Discussing on the Aortic Coverage in Type B Aortic Dissection Treatment: A Comprehensive Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Literature Sources and Research Strategy
2.3. Objectives
3. Results
3.1. Why Cover?
3.2. How to Cover
3.2.1. PETTICOAT
3.2.2. e-PETTICOAT
3.2.3. STABILISE
3.2.4. Knickerbocker
3.2.5. False Lumen Treatment—Candy Plug
3.2.6. False Lumen Treatment—Embolization
3.3. Who to Cover
3.3.1. Complicated and Uncomplicated Type B Aortic Dissection
3.3.2. Chronic Dissection with Aortic Dilatation/Aneurysm
3.3.3. Connective/Congenital Disease
3.4. Computational Studies
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Section | Item | Prisma-ScR Checklist Item | Reported on Page # |
Title | |||
Title | 1 | Identify the report as a scoping review. | 1 |
Abstract | |||
Structured summary | 2 | Provide a structured summary that includes (as applicable): background, objectives, eligibility criteria, sources of evidence, charting methods, results, and conclusions that relate to the review questions and objectives. | 3 |
Introduction | |||
Rationale | 3 | Describe the rationale for the review in the context of what is already known. Explain why the review questions/objectives lend themselves to a scoping review approach. | 4, 5 |
Objectives | 4 | Provide an explicit statement of the questions and objectives being addressed with reference to their key elements (e.g., population or participants, concepts, and context) or other relevant key elements used to conceptualize the review questions and/or objectives. | 5 |
Methods | |||
Protocol and registration | 5 | Indicate whether a review protocol exists; state if and where it can be accessed (e.g., a Web address); and if available, provide registration information, including the registration number. | 6 |
Eligibility criteria | 6 | Specify characteristics of the sources of evidence used as eligibility criteria (e.g., years considered, language, and publication status), and provide a rationale. | 6 |
Information sources * | 7 | Describe all information sources in the search (e.g., databases with dates of coverage and contact with authors to identify additional sources), as well as the date the most recent search was executed. | 6 |
Search | 8 | Present the full electronic search strategy for at least 1 database, including any limits used, such that it could be repeated. | 6 |
Selection of sources of evidence † | 9 | State the process for selecting sources of evidence (i.e., screening and eligibility) included in the scoping review. | 6 |
Data charting process ‡ | 10 | Describe the methods of charting data from the included sources of evidence (e.g., calibrated forms or forms that have been tested by the team before their use, and whether data charting was done independently or in duplicate) and any processes for obtaining and confirming data from investigators. | 6 |
Data items | 11 | List and define all variables for which data were sought and any assumptions and simplifications made. | 6 |
Critical appraisal of individual sources of evidence § | 12 | If done, provide a rationale for conducting a critical appraisal of included sources of evidence; describe the methods used and how this information was used in any data synthesis (if appropriate). | Not applicable |
Synthesis of results | 13 | Describe the methods of handling and summarizing the data that were charted. | 6 |
Results | |||
Selection of sources of evidence | 14 | Give numbers of sources of evidence screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally using a flow diagram. | 7–19 |
Characteristics of sources of evidence | 15 | For each source of evidence, present characteristics for which data were charted and provide the citations. | 7–19 |
Critical appraisal within sources of evidence | 16 | If done, present data on critical appraisal of included sources of evidence (see item 12). | 7–19 |
Results of individual sources of evidence | 17 | For each included source of evidence, present the relevant data that were charted that relate to the review questions and objectives. | 7–19 |
