholar] [CrossRef] [PubMed]
- Ketteler, M.; Block, G.A.; Evenepoel, P.; Fukagawa, M.; Herzog, C.A.; McCann, L.; Moe, S.M.; Shroff, R.; Tonelli, M.A.; Toussaint, N.D.; et al. Executive summary of the 2017 KDIGO Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Guideline Update: What’s changed and why it matters. Kidney Int 2017, 92, 26–36. [Google Scholar] [CrossRef] [PubMed]
- McGill, R.L.; Weiner, D.E. Dialysate Composition for Hemodialysis: Changes and Changing Risk. Semin. Dial. 2017, 30, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Pun, P.H.; Horton, J.R.; Middleton, J.P. Dialysate calcium concentration and the risk of sudden cardiac arrest in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2013, 8, 797–803. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, Z.N.; Silva, B.C.; Reis, L.D.; Castro, M.C.; Ramos, C.D.; Costa-Hong, V.; Bortolotto, L.A.; Consolim-Colombo, F.; Dominguez, W.V.; Oliveira, I.B.; et al. High Dialysate Calcium Concentration May Cause More Sympathetic Stimulus During Hemodialysis. Kidney Blood Press. Res. 2016, 41, 978–985. [Google Scholar] [CrossRef] [PubMed]
- Genovesi, S.; Rossi, E.; Nava, M.; Riva, H.; De Franceschi, S.; Fabbrini, P.; Viganò, M.R.; Pieruzzi, F.; Stella, A.; Valsecchi, M.G.; et al. A case series of chronic haemodialysis patients: Mortality, sudden death, and QT interval. Europace 2013, 15, 1025–1033. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Takase, O.; Tsujimura, T.; Sano, E.; Hayashi, M.; Takato, T.; Hishikawa, K. Long-term effects of low calcium dialysates on the serum calcium levels during maintenance hemodialysis treatments: A systematic review and meta-analysis. Sci. Rep. 2018, 8, 5310. [Google Scholar] [CrossRef] [PubMed]
- Garimella, P.S.; Malhotra, R. Dialysate Calcium: A Lot More Than ‘Set It and Forget It’. Kidney Med. 2019, 1, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Sakoh, T.; Taniguchi, M.; Yamada, S.; Ohnaka, S.; Arase, H.; Tokumoto, M.; Yanagida, T.; Mitsuiki, K.; Hirakata, H.; Nakano, T.; et al. Short- and Long-term Effects of Dialysate Calcium Concentrations on Mineral and Bone Metabolism in Hemodialysis Patients: The K4 Study. Kidney Med. 2019, 1, 296–306. [Google Scholar] [CrossRef] [PubMed]
- van der Sande, F.M.; Ter Meulen, K.J.A.; Kotanko, P.; Kooman, J.P. Dialysate Calcium Levels: Do They Matter? Blood Purif. 2019, 47, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Voroneanu, L.; Covic, A. Arrhythmias in hemodialysis patients. J. Nephrol. 2009, 22, 716–725. [Google Scholar] [PubMed]
- Basile, C.; Lomonte, C. A neglected issue in dialysis practice: Haemodialysate. Clin. Kidney J. 2015, 8, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Basile, C.; Libutti, P.; Lisi, P.; Teutonico, A.; Vernaglione, L.; Casucci, F.; Lomonte, C. Ranking of factors determining potassium mass balance in bicarbonate haemodialysis. Nephrol. Dial. Transplant. 2015, 30, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Feig, P.U.; Shook, A.; Sterns, R.H. Effect of potassium removal during hemodialysis on the plasma potassium concentration. Nephron 1981, 27, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, C.; Gutzwiller, J.P.; Huber, A.; Schindler, C.; Schneditz, D. Low-potassium and glucose-free dialysis maintains urea but enhances potassium removal. Nephrol. Dial. Transplant. 2001, 16, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Buemi, M.; Aloisi, E.; Coppolino, G.; Loddo, S.; Crasci, E.; Aloisi, C.; Barilla, A.; Cosentini, V.; Nostro, L.; Caccamo, C.; et al. The effect of two different protocols of potassium haemodiafiltration on QT dispersion. Nephrol. Dial. Transplant. 2005, 20, 1148–1154. [Google Scholar] [CrossRef] [PubMed]
