Leisure-Time Physical Activity in Subjects with Metabolic-Dysfunction-Associated Steatotic Liver Disease: An All-Cause Mortality Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Outcome Assessment
2.3. Exposure Assessment
2.3.1. Definition of MASLD
2.3.2. Physical Activity Measurement
2.4. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Effect of MASLD and LTPA Level Categories for Whole Sample and Stratified by Gender
3.3. Effect of Combining MASLD and LTPA Level Categories for Whole Sample and Stratified by Gender
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huh, Y.; Cho, Y.J.; Nam, G.E. Recent Epidemiology and Risk Factors of Nonalcoholic Fatty Liver Disease. J. Obes. Metab. Syndr. 2022, 31, 17–27. [Google Scholar] [CrossRef]
- Ali, H.; Shahzil, M.; Moond, V.; Shahzad, M.; Thandavaram, A.; Sehar, A.; Waseem, H.; Siddiqui, T.; Dahiya, D.S.; Patel, P.; et al. Non-Pharmacological Approach to Diet and Exercise in Metabolic-Associated Fatty Liver Disease: Bridging the Gap between Research and Clinical Practice. J. Pers. Med. 2024, 14, 61. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Lazarus, J.V.; Ratziu, V.; Francque, S.M.; Sanyal, A.J.; Kanwal, F.; Romero, D.; Abdelmalek, M.F.; Anstee, Q.M.; Arab, J.P. A multisociety Delphi consensus statement on new fatty liver disease nomenclature. Hepatology 2023, 78, 1966–1986. [Google Scholar] [CrossRef]
- Guo, X.; Yin, X.; Liu, Z.; Wang, J. Non-alcoholic fatty liver disease (NAFLD) pathogenesis and natural products for prevention and treatment. Int. J. Mol. Sci. 2022, 23, 15489. [Google Scholar] [CrossRef]
- Pouwels, S.; Sakran, N.; Graham, Y.; Leal, A.; Pintar, T.; Yang, W.; Kassir, R.; Singhal, R.; Mahawar, K.; Ramnarain, D. Non-alcoholic fatty liver disease (NAFLD): A review of pathophysiology, clinical management and effects of weight loss. BMC Endocr. Disord. 2022, 22, 63. [Google Scholar] [CrossRef]
- Moore, M.P.; Cunningham, R.P.; Dashek, R.J.; Mucinski, J.M.; Rector, R.S. A fad too far? Dietary strategies for the prevention and treatment of NAFLD. Obesity 2020, 28, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Nassir, F. NAFLD: Mechanisms, treatments, and biomarkers. Biomolecules 2022, 12, 824. [Google Scholar] [CrossRef]
- Li, M. Association of physical activity with MAFLD/MASLD and LF among adults in NHANES, 2017–2020. Wien. Klin. Wochenschr. 2024, 136, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Vilar-Gomez, E.; Vuppalanchi, R.; Gawrieh, S.; Pike, F.; Samala, N.; Chalasani, N. Significant dose-response association of physical activity and diet quality with mortality in adults with suspected NAFLD in a population study. Off. J. Am. Coll. Gastroenterol. 2023, 118, 1576–1591. [Google Scholar] [CrossRef]
- Chen, W.; Cao, L.; Wu, Z. Association Between Physical Activity and Prevalence/Mortality of Non-Alcoholic Fatty Liver Disease in Different Socioeconomic Settings. Int. J. Public Health 2023, 68, 1605031. [Google Scholar] [CrossRef]
- Bonfiglio, C.; Cuccaro, F.; Campanella, A.; Rosso, N.; Tatoli, R.; Giannelli, G.; Donghia, R. Effect of Intake of Extra Virgin Olive Oil on Mortality in a South Italian Cohort with and without NAFLD. Nutrients 2023, 15, 4593. [Google Scholar] [CrossRef] [PubMed]