Synthesis of results | 18 | Summarize and/or present the charting results as they relate to the review questions and objectives. | 7–19 |
Discussion | |||
Summary of evidence | 19 | Summarize the main results (including an overview of concepts, themes, and types of evidence available), link to the review questions and objectives, and consider the relevance to key groups. | 19–21 |
Limitations | 20 | Discuss the limitations of the scoping review process. | 21 |
Conclusions | 21 | Provide a general interpretation of the results with respect to the review questions and objectives, as well as potential implications and/or next steps. | 19–21 |
Funding | |||
Funding | 22 | Describe sources of funding for the included sources of evidence, as well as sources of funding for the scoping review. Describe the role of the funders of the scoping review. | 21 |
JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews. * Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, social media platforms, and Web sites. † A more inclusive/heterogeneous term used to account for the different types of evidence or data sources (e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in a scoping review as opposed to only studies. This is not to be confused with information sources (see first footnote). ‡ The frameworks by Arksey and O’Malley (6) and Levac and colleagues (7) and the JBI guidance (4, 5) refer to the process of data extraction in a scoping review as data charting. § The process of systematically examining research evidence to assess its validity, results, and relevance before using it to inform a decision. This term is used for items 12 and 19 instead of “risk of bias” (which is more applicable to systematic reviews of interventions) to include and acknowledge the various sources of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert opinion, and policy document). From: Tricco A.C., Lillie E., Zarin W., O’Brien K.K., Colquhoun H., Levac D., et al. PRISMA Extension for Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi: 10.7326/M18-0850. |
Appendix B
References
- Bissacco, D.; Domanin, M.; Weaver, F.A.; Azizzadeh, A.; Miller, C.C.; Gable, D.R.; Piffaretti, G.; Lomazzi, C.; Trimarchi, S. Differences in Mid-Term Outcomes Between Patients Undergoing Thoracic Endovascular Aortic Repair for Aneurysm or Acute Aortic Syndromes: Report from the Global Registry for Endovascular Aortic Treatment. J. Endovasc. Ther. 2022, 29, 731–738. [Google Scholar] [CrossRef] [PubMed]
- Domanin, M.; Bissacco, D.; Romarowsky, R.M.; Conti, M.; Auricchio, F.; Ferraresi, M.; Trimarchi, S. Drag Forces after Thoracic Endovascular Aortic Repair. General Review of the Literature. Ann. Vasc. Surg. 2021, 75, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, J.V.; Hughes, G.C.; Appoo, J.J.; Bavaria, J.E.; Beck, A.W.; Cambria, R.P.; Charlton-Ouw, K.; Eslami, M.H.; Kim, K.M.; Leshnower, B.G.; et al. Society for Vascular Surgery (SVS) and Society of Thoracic Surgeons (STS) reporting standards for type B aortic dissections. J. Vasc. Surg. 2020, 71, 723–747. [Google Scholar] [CrossRef] [PubMed]
- Riambau, V.; Böckler, D.; Brunkwall, J.; Cao, P.; Chiesa, R.; Coppi, G.; Czerny, M.; Fraedrich, G.; Haulon, S.; Jacobs, M.J.; et al. Editor’s Choice—Management of Descending Thoracic Aorta Diseases: Clinical Practice Guidelines of the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2017, 53, 4–52. [Google Scholar] [CrossRef]
- MacGillivray, T.E.; Gleason, T.G.; Patel, H.J.; Ldea, G.S.; Bavaria, J.E.; Beaver, T.M.; Chen, E.P.; Czerny, M.; Estrera, A.L.; Firestone, S.; et al. The Society of Thoracic Surgeons/American Association for Thoracic Surgery clinical practice guidelines on the management of type B aortic dissection. J. Thorac. Cardiovasc. Surg. 2022, 163, 1231–1249. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Eriksen, M.B.; Frandsen, T.F. The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: A systematic review. J. Med. Libr. Assoc. 2018, 106, 420–431. [Google Scholar] [CrossRef] [PubMed]
- Fattori, R.; Cao, P.; De Rango, P.; Czerny, M.; Evangelista, A.; Nienaber, C.; Rousseau, H.; Schepens, M. Interdisciplinary expert consensus document on management of type B aortic dissection. J. Am. Coll. Cardiol. 2013, 61, 1661–1678. [Google Scholar] [CrossRef]