- Ansari, N.; Manis, T.; Feinfeld, D.A. Symptomatic atrial arrhythmias in hemodialysis patients. Ren. Fail. 2001, 23, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Morrison, G.; Michelson, E.L.; Brown, S.; Morganroth, J. Mechanism and prevention of cardiac arrhythmias in chronic hemodialysis patients. Kidney Int. 1980, 17, 811–819. [Google Scholar] [CrossRef]
- Korzets, A.; Ori, Y.; Herman, M. Serum potassium levels and atrial fibrillation in haemodialysis patients. Nephrol. Dial. Transplant. 2001, 16, 1090. [Google Scholar] [CrossRef] [PubMed]
- Khouri, Y.; Stephens, T.; Ayuba, G.; AlAmeri, H.; Juratli, N.; McCullough, P.A. Understanding and Managing Atrial Fibrillation in Patients with Kidney Disease. J. Atr. Fibrillation 2015, 7, 1069. [Google Scholar] [CrossRef] [PubMed]
- Pun, P.H.; Lehrich, R.W.; Honeycutt, E.F.; Herzog, C.A.; Middleton, J.P. Modifiable risk factors associated with sudden cardiac arrest within hemodialysis clinics. Kidney Int. 2011, 79, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Karnik, J.A.; Young, B.S.; Lew, N.L.; Herget, M.; Dubinsky, C.; Lazarus, J.M.; Chertow, G.M. Cardiac arrest and sudden death in dialysis units. Kidney Int. 2001, 60, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Karaboyas, A.; Zee, J.; Brunelli, S.M.; Usvyat, L.A.; Weiner, D.E.; Maddux, F.W.; Nissenson, A.R.; Jadoul, M.; Locatelli, F.; Winkelmayer, W.C.; et al. Dialysate Potassium, Serum Potassium, Mortality, and Arrhythmia Events in Hemodialysis: Results From the Dialysis Outcomes and Practice Patterns Study (DOPPS). Am. J. Kidney Dis. 2017, 69, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Elsharkawy, M.M.; Youssef, A.M.; Zayoon, M.Y. Intradialytic changes of serum magnesium and their relation to hypotensive episodes in hemodialysis patients on different dialysates. Hemodial. Int. Int. Symp. Home Hemodial. 2006, 10 (Suppl. S2), S16–S23. [Google Scholar] [CrossRef] [PubMed]
- Kyriazis, J.; Kalogeropoulou, K.; Bilirakis, L.; Smirnioudis, N.; Pikounis, V.; Stamatiadis, D.; Liolia, E. Dialysate magnesium level and blood pressure. Kidney Int. 2004, 66, 1221–1231. [Google Scholar] [CrossRef]
- Floege, J. Magnesium Concentration in Dialysate: Is Higher Better? Clin. J. Am. Soc. Nephrol. 2018, 13, 1309–1310. [Google Scholar] [CrossRef] [PubMed]
- Alhosaini, M.; Leehey, D.J. Magnesium and Dialysis: The Neglected Cation. Am. J. Kidney Dis. 2015, 66, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Kubota, T.; Shibahara, N.; Terasaki, J.; Kagitani, M.; Ueda, H.; Inoue, T.; Katsuoka, Y. The mechanism of hypoglycemia caused by hemodialysis. Clin. Nephrol. 2004, 62, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.A.; Holland, M.R.; Nicholas, J.; Talbot, M.; Spencer, H.; Lodwick, R.; Fuhrmann, C.; Forster, D.; Macdonald, I.A. Occult hypoglycemia caused by hemodialysis. Clin. Nephrol. 1999, 51, 242–247. [Google Scholar] [PubMed]
- Pizzarelli, F. From cold dialysis to isothermic dialysis: A twenty-five year voyage. Nephrol. Dial. Transplant. 2007, 22, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Levy, F.L.; Grayburn, P.A.; Foulks, C.J.; Brickner, M.E.; Henrich, W.L. Improved left ventricular contractility with cool temperature hemodialysis. Kidney Int. 1992, 41, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Coli, U.; Landini, S.; Lucatello, S.; Fracasso, A.; Morachiello, P.; Righetto, F.; Scanferla, F.; Onesti, G.; Bazzato, G. Cold as cardiovascular stabilizing factor in hemodialysis: Hemodynamic evaluation. Trans. Am. Soc. Artif. Intern. Organs 1983, 29, 71–75. [Google Scholar] [PubMed]
