Perioperative Management of Valvular Heart Disease in Patients Undergoing Non-Cardiac Surgery
Abstract
:1. Introduction
2. Non-Cardiac Surgery Risk Stratification
3. General Preoperative Assessment
4. Aortic Valve Stenosis
4.1. Symptomatic Severe Aortic Stenosis
- -
- -
- -
4.2. Severe Asymptomatic Aortic Stenosis
5. Aortic Valve Regurgitation
- -
- -
- Patients with severe symptomatic AR or with severe asymptomatic AR with a left ventricular end-systolic diameter (LVESD) of >50 mm, an LVESD index (LVESD/body surface area) of > 25 mm/m2 (patients with small body size), or a resting LVEF of ≤ 50% (<55% according to ACC/AHA guidelines), AVR is recommended before elective intermediate- to high-risk NCS (Figure 1) [8,11].
6. Mitral Valve Stenosis
- -
- -
- For patients with asymptomatic moderate to severe MS with sPAP > 50 mmHg and patients with symptomatic moderate to severe MS (with increased risk of the perioperative cardiovascular event) who are undergoing high-risk NCS, a percutaneous mitral commissurotomy (PMC) should be considered before NCS [8]. For patients with severe symptomatic MS or severe asymptomatic MS with sPAP > 50 mmHg who are ineligible for PMC, high-risk NCS should be performed only if necessary (Figure 2) [8,10].
7. Mitral Valve Regurgitation
- -
- For patients with symptomatic severe primary MR or asymptomatic severe primary MR with LV dysfunction (defined as LVEF ≤ 60%) and/or LV dilatation (defined as LVESD ≥ 40 mm), valve intervention (surgical or transcatheter) should be considered prior to intermediate- or high-risk NCS if time allows (Figure 3) [8];
- -
- For patients with severe secondary MR who remain symptomatic despite guideline-directed medical therapy (GDMT), including cardiac resynchronization therapy (CRT), valve intervention (transcatheter or surgical) should be considered before NCS when there is an acceptable procedural risk (Figure 3) [8].
8. Prosthetic Valves
Modification of Anticoagulation Therapy for Patients with Prosthetic Valves
- -
- In the case of major and/or life-threatening bleeding, VKA overdose or need for urgent surgical operation (of any type) in patients with MHV, it is recommended to discontinue VKA and administer 10 mg of vitamin K by slow infusion (repeat every 12 h if necessary) [6,40]. Until the anticoagulation effect is reversed, fresh frozen plasma (FFP) and/or prothrombin complex (PCC) should be initiated according to body weight and pre-treatment INR [6]. Treatment efficacy should be evaluated at 30 min with the control of INR and then every 46 h until normalization [6]. Restarting anticoagulation therapy should be discussed according to the location of bleeding, intervention performed to stop bleeding, and surgical operation [6];
- -
- In the absence of bleeding, for patients with MHV and overdose of VKA (INR > 10), oral vitamin K (2.5–5 mg) can be administered, and VKA should be stopped, with the monitoring of INR once daily for 2 weeks [6];
- -
- In the absence of bleeding, for patients with MHV and overdose of VKA (INR 4.5–10), current evidence does not indicate any difference in bleeding events in patients administered vitamin K vs. placebo. Hence, it is recommended to stop VKA in these patients and follow INR. A small dose of oral vitamin K (1–2 mg) can be considered on an individual basis [6];
- -
- In the absence of bleeding, for patients with MHV and INR < 4.5 but higher than the targeted value, it is recommended to down-titrate or skip one or more doses of VKA [8].
- -
- To stop VKA about 5 days before intervention. On the next day (4 days before intervention) start UFH or LMWH as bridging therapy.
- -
- Stop LMWH (as bridging therapy) 24 h before intervention, in case of UFH it can be stopped 6 h before intervention.
- -
- Twelves to twenty-four hours (depending on operation type) after intervention start the UFH.
- -
- On the first day after intervention start VKA therapy concomitant to UFH. The UFH can be switch to LMWH (if needed) in about 2 days after intervention.
- -
- Stop concomitant UFH or LMWH therapy once INR more than 2 reached in patients with aortic valve prosthetic (AVP), and once INR more than 2.5 reached in patients with mitral valve prosthetic (MVP).