- Qin, Y.-L.; Deng, G.; Li, T.-X.; Wang, W.; Teng, G.-J. Treatment of Acute Type-B Aortic Dissection: Thoracic Endovascular Aortic Repair or Medical Management Alone? JACC Cardiovasc. Interv. 2013, 6, 185–191. [Google Scholar] [CrossRef]
- Evangelista, A.; Isselbacher, E.M.; Bossone, E.; Gleason, T.G.; Di Eusanio, M.; Sechtem, U.; Ehrlich, M.P.; Trimarchi, S.; Braverman, A.C.; Myrmel, T.; et al. Insights from the international registry of acute aortic dissection: A 20-year experience of collaborative clinical research. Circulation 2018, 137, 1846–1860. [Google Scholar] [CrossRef]
- Czerny, M.; Grabenwöger, M.; Berger, T.; Aboyans, V.; Della Corte, A.; Chen, E.P.; Desai, N.D.; Dumfarth, J.; Elefteriades, J.A.; Etz, C.D.; et al. EACTS/STS Guidelines for diagnosing and treating acute and chronic syndromes of the aortic organ. Eur. J. Cardio-Thorac. Surg. 2024, 2024, 426. [Google Scholar] [CrossRef] [PubMed]
- Codner, J.A.; Lou, X.; Duwayri, Y.M.; Chen, E.P.; Binongo, J.N.; Moon, R.; Jordan, W.D.; Leshnower, B.G. The distance of the primary intimal tear from the left subclavian artery predicts aortic growth in uncomplicated type B aortic dissection. J. Vasc. Surg. 2019, 69, 692–700. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, A.; Salas, A.; Ribera, A.; Ferreira-González, I.; Cuellar, H.; Pineda, V.; González-Alujas, T.; Bijnens, B.; Permanyer-Miralda, G.; Garcia-Dorado, D. Long-term outcome of aortic dissection with patent false lumen: Predictive role of entry tear size and location. Circulation 2012, 125, 3133–3141. [Google Scholar] [CrossRef]
- Trimarchi, S.; Jonker, F.H.W.; Bogerijen, G.H.W.; van Tolenaar, J.L.; Moll, F.L.; Czerny, M.; Patel, H.J. Predicting aortic enlargement in type B aortic dissection. Ann. Cardiothorac. Surg. 2014, 3, 285. [Google Scholar] [CrossRef]
- Evangelista, A.; Pineda, V.; Guala, A.; Bijnens, B.; Cuellar, H.; Rudenick, P.; Sao-Aviles, A.; Ruiz, A.; Teixido-Tura, G.; Rodriguez-Lecoq, R.; et al. False Lumen Flow Assessment by Magnetic Resonance Imaging and Long-Term Outcomes in Uncomplicated Aortic Dissection. J. Am. Coll. Cardiol. 2022, 79, 2415–2427. [Google Scholar] [CrossRef]
- Ante, M.; Mylonas, S.; Skrypnik, D.; Bischoff, M.S.; Rengier, F.; Brunkwall, J.; Böckler, D. Prevalence of the Computed Tomographic Morphological DISSECT Predictors in Uncomplicated Stanford Type B Aortic Dissection. Eur. J. Vasc. Endovasc. Surg. 2018, 56, 525–533. [Google Scholar] [CrossRef]
- Song, J.M.; Kim, S.D.; Kim, J.H.; Kim, M.J.; Kang, D.H.; Seo, J.B.; Lim, T.-H.; Lee, J.W.; Song, M.-G.; Song, J.-K. Long-term predictors of descending aorta aneurysmal change in patients with aortic dissection. J. Am. Coll. Cardiol. 2007, 50, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Trimarchi, S.; Eagle, K.A.; Nienaber, C.A.; Pyeritz, R.E.; Jonker, F.H.W.; Suzuki, T.; O’Gara, P.T.; Hutchinson, S.J.; Rampoldi, V.; Grassi, V.; et al. Importance of refractory pain and hypertension in acute type B aortic dissection: Insights from the International Registry of Acute Aortic Dissection (IRAD). Circulation 2010, 122, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Nienaber, C.A.; Rousseau, H.; Eggebrecht, H.; Kische, S.; Fattori, R.; Rehders, T.C.; Kundt, G.; Scheinert, D.; Czerny, M.; Kleinfeldt, T.; et al. Randomized comparison of strategies for type B aortic dissection: The INvestigation of STEnt Grafts in Aortic Dissection (INSTEAD) trial. Circulation 2009, 120, 2519–2528. [Google Scholar] [CrossRef]
- Williams, D.M.; LePage, M.A.; Lee, D.Y. The dissected aorta. I. Early anatomic changes in an in vitro model. Radiology 1997, 203, 23–31. [Google Scholar] [CrossRef]
- Blount, K.J.; Hagspiel, K.D. Aortic diameter, true lumen, and false lumen growth rates in chronic type B aortic dissection. Am. J. Roentgenol. 2009, 192, W222-9. [Google Scholar] [CrossRef]
- Crawford, T.C.; Beaulieu, R.J.; Ehlert, B.A.; Ratchford, E.V.; Black, J.H. Malperfusion syndromes in aortic dissections. Vasc. Med. 2016, 21, 264–273. [Google Scholar] [CrossRef]