- Mahida, B.H.; Dumler, F.; Zasuwa, G.; Fleig, G.; Levin, N.W. Effect of cooled dialysate on serum catecholamines and blood pressure stability. Trans. Am. Soc. Artif. Intern. Organs 1983, 29, 384–389. [Google Scholar] [PubMed]
- Selby, N.M.; Burton, J.O.; Chesterton, L.J.; McIntyre, C.W. Dialysis-induced regional left ventricular dysfunction is ameliorated by cooling the dialysate. Clin. J. Am. Soc. Nephrol. 2006, 1, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Selby, N.M.; McIntyre, C.W. A systematic review of the clinical effects of reducing dialysate fluid temperature. Nephrol. Dial. Transplant. 2006, 21, 1883–1898. [Google Scholar] [CrossRef] [PubMed]
- van der Sande, F.M.; Rosales, L.M.; Brener, Z.; Kooman, J.P.; Kuhlmann, M.; Handelman, G.; Greenwood, R.N.; Carter, M.; Schneditz, D.; Leunissen, K.M.; et al. Effect of ultrafiltration on thermal variables, skin temperature, skin blood flow, and energy expenditure during ultrapure hemodialysis. J. Am. Soc. Nephrol. 2005, 16, 1824–1831. [Google Scholar] [CrossRef] [PubMed]
- Rosales, L.M.; Schneditz, D.; Morris, A.T.; Rahmati, S.; Levin, N.W. Isothermic hemodialysis and ultrafiltration. Am. J. Kidney Dis. 2000, 36, 353–361. [Google Scholar] [CrossRef] [PubMed]
- Maggiore, Q.; Pizzarelli, F.; Santoro, A.; Panzetta, G.; Bonforte, G.; Hannedouche, T.; Alvarez de Lara, M.A.; Tsouras, I.; Loureiro, A.; Ponce, P.; et al. The effects of control of thermal balance on vascular stability in hemodialysis patients: Results of the European randomized clinical trial. Am. J. Kidney Dis. 2002, 40, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Eldehni, M.T.; Odudu, A.; McIntyre, C.W. Randomized clinical trial of dialysate cooling and effects on brain white matter. J. Am. Soc. Nephrol. 2015, 26, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Selby, N.M.; Taal, M.W. Evaluating the results of MyTEMP, a cluster randomised trial of lower temperature haemodialysis: The end of a cool idea? Lancet 2022, 400, 1657–1659. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Tripepi, G.; Neri, L.; Savoia, M.; Baró Salvador, M.E.; Ponce, P.; Hymes, J.; Maddux, F.; Mallamaci, F.; Stuard, S. Effectiveness of cold HD for the prevention of HD hypotension and mortality in the general HD population. Nephrol. Dial. Transplant. 2023, 38, 1700–1706. [Google Scholar] [CrossRef] [PubMed]
- Combe, C.; Rubin, S. Cold haemodialysis: The instrumental power of large cohorts. Nephrol. Dial. Transplant. 2023, 38, 1577–1579. [Google Scholar] [CrossRef] [PubMed]
- Odudu, A.; Eldehni, M.T.; McCann, G.P.; McIntyre, C.W. Randomized Controlled Trial of Individualized Dialysate Cooling for Cardiac Protection in Hemodialysis Patients. Clin. J. Am. Soc. Nephrol. 2015, 10, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.D.; Agarwal, R. Can chronic volume overload be recognized and prevented in hemodialysis patients? The pitfalls of the clinical examination in assessing volume status. Semin. Dial. 2009, 22, 480–482. [Google Scholar] [CrossRef] [PubMed]
- Hamrahian, S.M.; Vilayet, S.; Herberth, J.; Fülöp, T. Prevention of Intradialytic Hypotension in Hemodialysis Patients: Current Challenges and Future Prospects. Int. J. Nephrol. Renov. Dis. 2023, 16, 173–181. [Google Scholar] [CrossRef]
- Berger, D.; Takala, J. Hypotension and hypovolemia during hemodialysis: Is the usual suspect innocent? Crit. Care 2016, 20, 140. [Google Scholar] [CrossRef] [PubMed]