- Leoci, C.; Centonze, S.; Guerra, V.; Cisternino, A.; Misciagna, G. Reliability and validity of a semiquantitative food frequency questionnaire. G. Ital. Nutr. Clin. Prev. 1993, 2, 58–59. [Google Scholar]
- Chan, W.-K.; Chuah, K.-H.; Rajaram, R.B.; Lim, L.-L.; Ratnasingam, J.; Vethakkan, S.R. Metabolic dysfunction-associated steatotic liver disease (MASLD): A state-of-the-art review. J. Obes. Metab. Syndr. 2023, 32, 197. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, S.D.; Willis, E.A.; Ainsworth, B.E.; Barreira, T.V.; Hastert, M.; Kracht, C.L.; Schuna Jr, J.M.; Cai, Z.; Quan, M.; Tudor-Locke, C. 2024 Adult Compendium of Physical Activities: A third update of the energy costs of human activities. J. Sport Health Sci. 2024, 13, 6–12. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Lambert, P.C.; Royston, P. Further development of flexible parametric models for survival analysis. Stata J. 2009, 9, 265–290. [Google Scholar] [CrossRef]
- Dickerman, B.A.; Hernán, M.A. Counterfactual prediction is not only for causal inference. Eur. J. Epidemiol. 2020, 35, 615–617. [Google Scholar] [CrossRef] [PubMed]
- VanderWeele, T.J. A unification of mediation and interaction: A 4-way decomposition. Epidemiology 2014, 25, 749–761. [Google Scholar] [CrossRef]
- Machado, M.V. MASLD treatment—A shift in the paradigm is imminent. Front. Med. 2023, 10, 1316284. [Google Scholar] [CrossRef]
- Younossi, Z.M.; Stepanova, M.; Younossi, Y.; Golabi, P.; Mishra, A.; Rafiq, N.; Henry, L. Epidemiology of chronic liver diseases in the USA in the past three decades. Gut 2020, 69, 564–568. [Google Scholar] [CrossRef]
- Z–hao, Q.; Deng, Y. Comparison of mortality outcomes in individuals with MASLD and/or MAFLD. J. Hepatol. 2024, 80, e62–e64. [Google Scholar] [CrossRef] [PubMed]
- Song, R.; Li, Z.; Zhang, Y.; Tan, J.; Chen, Z. Comparison of NAFLD, MAFLD and MASLD characteristics and mortality outcomes in United States adults. Liver Int. 2024, 44, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Konyn, P.; Sandhu, K.K.; Dennis, B.B.; Cheung, A.C.; Ahmed, A. Metabolic dysfunction-associated fatty liver disease is associated with increased all-cause mortality in the United States. J. Hepatol. 2021, 75, 1284–1291. [Google Scholar] [CrossRef] [PubMed]
- Talens, M.; Tumas, N.; Lazarus, J.V.; Benach, J.; Pericàs, J.M. What do we know about inequalities in NAFLD distribution and outcomes? A scoping review. J. Clin. Med. 2021, 10, 5019. [Google Scholar] [CrossRef] [PubMed]
- Luci, C.; Bourinet, M.; Leclère, P.S.; Anty, R.; Gual, P. Chronic inflammation in non-alcoholic steatohepatitis: Molecular mechanisms and therapeutic strategies. Front. Endocrinol. 2020, 11, 597648. [Google Scholar] [CrossRef]
- Machado, M.V.; Diehl, A.M. Pathogenesis of nonalcoholic steatohepatitis. Gastroenterology 2016, 150, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