- Bashir, M.; Jubouri, M.; White, R.D.; Tan, S.Z.; Bailey, D.M.; Williams, I.M. Dynamic and Static Vessel Malperfusion as a Consequence of Acute Type B Aortic Dissection. Ann. Vasc. Surg. 2023, 94, 61–67. [Google Scholar] [CrossRef]
- Schwartz, S.I.; Durham, C.; Clouse, W.D.; Patel, V.I.; Lancaster, R.T.; Cambria, R.P.; Conrad, M.F. Predictors of late aortic intervention in patients with medically treated type B aortic dissection. J. Vasc. Surg. 2018, 67, 78–84. [Google Scholar] [CrossRef]
- Sailer, A.M.; van Kuijk, S.M.; Nelemans, P.J.; Chin, A.S.; Kino, A.; Huininga, M.; Chmidt, J.; Mistelbauer, G.; Bäumler, K.; Chiu, P.; et al. Computed tomography imaging features in acute uncomplicated stanford type-B aortic dissection predict late adverse events. Circ. Cardiovasc. Imaging 2017, 10, e005709. [Google Scholar] [CrossRef]
- Nienaber, C.A.; Kische, S.; Rousseau, H.; Eggebrecht, H.; Rehders, T.C.; Kundt, G.; Glass, A.; Scheinert, D.; Czerny, M.; Kleinfeldt, T.; et al. Endovascular repair of type B aortic dissection: Long-term results of the randomized investigation of stent grafts in aortic dissection trial. Circ. Cardiovasc. Interv. 2013, 6, 407–416. [Google Scholar] [CrossRef]
- Brunkwall, J.; Kasprzak, P.; Verhoeven, E.; Heijmen, R.; Taylor, P.; Alric, P.; Canaud, L.; Janotta, M.; Raithel, D.; Malina, M.; et al. Endovascular repair of acute uncomplicated aortic type B dissection promotes aortic remodelling: 1 year results of the ADSORB trial. Eur. J. Vasc. Endovasc. Surg. 2014, 48, 285–291. [Google Scholar] [CrossRef]
- Szeto, W.Y.; McGarvey, M.; Pochettino, A.; Moser, G.W.; Hoboken, A.; Cornelius, K.; Woo, E.Y.; Carpenter, J.P.; Fairman, R.M.; Bavaria, J.E. Results of a new surgical paradigm: Endovascular repair for acute complicated type B aortic dissection. Ann. Thorac. Surg. 2008, 86, 87–94. [Google Scholar] [CrossRef]
- Eggebrecht, H.; Nienaber, C.A.; Neuhäuser, M.; Baumgart, D.; Kische, S.; Schmermund, A.; Herold, U.; Rehders, T.C.; Jakob, H.G.; Erbel, R. Endovascular stent-graft placement in aortic dissection: A meta-analysis. Eur. Heart J. 2006, 27, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Moulakakis, K.G.; Mylonas, S.N.; Dalainas, I.; Kakisis, J.; Kotsis, T.; Liapis, C.D. Management of complicated and uncomplicated acute type B dissection. A systematic review and meta-analysis. Ann. Cardiothorac. Surg. 2014, 3, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M. The VIRTUE Registry of type B thoracic dissections—Study design and early results. Eur. J. Vasc. Endovasc. Surg. 2011, 41, 159–166. [Google Scholar] [CrossRef]
- D’cruz, R.T.; Syn, N.; Wee, I.; Choong, A.M.; Collaborative, S.V.S. Risk factors for distal stent graft-induced new entry in type B aortic dissections: Systematic review and meta-analysis. J. Vasc. Surg. 2019, 70, 1682–1693.e1. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Sun, Z.; Wang, H.; Zhang, C.; Cui, Y.; Jiang, W. Prevention of distal stent graft-induced new entry after endovascular repair for type B aortic dissection: A retrospective cohort study. J. Thorac. Cardiovasc. Surg. 2024, 167, 28–38.e8. [Google Scholar] [CrossRef]
- Howard, C.; Sheridan, J.; Picca, L.; Reza, S.; Smith, T.; Ponnapalli, A.; Calow, R.; Cross, O.; Iddawela, S.; George, M.; et al. TEVAR for complicated and uncomplicated type B aortic dissection—Systematic review and meta-analysis. J. Card. Surg. 2021, 36, 3820–3830. [Google Scholar] [CrossRef]
- Ali-Hasan-Al-Saegh, S.; Halloum, N.; Scali, S.; Kriege, M.; Abualia, M.; Stamenovic, D.; Izzat, M.B.; Bohan, P.; Kloeckner, R.; Oezkur, M.; et al. A systematic review and meta-analysis of retrograde type A aortic dissection after thoracic endovascular aortic repair in patients with type B aortic dissection. Medicine 2023, 102, e32944. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, S.; Lu, Q.; Jing, Z.; Zhang, S.; Xu, B. Impact of Oversizing on the Risk of Retrograde Dissection After TEVAR for Acute and Chronic Type B Dissection. J. Endovasc. Ther. 2016, 23, 620–625. [Google Scholar] [CrossRef]