- Onofriescu, M.; Siriopol, D.; Voroneanu, L.; Hogas, S.; Nistor, I.; Apetrii, M.; Florea, L.; Veisa, G.; Mititiuc, I.; Kanbay, M.; et al. Overhydration, Cardiac Function and Survival in Hemodialysis Patients. PLoS ONE 2015, 10, e0135691. [Google Scholar] [CrossRef] [PubMed]
- Fishbane, S.; Natke, E.; Maesaka, J.K. Role of volume overload in dialysis-refractory hypertension. Am. J. Kidney Dis. 1996, 28, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Wizemann, V.; Wabel, P.; Chamney, P.; Zaluska, W.; Moissl, U.; Rode, C.; Malecka-Masalska, T.; Marcelli, D. The mortality risk of overhydration in haemodialysis patients. Nephrol. Dial. Transplant. 2009, 24, 1574–1579. [Google Scholar] [CrossRef] [PubMed]
- Zoccali, C.; Moissl, U.; Chazot, C.; Mallamaci, F.; Tripepi, G.; Arkossy, O.; Wabel, P.; Stuard, S. Chronic Fluid Overload and Mortality in ESRD. J. Am. Soc. Nephrol. 2017, 28, 2491–2497. [Google Scholar] [CrossRef] [PubMed]
- Charra, B.; Bergstrom, J.; Scribner, B.H. Blood pressure control in dialysis patients: Importance of the lag phenomenon. Am. J. Kidney Dis. 1998, 32, 720–724. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, M.; Von Moos, S.; Gerritsen, K.; Sadoune, M.; Tangvoraphonkchai, K.; Davenport, A.; Mebazaa, A.; Segerer, S.; Cippà, P.E. Soluble CD146 and B-type natriuretic peptide dissect overhydration into functional components of prognostic relevance in haemodialysis patients. Nephrol. Dial. Transplant. 2018, 33, 2035–2042. [Google Scholar] [CrossRef] [PubMed]
- Moissl, U.M.; Wabel, P.; Chamney, P.W.; Bosaeus, I.; Levin, N.W.; Bosy-Westphal, A.; Korth, O.; Müller, M.J.; Ellegård, L.; Malmros, V.; et al. Body fluid volume determination via body composition spectroscopy in health and disease. Physiol. Meas. 2006, 27, 921–933. [Google Scholar] [CrossRef] [PubMed]
- Machek, P.; Jirka, T.; Moissl, U.; Chamney, P.; Wabel, P. Guided optimization of fluid status in haemodialysis patients. Nephrol. Dial. Transplant. 2010, 25, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Chamney, P.W.; Wabel, P.; Moissl, U.M.; Müller, M.J.; Bosy-Westphal, A.; Korth, O.; Fuller, N.J. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am. J. Clin. Nutr. 2007, 85, 80–89. [Google Scholar] [CrossRef]
- Movilli, E.; Gaggia, P.; Zubani, R.; Camerini, C.; Vizzardi, V.; Parrinello, G.; Savoldi, S.; Fischer, M.S.; Londrino, F.; Cancarini, G. Association between high ultrafiltration rates and mortality in uraemic patients on regular haemodialysis. A 5-year prospective observational multicentre study. Nephrol. Dial. Transplant. 2007, 22, 3547–3552. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.K.; Sarnak, M.J.; Yan, G.; Berkoben, M.; Heyka, R.; Kaufman, A.; Lewis, J.; Rocco, M.; Toto, R.; Windus, D.; et al. Cardiac diseases in maintenance hemodialysis patients: Results of the HEMO Study. Kidney Int. 2004, 65, 2380–2389. [Google Scholar] [CrossRef] [PubMed]
- Saran, R.; Bragg-Gresham, J.L.; Levin, N.W.; Twardowski, Z.J.; Wizemann, V.; Saito, A.; Kimata, N.; Gillespie, B.W.; Combe, C.; Bommer, J.; et al. Longer treatment time and slower ultrafiltration in hemodialysis: Associations with reduced mortality in the DOPPS. Kidney Int. 2006, 69, 1222–1228. [Google Scholar] [CrossRef] [PubMed]
- Flythe, J.E.; Kimmel, S.E.; Brunelli, S.M. Rapid fluid removal during dialysis is associated with cardiovascular morbidity and mortality. Kidney Int. 2011, 79, 250–257. [Google Scholar] [CrossRef] [PubMed]
- NQF 2701. Avoidance of Utilization of High Ultrafiltration Rate (>/=13 ml/kg/hour). Available online: https://kidneycarepartners.org/wp-content/uploads/2015/10/Yellow-AllKCQASummary09-11-15CLEAN.pdf (accessed on 2 April 2024).