- -
- In case of patients undergoing urgent NCS with biological heart valve (BHV) on DOAC or patients on lifelong DOAC, anticoagulation treatment can be stopped 2 days before intervention.
- -
- After intervention UFH or LMWH can be added (without concomitant DOAC) in same time intervals as presented in VKA.
- -
- Treatment with DOAC can be resume 3 days after intervention and UFH/LMWH can be stopped at the same time.
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hamedanian, F. Access to the European Labor Market for Immigrant Women in the Wake of the COVID Pandemic. World 2022, 3, 957–978. [Google Scholar] [CrossRef]
- Weiser, T.G.; Haynes, A.B.; Molina, G.; Lipsitz, S.R.; Esquivel, M.M.; Uribe-Leitz, T.; Fu, R.; Azad, T.; Chao, T.E.; Berry, W.R.; et al. Estimate of the global volume of surgery in 2012: An assessment supporting improved health outcomes. Lancet 2015, 385 (Suppl. 2), S11. [Google Scholar] [CrossRef] [PubMed]
- Aluru, J.S.; Barsouk, A.; Saginala, K.; Rawla, P.; Barsouk, A. Valvular Heart Disease Epidemiology. Med. Sci. 2022, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, N.R.; Gupta, N.; Guo, Y.; Beckman, J.A.; Bangalore, S.; Berger, J.S. Trends in cardiovascular risk factor and disease prevalence in patients undergoing non-cardiac surgery. Heart 2018, 104, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Spence, J.; LeManach, Y.; Chan, M.T.V.; Wang, C.Y.; Sigamani, A.; Xavier, D.; Pearse, R.; Alonso-Coello, P.; Garutti, I.; Srinathan, S.K.; et al. Association between complications and death within 30 days after noncardiac surgery. CMAJ 2019, 191, E830–E837. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 43, 561–632, Corrigendum to: Eur. Heart J. 2022, 43, 2022. [Google Scholar] [CrossRef]
- Santangelo, G.; Bursi, F.; Faggiano, A.; Moscardelli, S.; Simeoli, P.S.; Guazzi, M.; Lorusso, R.; Carugo, S.; Faggiano, P. The Global Burden of Valvular Heart Disease: From Clinical Epidemiology to Management. J. Clin. Med. 2023, 12, 2178. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, S.; Mehilli, J.; Cassese, S.; Hall, T.S.; Abdelhamid, M.; Barbato, E.; De Hert, S.; De Laval, I.; Geisler, T.; Hinterbuchner, L.; et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur. Heart J. 2022, 43, 3826–3924. [Google Scholar] [CrossRef]
- Santarpino, G.; Lorusso, R.; Peivandi, A.D.; Atzeni, F.; Avolio, M.; Dell’Aquila, A.M.; Speziale, G. In-Hospital Mortality and Risk Prediction in Minimally Invasive Sutureless versus Conventional Aortic Valve Replacement. J. Clin. Med. 2022, 11, 7273. [Google Scholar] [CrossRef]
- Fleisher, L.A.; Fleischmann, K.E.; Auerbach, A.D.; Barnason, S.A.; Beckman, J.A.; Bozkurt, B.; Davila-Roman, V.G.; Gerhard-Herman, M.D.; Holly, T.A.; Kane, G.C.; et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J. Am. Coll. Cardiol. 2014, 64, e77–e137. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., III; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease. J. Am. Coll. Cardiol. 2021, 77, e25–e197. [Google Scholar] [CrossRef] [PubMed]
- Herrera, R.A.; Smith, M.M.; Mauermann, W.J.; Nkomo, V.T.; Luis, S.A. Perioperative management of aortic stenosis in patients undergoing non-cardiac surgery. Front. Cardiovasc. Med. 2023, 10, 1145290. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, H.; Hung, J.; Bermejo, J.; Chambers, J.B.; Evangelista, A.; Griffin, B.P.; Iung, B.; Otto, C.M.; Pellikka, P.A.; Quiñones, M. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Eur. J. Echocardiogr. 2009, 10, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, P.; Tribouilloy, C.; Hagendorff, A.; Popescu, B.A.; Edvardsen, T.; Pierard, L.A.; Badano, L.; Zamorano, J.L.; On behalf of the Scientific Document Committee of the European Association of Cardiovascular Imaging: Thor Edvardsen; Bruder, O. Recommendations for the echocardiographic assessment of native valvular regurgitation: An executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J.—Cardiovasc. Imaging 2013, 14, 611–644. [Google Scholar] [CrossRef] [PubMed]