- Charatcharoenwitthaya, P.; Kuljiratitikal, K.; Aksornchanya, O.; Chaiyasoot, K.; Bandidniyamanon, W.; Charatcharoenwitthaya, N. Moderate-intensity aerobic vs resistance exercise and dietary modification in patients with nonalcoholic fatty liver disease: A randomized clinical trial. Clin. Transl. Gastroenterol. 2021, 12, e00316. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Wang, Y.; Lai, J.; Song, T.; Duan, J. Comparative efficacy of exercise training processes in improving nonalcoholic fatty liver disease: A systematic review and meta-analysis. Ir. J. Med. Sci. 2023, 192, 131–142. [Google Scholar] [CrossRef] [PubMed]
- García-Hermoso, A.; Ramírez-Vélez, R.; Ramírez-Campillo, R.; Peterson, M.D.; Martínez-Vizcaíno, V. Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: A systematic review and meta-analysis. Br. J. Sports Med. 2018, 52, 161–166. [Google Scholar] [CrossRef]
- Boutcher, Y.N.; Boutcher, S.H. Exercise intensity and hypertension: What’s new? J. Hum. Hypertens. 2017, 31, 157–164. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, W.; Zou, Y.; Huang, W.; Lin, S.; Ye, J.; Lan, Y. Benefits of different combinations of aerobic and resistance exercise for improving plasma glucose and lipid metabolism and sleep quality among elderly patients with metabolic syndrome: A randomized controlled trial. Endocr. J. 2022, 69, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Byambasukh, O.; Zelle, D.; Corpeleijn, E. Physical activity, fatty liver, and glucose metabolism over the life course: The lifelines cohort. Off. J. Am. Coll. Gastroenterol. 2019, 114, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Löllgen, H.; Böckenhoff, A.; Knapp, G. Physical activity and all-cause mortality: An updated meta-analysis with different intensity categories. Int. J. Sports Med. 2009, 30, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Kang, Y.; Zhou, J.; Feng, Y.; Wang, W.; Wu, X.; Zhang, X.; Li, M. Association between Different Types of Physical Activity and Hepatic Steatosis and Liver Fibrosis: A Cross-Sectional Study Based on NHANES. J. Clin. Gastroenterol. 2024. online ahead of print. [Google Scholar]
- Palmisano, B.T.; Zhu, L.; Stafford, J.M. Role of estrogens in the regulation of liver lipid metabolism. In Sex and Gender Factors Affecting Metabolic Homeostasis, Diabetes and Obesity; Springer: Cham, Switzerland, 2017; pp. 227–256. [Google Scholar]
- Ballestri, S.; Nascimbeni, F.; Baldelli, E.; Marrazzo, A.; Romagnoli, D.; Lonardo, A. NAFLD as a Sexual Dimorphic Disease: Role of Gender and Reproductive Status in the Development and Progression of Nonalcoholic Fatty Liver Disease and Inherent Cardiovascular Risk. Adv. Ther. 2017, 34, 1291–1326. [Google Scholar] [CrossRef] [PubMed]
- Mosca, L.; Mochari, H.; Christian, A.; Berra, K.; Taubert, K.; Mills, T.; Burdick, K.A.; Simpson, S.L. National study of women’s awareness, preventive action, and barriers to cardiovascular health. Circulation 2006, 113, 525–534. [Google Scholar] [CrossRef]
- Smedley, J. Modern Epidemiology; LWW: Philadelphia, PA, USA, 2014. [Google Scholar]
MASLD and Leisure Activity Level | |||||
---|---|---|---|---|---|
Whole Sample d | Group 1 | Group 2 | Group 3 | Group 4 | |