- Mermelstein, A.; Raimann, J.G.; Wang, Y.; Kotanko, P.; Daugirdas, J.T. Ultrafiltration Rate Levels in Hemodialysis Patients Associated with Weight-Specific Mortality Risks. Clin. J. Am. Soc. Nephrol. 2023, 18, 767–776. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, F.; Altieri, P.; Andrulli, S.; Bolasco, P.; Sau, G.; Pedrini, L.A.; Basile, C.; David, S.; Feriani, M.; Montagna, G.; et al. Hemofiltration and hemodiafiltration reduce intradialytic hypotension in ESRD. J. Am. Soc. Nephrol. 2010, 21, 1798–1807. [Google Scholar] [CrossRef] [PubMed]
- Donauer, J.; Schweiger, C.; Rumberger, B.; Krumme, B.; Bohler, J. Reduction of hypotensive side effects during online-haemodiafiltration and low temperature haemodialysis. Nephrol. Dial. Transplant. 2003, 18, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Sande, F.M.V.; Kooman, J.P.; Konings, C.J.; Leunissen, K.M.L. Thermal effects and blood pressure response during postdilution hemodiafiltration and hemodialysis: The effect of amount of replacement fluid and dialysate temperature. J. Am. Soc. Nephrol. 2001, 12, 1916–1920. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Morena, M.; Bargnoux, A.S.; Chenine, L.; Leray-Moragues, H.; Cristol, J.P.; Canaud, B. Quantitative assessment of sodium mass removal using ionic dialysance and sodium gradient as a proxy tool: Comparison of high-flux hemodialysis versus online hemodiafiltration. Artif. Organs 2021, 45, E280–E292. [Google Scholar] [CrossRef] [PubMed]
- Czifra, A.; Pall, A.; Kulcsar, J.; Barta, K.; Kertesz, A.; Paragh, G.; Lorincz, I.; Jenei, Z.; Agarwal, A.; Zarjou, A.; et al. Hemodialysis and hemodiafiltration differently modulate left ventricular diastolic function. BMC Nephrol. 2013, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- La Milia, V.; Ravasi, C.; Carfagna, F.; Alberghini, E.; Baragetti, I.; Buzzi, L.; Ferrario, F.; Furiani, S.; Barbone, G.S.; Pontoriero, G. Sodium removal and plasma tonicity balance are not different in hemodialysis and hemodiafiltration using high-flux membranes. J. Nephrol. 2019, 32, 461–469. [Google Scholar] [CrossRef] [PubMed]
- den Hoedt, C.H.; Bots, M.L.; Grooteman, M.P.; van der Weerd, N.C.; Mazairac, A.H.; Penne, E.L.; Levesque, R.; ter Wee, P.M.; Nube, M.J.; Blankestijn, P.J.; et al. Online hemodiafiltration reduces systemic inflammation compared to low-flux hemodialysis. Kidney Int. 2014, 86, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Maduell, F.; Moreso, F.; Pons, M.; Ramos, R.; Mora-Macia, J.; Carreras, J.; Soler, J.; Torres, F.; Campistol, J.M.; Martinez-Castelao, A.; et al. High-efficiency postdilution online hemodiafiltration reduces all-cause mortality in hemodialysis patients. J. Am. Soc. Nephrol. 2013, 24, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Ok, E.; Asci, G.; Toz, H.; Ok, E.S.; Kircelli, F.; Yilmaz, M.; Hur, E.; Demirci, M.S.; Demirci, C.; Duman, S.; et al. Mortality and cardiovascular events in online haemodiafiltration (OL-HDF) compared with high-flux dialysis: Results from the Turkish OL-HDF Study. Nephrol. Dial. Transplant. 2013, 28, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Grooteman, M.P.; van den Dorpel, M.A.; Bots, M.L.; Penne, E.L.; van der Weerd, N.C.; Mazairac, A.H.; den Hoedt, C.H.; van der Tweel, I.; Levesque, R.; Nube, M.J.; et al. Effect of online hemodiafiltration on all-cause mortality and cardiovascular outcomes. J. Am. Soc. Nephrol. 2012, 23, 1087–1096. [Google Scholar] [CrossRef] [PubMed]