- Kazum, S.; Vaturi, M.; Yedidya, I.; Schwartzenberg, S.; Morelli, O.; Skalsky, K.; Ofek, H.; Sharony, R.; Kornowski, R.; Shapira, Y.; et al. Progression of Non-Significant Mitral and Tricuspid Regurgitation after Surgical Aortic Valve Replacement for Aortic Regurgitation. J. Clin. Med. 2023, 12, 6280. [Google Scholar] [CrossRef] [PubMed]
- Leon, M.B.; Smith, C.R.; Mack, M.J.; Makkar, R.R.; Svensson, L.G.; Kodali, S.K.; Thourani, V.H.; Tuzcu, E.M.; Miller, D.C.; Herrmann, H.C.; et al. Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients. N. Engl. J. Med. 2016, 374, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Rapp, A.H.; Hillis, L.D.; Lange, R.A.; Cigarroa, J.E. Prevalence of coronary artery disease in patients with aortic stenosis with and without angina pectoris. Am. J. Cardiol. 2001, 87, 1216–1217, a1217. [Google Scholar] [CrossRef] [PubMed]
- Loizzi, F.; Burattini, O.; Cafaro, A.; Spione, F.; Salemme, L.; Cioppa, A.; Fimiani, L.; Rimmaudo, F.; Pignatelli, A.; Palmitessa, C.; et al. Early acute kidney injury after transcatheter aortic valve implantation: Predictive value of currently available risk scores. Hellenic. J. Cardiol. 2023, 70, 19–27. [Google Scholar] [CrossRef]
- Voicehovska, J.G.; Trumpika, D.; Voicehovskis, V.V.; Bormane, E.; Bušmane, I.; Grigane, A.; Moreino, E.; Lejnieks, A. Cardiovascular Consequences of Acute Kidney Injury: Treatment Options. Biomedicines 2023, 11, 2364. [Google Scholar] [CrossRef]
- Iacovelli, F.; Loizzi, F.; Cafaro, A.; Burattini, O.; Salemme, L.; Cioppa, A.; Rizzo, F.; Palmitessa, C.; D’Alessandro, M.; De Feo, D.; et al. Surgical Mortality Risk Scores in Transcatheter Aortic Valve Implantation: Is Their Early Predictive Value Still Strong? J. Cardiovasc. Dev. Dis. 2023, 10, 244. [Google Scholar] [CrossRef]
- Taniguchi, T.; Morimoto, T.; Shiomi, H.; Ando, K.; Shirai, S.; Kanamori, N.; Murata, K.; Kitai, T.; Kawase, Y.; Kadota, K.; et al. Elective Non-Cardiac Surgery in Patients with Severe Aortic Stenosis—Observations from the CURRENT AS Registry. Circ. J. 2020, 84, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Koneru, S. A New Dimension in Treating Aortic Stenosis: DVI in the Battle of TAVR Versus SAVR∗. JACC Cardiovasc. Interv. 2021, 14, 1607–1609. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Das, S. Valvular heart disease and anaesthesia. Indian J. Anaesth. 2017, 61, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.C.; Lai, H.C.; Lee, W.L.; Wang, K.Y.; Ting, C.T.; Liu, T.J. Mitral regurgitation complicates postoperative outcome of noncardiac surgery. Am. Heart J. 2007, 153, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Richter, E.W.; Shehata, I.M.; Elsayed-Awad, H.M.; Klopman, M.A.; Bhandary, S.P. Mitral Regurgitation in Patients Undergoing Noncardiac Surgery. Semin. Cardiothorac. Vasc. Anesth. 2021, 26, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Goel, H.; Kumar, A.; Garg, N.; Mills, J.D. Men are from mars, women are from venus: Factors responsible for gender differences in outcomes after surgical and trans-catheter aortic valve replacement. Trends Cardiovasc. Med. 2021, 31, 34–46. [Google Scholar] [CrossRef] [PubMed]