- Payne, D.; Böckler, D.; Weaver, F.; Milner, R.; Magee, G.; Azizzadeh, A.; Trimarchi, S.; Gable, D.; GREAT Investigators. 5-Year Outcomes of Endovascular Treatment for Aortic Dissection from the Global Registry for Endovascular Aortic Treatment. J. Vasc. Surg. 2024; in press. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.J.; Cambria, R.P.; Lombardi, J.V.; Azizzadeh, A.; White, R.A.; Abel, D.B.; Cronenwett, J.L.; Beck, A.W. Thirty-day outcomes from the Society for Vascular Surgery Vascular Quality Initiative thoracic endovascular aortic repair for type B dissection project. J. Vasc. Surg. 2019, 69, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Nienaber, C.A.; Kische, S.; Zeller, T.; Rehders, T.C.; Schneider, H.; Lorenzen, B.; Bünger, C.; Ince, H. Provisional extension to induce complete attachment after stent-graft placement in type B aortic dissection: The PETTICOAT concept. J. Endovasc. Ther. 2006, 13, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Belkin, N.; Jackson, B.M.; Foley, P.J.; Damrauer, S.M.; Kalapatapu, V.; Golden, M.A.; Fairman, R.M.; Wang, G.J. The use of intravascular ultrasound in the treatment of type B aortic dissection with thoracic endovascular aneurysm repair is associated with improved long-term survival. J. Vasc. Surg. 2020, 72, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Piffaretti, G.; Mandigers, T.J.; Heijmen, R.H.; Trimarchi, S. Spinal cord protection during TEVAR: Primum non nocere. Eur. J. Cardio-Thorac. Surg. 2022, 62, ezac513. [Google Scholar] [CrossRef] [PubMed]
- Bertoglio, L.; Rinaldi, E.; Melissano, G.; Chiesa, R. The PETTICOAT concept for endovascular treatment of type B aortic dissection. J. Cardiovasc. Surg. 2019, 60, 91–99. [Google Scholar] [CrossRef]
- Vargo, P.R.; Tarola, C.L.; Durbak, E.; Doh, C.Y.; Caputo, F.J.; Smolock, C.J.; Roselli, E.E. Early results of bare metal extension stent for thoracoabdominal aortic dissection. JTCVS Tech. 2022, 14, 1–8. [Google Scholar] [CrossRef]
- Kazimierczak, A.; Rynio, P.; Jędrzejczak, T.; Samad, R.; Rybicka, A.; Gutowski, P. Aortic Remodeling After Extended PETTICOAT Technique in Acute Aortic Dissection Type III B. Ann. Vasc. Surg. 2020, 66, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Żołnierczuk, M.; Miśkiewicz, M.; Paduch, J.; Rybicka, A.; Rynio, P.; Jędrzejczak, T.; Pacholewicz, J.; Gutowski, P.; Krajewska, A.; Kazimierczak, A. Questionable Long-Term Results of the Extended Provisional Extension to Induce Complete Attachment (E-PETTICOAT) Technique in the Management of Chronic Type B Aortic Dissection. Ann. Vasc. Surg. 2023, 89, 210–215. [Google Scholar] [CrossRef]
- Maurin, A.; Jacquier, A.; Bartoli, A.; Barral, P.A.; Vecchini, F.; Mancini, J.; Omnes, V.; DeMasi, M.; Piquet, P.; Gaudry, M. STABILISE (Stent-Assisted Balloon-Induced Intimal Disruption and Relamination in Aortic Dissection Repair) Is Associated with Good Anatomical Results on the Distal Thoracoabdominal Aorta at 2 Years. J. Endovasc. Ther. 2024, 20, 15266028241232923. [Google Scholar] [CrossRef] [PubMed]
- Faure, E.M.; El Batti, S.; Abou Rjeili, M.; Julia, P.; Alsac, J.M. Mid-term Outcomes of Stent Assisted Balloon Induced Intimal Disruption and Relamination in Aortic Dissection Repair (STABILISE) in Acute Type B Aortic Dissection. Eur. J. Vasc. Endovasc. Surg. 2018, 56, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Bayfield, N.G.R.; Bennett, A.; Ritter, J.C. Stent-Assisted Balloon-Induced Intimal Disruption and Relamination in Aortic Dissection Repair (STABILISE): A Meta-Analysis of Early Outcomes. Ann. Vasc. Surg. 2024, 98, 146–154. [Google Scholar] [CrossRef]
- Kölbel, T.; Carpenter, S.W.; Lohrenz, C.; Tsilimparis, N.; Larena-Avellaneda, A.; Debus, E.S. Addressing Persistent False Lumen Flow in Chronic Aortic Dissection: The Knickerbocker Technique. J. Endovasc. Ther. 2014, 21, 117–122. [Google Scholar] [CrossRef]
- de Beaufort, H.W.L.; Vos, J.A.; Heijmen, R.H. Initial Single-Center Experience with the Knickerbocker Technique During Thoracic Endovascular Aortic Repair to Block Retrograde False Lumen Flow in Patients with Type B Aortic Dissection. J. Endovasc. Ther. 2022, 7, 152660282211348. [Google Scholar] [CrossRef]