- Mercadal, L.; Franck, J.E.; Metzger, M.; Urena Torres, P.; de Cornelissen, F.; Edet, S.; Bechade, C.; Vigneau, C.; Drueke, T.; Jacquelinet, C.; et al. Hemodiafiltration Versus Hemodialysis and Survival in Patients With ESRD: The French Renal Epidemiology and Information Network (REIN) Registry. Am. J. Kidney Dis. 2016, 68, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Blankestijn, P.J.; Vernooij, R.W.M.; Hockham, C.; Strippoli, G.F.M.; Canaud, B.; Hegbrant, J.; Barth, C.; Covic, A.; Cromm, K.; Cucui, A.; et al. Effect of Hemodiafiltration or Hemodialysis on Mortality in Kidney Failure. N. Engl. J. Med. 2023, 389, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Neri, L.; Gurevich, K.; Zarya, Y.; Plavinskii, S.; Bellocchio, F.; Stuard, S.; Barbieri, C.; Canaud, B. Practice Patterns and Outcomes of Online Hemodiafiltration: A Real-World Evidence Study in a Russian Dialysis Network. Blood Purif. 2021, 50, 309–318. [Google Scholar] [CrossRef]
- Imamovic, G.; Hrvacevic, R.; Kapun, S.; Marcelli, D.; Bayh, I.; Grassmann, A.; Scatizzi, L.; Maslovaric, J.; Canaud, B. Survival of incident patients on high-volume online hemodiafiltration compared to low-volume online hemodiafiltration and high-flux hemodialysis. Int. Urol. Nephrol. 2014, 46, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Barbieri, C.; Marcelli, D.; Bellocchio, F.; Bowry, S.; Mari, F.; Amato, C.; Gatti, E. Optimal convection volume for improving patient outcomes in an international incident dialysis cohort treated with online hemodiafiltration. Kidney Int. 2015, 88, 1108–1116. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Bayh, I.; Marcelli, D.; Ponce, P.; Merello, J.I.; Gurevich, K.; Ladanyi, E.; Ok, E.; Imamovic, G.; Grassmann, A.; et al. Improved survival of incident patients with high-volume haemodiafiltration: A propensity-matched cohort study with inverse probability of censoring weighting. Nephron 2015, 129, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Maduell, F.; Varas, J.; Ramos, R.; Martin-Malo, A.; Perez-Garcia, R.; Berdud, I.; Moreso, F.; Canaud, B.; Stuard, S.; Gauly, A. Hemodiafiltration reduces all-cause and cardiovascular mortality in incident hemodialysis patients: A propensity-matched cohort study. Am. J. Nephrol. 2017, 46, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.A.; Bots, M.L.; Canaud, B.; Davenport, A.; Grooteman, M.P.; Kircelli, F.; Locatelli, F.; Maduell, F.; Morena, M.; Nubé, M.J.; et al. Haemodiafiltration and mortality in end-stage kidney disease patients: A pooled individual participant data analysis from four randomized controlled trials. Nephrol. Dial. Transplant. 2016, 31, 978–984. [Google Scholar] [CrossRef] [PubMed]
- Marcelli, D.; Scholz, C.; Ponce, P.; Sousa, T.; Kopperschmidt, P.; Grassmann, A.; Pinto, B.; Canaud, B. High-volume postdilution hemodiafiltration is a feasible option in routine clinical practice. Artif. Organs 2015, 39, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Canaud, B.; Davenport, A. Prescription of online hemodiafiltration (ol-HDF). Semin. Dial. 2022, 35, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Sherman, R.A.; Torres, F.; Cody, R.P. Postprandial blood pressure changes during hemodialysis. Am. J. Kidney Dis. 1988, 12, 37–39. [Google Scholar] [CrossRef] [PubMed]
- Avci, M.; Arikan, F. The effect of food intake during hemodialysis on blood pressure: A nonrandomized experimental trial. Ther. Apher. Dial. 2023, 27, 661–668. [Google Scholar] [CrossRef] [PubMed]
- Barakat, M.M.; Nawab, Z.M.; Yu, A.W.; Lau, A.H.; Ing, T.S.; Daugirdas, J.T. Hemodynamic effects of intradialytic food ingestion and the effects of caffeine. J. Am. Soc. Nephrol. 1993, 3, 1813–1818. [Google Scholar] [CrossRef] [PubMed]
- Fotiadou, E.; Georgianos, P.I.; Chourdakis, M.; Zebekakis, P.E.; Liakopoulos, V. Eating during the Hemodialysis Session: A Practice Improving Nutritional Status or a Risk Factor for Intradialytic Hypotension and Reduced Dialysis Adequacy? Nutrients 2020, 12, 1703. [Google Scholar] [CrossRef] [PubMed]