- Marsan, N.A. Gender difference in mitral valve disease: Where is the bias? Eur. J. Prev. Cardiol. 2019, 26, 1430–1432. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Ye, Q.; Zhao, Y.; Zhao, C.; Song, L.; Wang, J. Sex Differences in the Outcomes of Degenerative Mitral Valve Repair. Ann. Thorac. Cardiovasc. Surg. 2023, 29, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Caponcello, M.G.; Banderas, L.M.; Ferrero, C.; Bramlage, C.; Thoenes, M.; Bramlage, P. Gender differences in aortic valve replacement: Is surgical aortic valve replacement riskier and transcatheter aortic valve replacement safer in women than in men? J. Thorac. Dis. 2020, 12, 3737–3746. [Google Scholar] [CrossRef]
- Giambuzzi, I.; Bonalumi, G.; Ballan, G.; Messi, P.; Bonomi, A.; Maggiore, A.; Esposito, G.; Di Mauro, M.; Alamanni, F.; Zanobini, M. Looking Back to Look Forward: What to Expect in a Redo Surgery for a Bioprosthesis Replacement. J. Clin. Med. 2022, 11, 7104. [Google Scholar] [CrossRef]
- Cannegieter, S.C.; Rosendaal, F.R.; Briët, E. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 1994, 89, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.K.; Boey, J.; Wang, R.; Chan, T.K.; Cheung, K.L.; Lee, P.K.; Chow, J.; Ng, R.P.; Tse, T.F. Warfarin versus dipyridamole-aspirin and pentoxifylline-aspirin for the prevention of prosthetic heart valve thromboembolism: A prospective randomized clinical trial. Circulation 1985, 72, 1059–1063. [Google Scholar] [CrossRef] [PubMed]
- Eikelboom, J.W.; Connolly, S.J.; Brueckmann, M.; Granger, C.B.; Kappetein, A.P.; Mack, M.J.; Blatchford, J.; Devenny, K.; Friedman, J.; Guiver, K.; et al. Dabigatran versus warfarin in patients with mechanical heart valves. N. Engl. J. Med. 2013, 369, 1206–1214. [Google Scholar] [CrossRef] [PubMed]
- Iung, B.; Rodés-Cabau, J. The optimal management of anti-thrombotic therapy after valve replacement: Certainties and uncertainties. Eur. Heart J. 2014, 35, 2942–2949. [Google Scholar] [CrossRef]
- Di Fusco, S.A.; Lucà, F.; Benvenuto, M.; Iorio, A.; Fiscella, D.; D’Ascenzo, F.; Madeo, A.; Colivicchi, F.; Di Lenarda, A.; Gulizia, M.M. Major bleeding with old and novel oral anticoagulants: How to manage it. Focus on general measures. Int. J. Cardiol. 2018, 268, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Botsile, E.; Mwita, J.C. Incidence and risk factors for thromboembolism and major bleeding in patients with mechanical heart valves: A tertiary hospital-based study in Botswana. Cardiovasc. J. Afr. 2020, 31, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Dentali, F.; Riva, N.; Malato, A.; Saccullo, G.; Siragusa, S.; Ageno, W. Incidence of thromboembolic complications in patients with mechanical heart valves with a subtherapeutic international normalized ratio. J. Thorac. Cardiovasc. Surg. 2009, 137, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Würtz, M.; Grove, E.L.; Corraini, P.; Adelborg, K.; Sundbøll, J.; Komjáthiné Szépligeti, S.; Horváth-Puhó, E.; Sørensen, H.T. Comorbidity and risk of venous thromboembolism after hospitalization for first-time myocardial infarction: A population-based cohort study. J. Thromb. Haemost. 2020, 18, 1974–1985. [Google Scholar] [CrossRef]
- Labaf, A.; Svensson, P.J.; Renlund, H.; Jeppsson, A.; Själander, A. Incidence and risk factors for thromboembolism and major bleeding in patients with mechanical valve prosthesis: A nationwide population-based study. Am. Heart J. 2016, 181, 1–9. [Google Scholar] [CrossRef]
- Lucà, F.; Oliva, F.; Abrignani, M.G.; Di Fusco, S.A.; Parrini, I.; Canale, M.L.; Giubilato, S.; Cornara, S.; Nesti, M.; Rao, C.M.; et al. Management of Patients Treated with Direct Oral Anticoagulants in Clinical Practice and Challenging Scenarios. J. Clin Med 2023, 12, 5955. [Google Scholar] [CrossRef]