- Kölbel, T.; Lohrenz, C.; Kieback, A.; Diener, H.; Debus, E.S.; Larena-Avellaneda, A. Distal False Lumen Occlusion in Aortic Dissection with a Homemade Extra-Large Vascular Plug: The Candy-Plug Technique. J. Endovasc. Ther. 2013, 20, 484–489. [Google Scholar] [CrossRef]
- Rohlffs, F.; Tsilimparis, N.; Fiorucci, B.; Heidemann, F.; Debus, E.S.; Kölbel, T. The Candy-Plug Technique: Technical Aspects and Early Results of a New Endovascular Method for False Lumen Occlusion in Chronic Aortic Dissection. J. Endovasc. Ther. 2017, 24, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Bertoglio, L.; Bilman, V.; Rohlffs, F.; Panuccio, G.; Chiesa, R.; Kölbel, T. Self-occluding Candy-Plug: Implantation Technique to Obtain False Lumen Thrombosis in Chronic Aortic Dissections. J. Endovasc. Ther. 2023, 30, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Pellenc, Q.; Roussel, A.; De Blic, R.; Girault, A.; Cerceau, P.; Ben Abdallah, I.; Milleron, O.; Jondeau, G.; Castier, Y. False lumen embolization in chronic aortic dissection promotes thoracic aortic remodeling at midterm follow-up. J. Vasc. Surg. 2019, 70, 710–717. [Google Scholar] [CrossRef] [PubMed]
- Loubert, M.C.; van der Hulst, V.P.M.; De Vries, C.; Bloemendaal, K.; Vahl, A.C. How to Exclude the Dilated False Lumen in Patients after a Type B Aortic Dissection? The Cork in the Bottleneck. J. Endovasc. Ther. 2003, 10, 244–248. [Google Scholar] [CrossRef]
- Rohlffs, F.; Spanos, K.; Tsilimparis, N.; Debus, E.S.; Kölbel, T. Techniques and outcomes of false lumen embolization in chronic type B aortic dissection. J. Cardiovasc. Surg. 2018, 59, 784–788. [Google Scholar] [CrossRef]
- Bedi, V.S.; Swain, P.; Yadav, A. Medical therapy versus TEVAR for uncomplicated type B aortic dissection. Indian J. Thorac. Cardiovasc. Surg. 2019, 35 (Suppl. S2), 174–178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hughes, G.C. Management of acute type B aortic dissection; ADSORB trial. J. Thorac. Cardiovasc. Surg. 2015, 149 (Suppl. S2), S158–S162. [Google Scholar] [CrossRef]
- Eidt, J.F.; Vasquez, J. Changing Management of Type B Aortic Dissections. Methodist DeBakey Cardiovasc. J. 2023, 19, 59–69. [Google Scholar] [CrossRef]
- Manning, B.J.; Dias, N.; Manno, M.; Ohrlander, T.; Malina, M.; Sonesson, B.; Resch, T.; Ivancev, K. Endovascular treatment of acute complicated type B dissection: Morphological changes at midterm follow-up. J. Endovasc. Ther. 2009, 16, 466–474. [Google Scholar] [CrossRef]
- Xue, Y.; Ge, Y.; Ge, X.; Miao, J.; Fan, W.; Rong, D.; Liu, F.; Liu, X.; Guo, W. Association Between Extent of Stent-Graft Coverage and Thoracic Aortic Remodeling After Endovascular Repair of Type B Aortic Dissection. J. Endovasc. 2020, 27, 211–220. [Google Scholar] [CrossRef]
- Lou, X.; Duwayri, Y.M.; Jordan, W.D.J.; Chen, E.P.; Veeraswamy, R.K.; Leshnower, B.G. The Safety and Efficacy of Extended TEVAR in Acute Type B Aortic Dissection. Ann. Thorac. Surg. 2020, 110, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Qing, K.; Yiu, W.; Cheng, S.W.K. A morphologic study of chronic type B aortic dissections and aneurysms after thoracic endovascular stent grafting. J. Vasc. Surg. 2012, 55, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Iida, Y.; Hachiya, T.; Asano, R.; Fujii, S.; Sawa, S.; Shimizu, H. Extended thoracic endovascular aortic repair for residual aortic dissection after type A aortic dissection repair. Vascular 2021, 29, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Verma, M.; Ojha, V.; Deshpande, A.A.; Pratap Singh, S.; Ramakrishnan, P.; Kumar, S. Association between aortic coverage and spinal cord ischemia after endovascular repair of type B aortic dissection. Indian J. Thorac. Cardiovasc. Surg. 2022, 38, 375–381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, Z.; Fu, W.; Wang, Y.; Wang, C.; Yan, Z.; Guo, D.; Xu, X.; Chen, B. Stent graft-induced new entry after endovascular repair for Stanford type B aortic dissection. J. Vasc. Surg. 2010, 52, 1450–1457. [Google Scholar] [CrossRef]
- Qato, K.; Conway, A.; Lu, E.; Tran, N.N.; Giangola, G.; Carroccio, A. Outcomes of Thoracic Endovascular Aneurysm Repair (TEVAR) in Patients with Connective Tissue Disorders. Vasc. Endovasc. Surg. 2020, 54, 676–680. [Google Scholar] [CrossRef] [PubMed]