- Kalantar-Zadeh, K.; Ikizler, T.A. Let them eat during dialysis: An overlooked opportunity to improve outcomes in maintenance hemodialysis patients. J. Ren. Nutr. 2013, 23, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; McCulloch, C.E.; Lin, F.; Alper, A.; Anderson, A.H.; Cuevas, M.; Go, A.S.; Kallem, R.; Kusek, J.W.; Lora, C.M.; et al. Blood Pressure and Risk of Cardiovascular Events in Patients on Chronic Hemodialysis: The CRIC Study (Chronic Renal Insufficiency Cohort). Hypertension 2017, 70, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Tanaka, S.; Taniguchi, M.; Fujisaki, K.; Torisu, K.; Masutani, K.; Hirakata, H.; Nakano, T.; Tsuruya, K.; Kitazono, T. Prognostic value of pre-dialysis blood pressure and risk threshold on clinical outcomes in hemodialysis patients: The Q-Cohort Study. Medicine 2018, 97, e13485. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; McCulloch, C.E.; Rahman, M.; Kusek, J.W.; Anderson, A.H.; Xie, D.; Townsend, R.R.; Lora, C.M.; Wright, J.; Go, A.S.; et al. Blood pressure and risk of all-cause mortality in advanced chronic kidney disease and hemodialysis: The chronic renal insufficiency cohort study. Hypertension 2015, 65, 93–100. [Google Scholar] [CrossRef]
- Robinson, B.M.; Tong, L.; Zhang, J.; Wolfe, R.A.; Goodkin, D.A.; Greenwood, R.N.; Kerr, P.G.; Morgenstern, H.; Li, Y.; Pisoni, R.L.; et al. Blood pressure levels and mortality risk among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int. 2012, 82, 570–580. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Gan, L.; Shen, Y.; Li, W.; Zhang, D.; Li, Z.; Ren, J.; Xu, M.; Zhao, X.; Ma, Y.; et al. Clinical characteristics and management of hemodialysis patients with pre-dialysis hypertension: A multicenter observational study. Ren. Fail. 2022, 44, 1811–1818. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.M.; Sirich, T.L.; Chang, T.I. Timing of blood pressure medications and intradialytic hypotension. Semin. Dial. 2019, 32, 201–204. [Google Scholar] [CrossRef]
- Hemodialysis Adequacy Work Group. Clinical practice guidelines for hemodialysis adequacy, update 2006. Am. J. Kidney Dis. 2006, 48 (Suppl. S1), S2–S90. [Google Scholar] [CrossRef] [PubMed]
- Gregory, L.F., Jr.; Durrett, R.R.; Robinson, R.R.; Clapp, J.R. The short-term effect of furosemide on electrolyte and water excretion in patients with severe renal disease. Arch. Intern. Med. 1970, 125, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Levin, N.W.; Kotanko, P.; Eckardt, K.U.; Kasiske, B.L.; Chazot, C.; Cheung, A.K.; Redon, J.; Wheeler, D.C.; Zoccali, C.; London, G.M. Blood pressure in chronic kidney disease stage 5D-report from a Kidney Disease: Improving Global Outcomes controversies conference. Kidney Int. 2010, 77, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Jindal, K.; Chan, C.T.; Deziel, C.; Hirsch, D.; Soroka, S.D.; Tonelli, M.; Culleton, B.F.; Canadian Society of Nephrology Committee for Clinical Practice Guidelines. Hemodialysis clinical practice guidelines for the Canadian Society of Nephrology. J. Am. Soc. Nephrol. 2006, 17, S1–S27. [Google Scholar] [CrossRef] [PubMed]
Hemodialysis Procedures in Stable Incident and Prevalent Patients | ||||||
---|---|---|---|---|---|---|
Time | 1st Week | 2nd Week | 3rd Week | 4th Week | ≥5th Week–3rd Months | ≥3rd Month |
Frequency (n) | ≥2 * | ≥3 * | ≥3 * | ≥3 * | ≥3 * | ≥3 * |
Treatment time (min) | 120–180 | ≤180 | ≤240 | ≤240 | ≥240 † | ≥240 † |
Dialyzer surface area (m2) | ≤1.4 | ≤1.4 | ≤1.4 | ≤1.4 | 1.6 ± 0.2 * | 1.6 ± 0.2 * |
Qb (mL/min) | ≤150 | ≤200 | ≤250 | ≤300 | ≥340 † | ≥340 † |