N (%) | 1826 | 909 | 210 | 551 | 156 |
Enrolment age (years) a | 51.91 (14.76) | 50.45 (15.30) | 53.50 (16.23) | 53.43 (13.44) | 52.91 (13.16) |
Gender b | |||||
Males | 1026 (56.2) | 449 (43.8) | 99 (9.6) | 371 (36.2) | 107 (10.4) |
Females | 800 (43.8) | 460 (57.5) | 111 (13.9) | 180 (22.5) | 49 (6.1) |
SBP (mmHg) a | 122.13 (19.92) | 118.43 (20.00) | 122.14 (20.91) | 126.27 (17.94) | 128.99 (20.21) |
DBP (mmHg) a | 74.67 (10.14) | 72.71 (9.73) | 73.89 (10.26) | 77.42 (9.86) | 77.32 (10.55) |
Weight (kg) a | 75.75 (15.53) | 70.21 (12.44) | 70.61 (14.56) | 84.03 (14.94) | 85.66 (17.18) |
BMI (kg/m2) a | 28.68 (5.27) | 26.63 (4.16) | 27.29 (4.73) | 31.54 (4.96) | 32.39 (6.19) |
Waist circumference (cm) a | 92.56 (13.41) | 86.94 (11.48) | 88.20 (12.28) | 100.65 (11.20) | 102.33 (12.49) |
Hip circumference (cm) a | 103.61 (10.46) | 100.28 (8.82) | 101.49 (9.26) | 108.25 (10.43) | 109.26 (12.23) |
WHR a | 0.89 (0.08) | 0.87 (0.08) | 0.87 (0.08) | 0.93 (0.07) | 0.94 (0.07) |
Kilocalories a | 2171.26 (698.05) | 2180.6 (688.7) | 2089.5 (702.0) | 2178.3 (693.1) | 2201.8 (760.9) |
Alcohol consumption (g/die) a | 11.87 (14.74) | 10.69 (13.86) | 9.98 (13.84) | 13.98 (15.92) | 13.82 (15.60) |
Wine consumption (ml/die) a | 106.06 (136.67) | 96.36 (128.44) | 88.51 (128.66) | 124.69 (147.59) | 120.43 (145.78) |
TG (mg/dL) a | 128.37 (96.38) | 10.69 (13.86) | 9.98 (13.84) | 13.98 (15.92) | 13.82 (15.60) |
TC (mg/dL) a | 199.60 (38.00) | 96.36 (128.44) | 88.51 (128.66) | 124.69 (147.59) | 120.43 (145.78) |
HDL-C (mg/dL) a | 50.79 (13.81) | 10.69 (13.86) | 9.98 (13.84) | 13.98 (15.92) | 13.82 (15.60) |
LDL-C (mg/dL) a | 123.41 (32.83) | 96.36 (128.44) | 88.51 (128.66) | 124.69 (147.59) | 120.43 (145.78) |
Glucose (mg/dL) a | 108.66 (25.10) | 10.69 (13.86) | 9.98 (13.84) | 13.98 (15.92) | 13.82 (15.60) |
ALT (U/L) a | 17.24 (12.86) | 96.36 (128.44) | 88.51 (128.66) | 124.69 (147.59) | 120.43 (145.78) |
Smoking habit b | |||||
Never | 1504 (82.4) | 752 (50.0) | 182 (12.1) | 454 (30.2) | 116 (7.7) |
Current | 322 (17.6) | 157 (48.8) | 28 (8.7) | 97 (30.1) | 40 (12.4) |
rMED c | 8 (7–10) | 8 (7–10) | 8 (7–10) | 8 (7–10) | 8 (6–9) |
Age at death (years) c | 65.83 (56.86–79.05) | 63.41 (55.82–78.90) | 65.56 (56.34–82.35) | 69.81 (60.13–80.07) | 70.35 (60.17–76.61) |
Observation time (years) c | 17.92 (17.05–18.22) | 17.91 (17.05–18.13) | 17.91 (17.02–18.20) | 17.92 (17.05–18.33) | 17.93 (17.03–18.42) |
Status b | |||||
Alive | 1452 (79.5) | 739 (50.9) | 157 (10.8) | 438 (30.2) | 118 (8.1) |
Dead | 374 (20.5) | 170 (45.5) | 53 (14.2) | 113 (30.2) | 38 (10.2) |
Job b | |||||
Unemployed and pensioner | 385 (21.2) | 182 (47.3) | 45 (11.7) | 133 (34.5) | 25 (6.5) |
Manager and professional | 118 (6.5) | 58 (49.2) | 21 (17.8) | 28 (23.7) | 11 (9.3) |
Crafts, agricultural, and sales worker | 627 (34.6) | 306 (48.8) | 68 (10.8) | 194 (30.9) | 59 (9.4) |
Housewife | 220 (12.1) | 134 (60.9) | 18 (8.2) | 55 (25.0) | 13 (5.9) |
Elementary occupation | 462 (25.5) | 222 (48.1) | 57 (12.3) | 137 (29.7) | 46 (10.0) |
Education b | |||||
Primary school | 622 (34.1) | 281 (45.2) | 78 (12.5) | 209 (33.6) | 54 (8.7) |