- Böckler, D.; Meisenbacher, K.; Peters, A.S.; Grond-Ginsbach, C.; Bischoff, M.S. Endovascular treatment of genetically linked aortic diseases. In Gefasschirurgie Zeitschrift fur Vaskulare und Endovaskulare Chir Organ der Dtsch und der Osterr Gesellschaft fur Gefasschirurgie unter Mitarbeit der Schweizerischen Gesellschaft fur Gefasschirurgie; Springer: Berlin/Heidelberg, Germany, 2017; Volume 22, (Suppl. S1), pp. 1–7. [Google Scholar] [CrossRef]
- Waterman, A.L.; Feezor, R.J.; Lee, W.A.; Hess, P.J.; Beaver, T.M.; Martin, T.D.; Huber, T.S.; Beck, A.W. Endovascular treatment of acute and chronic aortic pathology in patients with Marfan syndrome. J. Vasc. Surg. 2012, 55, 1231–1234. [Google Scholar] [CrossRef]
- Cooper, D.G.; Walsh, S.R.; Sadat, U.; Hayes, P.D.; Boyle, J.R. Treating the thoracic aorta in Marfan syndrome: Surgery or TEVAR? J. Endovasc. Ther. 2009, 16, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Ramella, A.; Migliavacca, F.; Felix, J.; Matas, R.; Heim, F.; Dedola, F.; Marconi, S.; Conti, M.; Allievi, S.; Mandigers, T.J.; et al. Validation and Verification of High-Fidelity Simulations of Thoracic Stent-Graft Implantation. Ann. Biomed. Eng. 2022, 50, 1941–1953. [Google Scholar] [CrossRef]
- Ramella, A.; Migliavacca, F.; Matas, J.F.R.; Mandigers, T.J.; Domanin, M.; Bissacco, D.; Heijmen, R.H.; Trimarchi, S.; Luraghi, G. On the validation of patient-specific numerical simulations of the TEVAR procedure. Procedia Struct. Integr. 2023, 49, 16–22. [Google Scholar] [CrossRef]
- Mandigers, T.J.; Ramella, A.; Bissacco, D.; Domanin, M.; van Herwaarden, J.A.; Heijmen, R.; Luraghi, G.; Migliavacca, F.; Trimarchi, S. Thoracic Stent Graft Numerical Models to Virtually Simulate Thoracic Endovascular Aortic Repair: A Scoping Review. Eur. J. Vasc. Endovasc. Surg. 2023, 66, 784–796. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Dong, Z.H.; Wang, S.; Meng, Z.Y.; Chen, Y.Y.; Fu, W.G. Computational investigation of interaction between stent graft and aorta in retrograde type A dissection after thoracic endovascular aortic repair for type B aortic dissection. J. Vasc. Surg. 2018, 68, 14S–21S.e2. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.T.; Liew, Y.M.; Mokhtarudin, M.J.M.; Pirola, S.; Ab Naim, W.N.W.; Hashim, S.A.; Xu, X.Y.; Lim, E. Effect of vessel tortuosity on stress concentration at the distal stent-vessel interface: Possible link with new entry formation through biomechanical simulation. J. Biomech. Eng. 2021, 143, 081005. [Google Scholar] [CrossRef] [PubMed]
- Kan, X.; Ma, T.; Dong, Z.; Xu, X.Y. Patient-Specific Virtual Stent-Graft Deployment for Type B Aortic Dissection: A Pilot Study of the Impact of Stent-Graft Length. Front. Physiol. 2021, 12, 1171. [Google Scholar] [CrossRef] [PubMed]
- Kan, X.; Ma, T.; Jiang, X.; Holzapfel, G.A.; Dong, Z.; Xu, X.Y. Towards biomechanics-based pre-procedural planning for thoracic endovascular aortic repair of aortic dissection. Comput. Methods Programs Biomed. 2024, 244, 107994. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Yan, C.; Li, L.; Feng, H.; Xie, S.; Zhang, G.; Cheng, W.; Guo, M.; Liu, M. Extended Stent Coverage Decreases Distal Aortic Segmental Enlargement After the Endovascular Repair of Acute Complicated Type B Aortic Dissection: A Multi-Center Retrospective Study of 814 Patients. J. Endovasc. Ther. 2022, 29, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Belvroy, V.M.; Romarowski, R.M.; van Bakel, T.M.J.; van Herwaarden, J.A.; Bismuth, J.; Auricchio, F.; Moll, F.L.; Trimarchi, S. Impact of Aortic Tortuosity on Displacement Forces in Descending Thoracic Aortic Aneurysms. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Mandigers, T.J.; Ramella, A.; Bissacco, D.; Domanin, M.; van Herwaarden, J.A.; Luraghi, G.; Migliavacca, F.; Trimarchi, S. Utilizing numerical simulations to prevent stent graft kinking during thoracic endovascular aortic repair. J. Vasc. Surg. Cases Innov. Tech. 2023, 9, 101269. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Why cover? How long should my aortic coverage be to exclude TBAD and minimize its progression? |