Qd (mL/min); Qd/Qb | 300; 1.5 | 300; 1.5 | 400; 1.2 | 400; 1.2 | ≥500; ≥1.2 (if spKt/V < 1.4) |
Dialysate Prescription in Stable Incident and Prevalent Patients | ||||||
---|---|---|---|---|---|---|
Time | 1st Week | 2nd Week | 3rd Week | 4th Week | ≥5th Week–3rd Months | ≥3rd Month |
Sodium (mEq/L) | 140–143 * | 140–142 * | 140–141 * | 139–140 * | 138–140 * | 138–140 * |
Bicarbonate (mEq/L) | ≤28 * | ≤29 * | ≤30 * | ≤31 * | ≤32 * | ≤32 * |
Calcium (mmol/L) | 1.50–1.75 * | 1.25–1.50 * | 1.25–1.50 * | |||
Potassium (mEq/L) | 3 * | 3 * | 2–3 * | 2–3 * | 2–3 * | 2–3 * |
Magnesium (mmol/L) | 0.5 | 0.5 | 0.5 | |||
Glucose (mg/dL) | 100 | 100 | 100 | |||
Temperature (°C) | 36.5 (≤36.0 in case of IDH) | 36.0 (if IDH: ≤36.0 if tolerated) |
Fluid Status Management and Dialysis Dose in Stable Incident and Prevalent Patients | ||||||
---|---|---|---|---|---|---|
Time | 1st Week | 2nd Week | 3rd Week | 4th Week | ≥5th Week–3rd Months | ≥3rd Month |
DBW 1 | Slowly correct | As week 1–4th | 3 months * | |||
Fluid status | Before 1st HD | Bi-weekly | Monthly | 3 months * | ||
UFR (mL/h/kg) | ≤10 ** | ≤10 ** | ≤10 ** | ≤10 ** | ≤13 ** | ≤13 ** |
spKt/V | No targets | ≥1.4 | ≥1.4 | |||
Post-dilution Qsub (L) | 0 | ≤5 | ≤10 | ≤15 | ≥21 (Convective vol. 2 ≥23 L) |
Intra- and Extra Dialytic Procedures in Stable Incident and Prevalent Patients | ||||||
---|---|---|---|---|---|---|
Time | 1st Week | 2nd Week | 3rd Week | 4th Week | ≥5th Week–3rd Months | ≥3rd Month |
Eating during HD | Avoid | Avoid | Avoid in case of IDH | Avoid in case of IDH | ||
AHTs 1 | Tapering while decreasing the body weight | Avoid non-dialyzable AHTs in case of IDH | ||||
Diuretics | Only in interdialytic days if IDH | Only in interdialytic days if IDH | ||||
RRF evaluation | Before 1st HD | No | No | No | Monthly * | Quarterly * |
BP monitoring | Pre-Post HD and every 30 min ** | Pre-Post HD and every 60 min ** | ||||
Blood tests *** | Before 1st HD | Weekly | Weekly | Weekly | Monthly | Monthly |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stuard, S.; Ridel, C.; Cioffi, M.; Trost-Rupnik, A.; Gurevich, K.; Bojic, M.; Karibayev, Y.; Mohebbi, N.; Marcinkowski, W.; Kupres, V.; et al. Hemodialysis Procedures for Stable Incident and Prevalent Patients Optimize Hemodynamic Stability, Dialysis Dose, Electrolytes, and Fluid Balance. J. Clin. Med. 2024, 13, 3211. https://doi.org/10.3390/jcm13113211
Stuard S, Ridel C, Cioffi M, Trost-Rupnik A, Gurevich K, Bojic M, Karibayev Y, Mohebbi N, Marcinkowski W, Kupres V, et al. Hemodialysis Procedures for Stable Incident and Prevalent Patients Optimize Hemodynamic Stability, Dialysis Dose, Electrolytes, and Fluid Balance. Journal of Clinical Medicine. 2024; 13(11):3211. https://doi.org/10.3390/jcm13113211
Chicago/Turabian StyleStuard, Stefano, Christophe Ridel, Mario Cioffi, Alijana Trost-Rupnik, Konstantin Gurevich, Marija Bojic, Yerkebulan Karibayev, Nilufar Mohebbi, Wojciech Marcinkowski, Vlasta Kupres, and et al. 2024. "Hemodialysis Procedures for Stable Incident and Prevalent Patients Optimize Hemodynamic Stability, Dialysis Dose, Electrolytes, and Fluid Balance" Journal of Clinical Medicine 13, no. 11: 3211. https://doi.org/10.3390/jcm13113211
APA StyleStuard, S., Ridel, C., Cioffi, M., Trost-Rupnik, A., Gurevich, K., Bojic, M., Karibayev, Y., Mohebbi, N., Marcinkowski, W., Kupres, V., Maslovaric, J., Antebi, A., Ponce, P., Nada, M., Salvador, M. E. B., Rosenberger, J., Jirka, T., Enden, K., Novakivskyy, V., ... Arkossy, O. (2024). Hemodialysis Procedures for Stable Incident and Prevalent Patients Optimize Hemodynamic Stability, Dialysis Dose, Electrolytes, and Fluid Balance. Journal of Clinical Medicine, 13(11), 3211. https://doi.org/10.3390/jcm13113211