Secondary school | 568 (31.1) | 290 (51.1) | 63 (11.1) | 170 (29.9) | 45 (7.9) |
High school | 517 (28.3) | 270 (52.2) | 58 (11.2) | 141 (27.3) | 48 (9.3) |
Graduate | 119 (6.5) | 68 (57.1) | 11 (9.2) | 31 (26.1) | 9 (7.6) |
Marital status b | |||||
Single | 224 (12.3) | 131 (58.5) | 34 (15.2) | 43 (19.2) | 16 (7.1) |
Married or cohabiting | 1.403 (76.8) | 672 (47.9) | 155 (11.0) | 456 (32.5) | 120 (8.6) |
Separated or divorced | 58 (3.2) | 35 (60.3) | 4 (6.9) | 17 (29.3) | 2 (3.4) |
Widow/er | 141 (7.7) | 71 (50.4) | 17 (12.1) | 35 (24.8) | 18 (12.8) |
Hypertension b | |||||
No | 1280 (70.1) | 691 (54.0) | 148 (11.6) | 346 (27.0) | 95 (7.4) |
Yes | 546 (29.9) | 218 (39.9) | 62 (11.4) | 205 (37.5) | 61 (11.2) |
Dyslipidemia b | |||||
No | 1360 (74.5) | 732 (53.8) | 170 (12.5) | 357 (26.2) | 101 (7.4) |
Yes | 466 (25.5) | 177 (38.0) | 40 (8.6) | 194 (41.6) | 55 (11.8) |
Diabetes b | |||||
No | 1664 (91.1) | 856 (51.4) | 191 (11.5) | 478 (28.7) | 139 (8.4) |
Yes | 162 (8.9) | 53 (32.7) | 19 (11.7) | 73 (45.1) | 17 (10.5) |
Model 1 | Model 2 | Model 3 | |
---|---|---|---|
Whole Sample | Female | Male | |
HR (95% CI) | HR (95% CI) | HR (95% CI) | |
MASLD | |||
No | 1.00 | 1.00 | 1.00 |
Yes | 1.30 * (1.00; 1.67) | 1.27 (0.83; 1.95) | 1.30 (0.94; 1.81) |
LTPA | |||
High or Moderate | 1.00 | 1.00 | 1.00 |
Low or Absent | 1.45 * (1.10; 1.91) | 1.64 * (1.07; 2.50) | 1.34 (0.92; 1.94) |
Model 4 | Model 5 | Model 6 | |
---|---|---|---|
Whole Sample | Females | Males | |
HR (95% CI) | HR (95% CI) | HR (95% CI) | |
MASLD#LTPA | |||
Group 1 | 1.00 | 1.00 | 1.00 |
Group 2 | 1.18 (0.83; 1.68) | 1.16 (0.69; 1.93) | 1.18 (0.72; 1.95) |
Group 3 | 1.10 (0.83; 1.46) | 0.92 (0.57; 1.49) | 1.17 (0.82; 1.67) |
Group 4 | 2.23 ** (1.49; 3.34) | 3.10 ** (1.69; 5.68) | 1.84 * (1.07; 3.16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curci, R.; Bonfiglio, C.; Franco, I.; Bagnato, C.B.; Verrelli, N.; Bianco, A. Leisure-Time Physical Activity in Subjects with Metabolic-Dysfunction-Associated Steatotic Liver Disease: An All-Cause Mortality Study. J. Clin. Med. 2024, 13, 3772. https://doi.org/10.3390/jcm13133772
Curci R, Bonfiglio C, Franco I, Bagnato CB, Verrelli N, Bianco A. Leisure-Time Physical Activity in Subjects with Metabolic-Dysfunction-Associated Steatotic Liver Disease: An All-Cause Mortality Study. Journal of Clinical Medicine. 2024; 13(13):3772. https://doi.org/10.3390/jcm13133772
Chicago/Turabian StyleCurci, Ritanna, Caterina Bonfiglio, Isabella Franco, Claudia Beatrice Bagnato, Nicola Verrelli, and Antonella Bianco. 2024. "Leisure-Time Physical Activity in Subjects with Metabolic-Dysfunction-Associated Steatotic Liver Disease: An All-Cause Mortality Study" Journal of Clinical Medicine 13, no. 13: 3772. https://doi.org/10.3390/jcm13133772
APA StyleCurci, R., Bonfiglio, C., Franco, I., Bagnato, C. B., Verrelli, N., & Bianco, A. (2024). Leisure-Time Physical Activity in Subjects with Metabolic-Dysfunction-Associated Steatotic Liver Disease: An All-Cause Mortality Study. Journal of Clinical Medicine, 13(13), 3772. https://doi.org/10.3390/jcm13133772