- Wołowiec, Ł.; Kusiak, M.; Budzyński, J.; Wołowiec, A.; Jaśniak, A.; Wiciński, M.; Pedrycz-Wieczorska, A.; Rogowicz, D.; Grześk, G. Therapeutic Drug Monitoring of Direct Oral Anticoagulants in Patients with Extremely Low and High Body Weight—Pilot Study. J. Clin. Med. 2023, 12, 4969. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Stecker, E.; Warden, B.A. Direct Oral Anticoagulant Use: A Practical Guide to Common Clinical Challenges. J. Am. Heart Assoc. 2020, 9, e017559. [Google Scholar] [CrossRef] [PubMed]
- Bavalia, R.; Veenhuizen, J.E.; Hengeveld, R.C.C.; Braeken, D.; Gulpen, A.J.W.; Ten Cate, H.; Middeldorp, S.; Henskens, Y.M.C.; Hutten, B.A.; Coppens, M.; et al. Direct oral anticoagulant blood level monitoring in daily practice. Thromb. Update 2021, 3, 100049. [Google Scholar] [CrossRef]
- Hu, K.; Ertl, G.; Nordbeck, P. Therapeutic Monitoring of Direct Oral Anticoagulants—Back to the Future? J. Cardiovasc. Pharmacol. 2020, 76, 374–375. [Google Scholar] [CrossRef]
- Bernier, M.; Lancrerot, S.L.; Parassol, N.; Lavrut, T.; Viotti, J.; Rocher, F.; Drici, M.D. Therapeutic Drug Monitoring of Direct Oral Anticoagulants May Increase Their Benefit-Risk Ratio. J. Cardiovasc. Pharmacol. 2020, 76, 472–477. [Google Scholar] [CrossRef]
Low-Risk NCS (ACC/AHA) | Elevated-Risk NCS (ACC/AHA) | |
---|---|---|
Low-Risk NCS (ESC) | Intermediate-Risk NCS (ESC) | High-Risk NCS (ESC) |
-Plastic surgeries; -Ophthalmic surgeries; -Thyroid surgeries; -Breast surgeries; -Dental surgeries; -Minor gynecological, orthopedic, and urological surgeries. | -Head and neck surg.; -Intraperitoneal surg.; -Kidney transplants; -Endovascular aortic aneurysm repair; -Carotid surgeries; -Major gynecological, orthopedic, urological, and neurological surg. | -Lung or liver transplant; -Hepatic resection; -Intrathoracic surgeries; -Peripheral vascular surg.; -Duodenal and pancreatic surgeries; -Aortic surgery; -Adrenal resection; -Perforated bowel surg. |
Medication | Dose |
---|---|
Digoxin | Loading dose of 0.25 mg IV over 15 min followed by 0.1 mg every hour until a response occurs or total dose of 0.5–1.0 mg (HR < 60 bpm- Stop) |
Short-acting B-blocker (esmolol/landiolol) | Esmolol: 80 mg for 15 to 30 s followed by 150 to 300 μg/kg/min maintenance dose based on need over 4–5 min—Landiolol: 0.1–0.3 mg/kg IV bolus or IV infusion 10–40 μg/kg/min as maintenance dose up to 24h in case of need. |
Calcium channel blocker (verapamil/diltiazem) | 0.075–0.15 mg/kg IV |
Amiodarone | 150 mg IV bolus IV infusion of 300 mg over 30 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jalali, Y.; Jalali, M.; Števlík, J. Perioperative Management of Valvular Heart Disease in Patients Undergoing Non-Cardiac Surgery. J. Clin. Med. 2024, 13, 3240. https://doi.org/10.3390/jcm13113240
Jalali Y, Jalali M, Števlík J. Perioperative Management of Valvular Heart Disease in Patients Undergoing Non-Cardiac Surgery. Journal of Clinical Medicine. 2024; 13(11):3240. https://doi.org/10.3390/jcm13113240
Chicago/Turabian StyleJalali, Yashar, Monika Jalali, and Ján Števlík. 2024. "Perioperative Management of Valvular Heart Disease in Patients Undergoing Non-Cardiac Surgery" Journal of Clinical Medicine 13, no. 11: 3240. https://doi.org/10.3390/jcm13113240
APA StyleJalali, Y., Jalali, M., & Števlík, J. (2024). Perioperative Management of Valvular Heart Disease in Patients Undergoing Non-Cardiac Surgery. Journal of Clinical Medicine, 13(11), 3240. https://doi.org/10.3390/jcm13113240