Who to cover? Which patients and/or clinical conditions can derive the greatest advantages from specific aortic coverage in TEVAR for TBAD patients? |
How to cover? How can the consideration of aortic coverage analysis be incorporated into the operative technique choice to enhance outcomes following TEVAR for TBAD? |
How much to cover?Is there specific evidence from the literature on the length of aortic coverage in TEVAR for TBAD patients? |
Future perspectives Can ex-vivo and artificial/computational analysis predict the optimal length of coverage in TEVAR for TBAD patients? |
Uncomplicated | Complicated | High-Risk |
---|---|---|
No high-risk features | Malperfusion | False lumen diameter > 22 mm |
No malperfusion | Rupture | Aortic diameter > 40 mm |
No rupture | Radiographic malperfusion | |
Refractory pain | ||
Bloody pleural effusion | ||
Refractory hypertension | ||
Primary entry tear on the inner curve | ||
Readmission |
Manuscript | Aim of the Study | Aortic Model | Stent Graft Models | Main Findings |
---|---|---|---|---|
2018, Ma et al. [74] | Evaluate the stress distribution of the aorta changing SG configurations | Patient-specific acute TBAD | Two stent graft designs with different diameters and lengths. Diameters: 33 mm, 38 mm Length: 130 mm, 140 mm, 172.5 mm. | Major effect due to increased oversing. No correlaton found by changing the length of the stent graft. Reducing length leads to slight decrease in the stress, but no statistical evidence. |
2021, Tan et al. [75] | Study von Mises stresses and shear elastic strain after TEVAR in relation to the development of distal SINE. | Six patient-specific TABD anatomies, each one with a different stent graft. And 6 idealised anatomies. | Patient-specific: different stent graft lengths, based on the postoperative CTA. Ideal: one single anatomy with different stent graft lengths. | Patient-specific: High stress regions are identified in the distal region of the aorta, where distal SINE has developed. Idealised: no correlation on the stress distribution changing the length. However, stresses increased with the increase of tortuosity. |
2021, Kan et al.[76] | Analysis of the effect of different stent graft length on the stress distribution on the intimal dissection flap and aortic wall. Correlation with SINE location. | Patient-specific anatomy with TBAD. | Models of the Zenith TX2 PT device. Length studied: 158 mm (short), 208 mm (long), 183 mm (medium) | Short stent: spatial correlation of the high stress regions in the distal LZ, where the distal SINE was found in the follow-up, and proximal LZ where new tear occurs in the follow-up. Increasing length lead to a better sealing of tear, reduction of wall stress in the distal landing zone (up to 60% compared to the short case). Longer SG may reduce the development of SINE. |
2024, Kan et al.[77] | Evaluate the biomechanical effects induced on the vessel by three different stent designs commonly used for TEVAR in terms of aorta morphological changes and stress distribution. | Pateint specific TBAD. | Three stent graft models with different designs and materials. Each of them in a short (15 cm) and long (20 cm) configurations. | Morphological analysis. all the stents: enlargement on the true lumen. The desing and materilas matter: SG1 induced the most abrupt increase in the cross-section area, followed by SG2 and SG3. Stress analysis. The design and materials matter: SG1 generates higher stresses on the intimal flap (followed by SG2 and SG3). Short geometries generates hogher stresses as in the study above. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bissacco, D.; de Kort, J.F.; Ramella, A.; Allievi, S.; Bellotti, P.; Casana, R.; Domanin, M.; Migliavacca, F.; Trimarchi, S. Discussing on the Aortic Coverage in Type B Aortic Dissection Treatment: A Comprehensive Scoping Review. J. Clin. Med. 2024, 13, 3897. https://doi.org/10.3390/jcm13133897
Bissacco D, de Kort JF, Ramella A, Allievi S, Bellotti P, Casana R, Domanin M, Migliavacca F, Trimarchi S. Discussing on the Aortic Coverage in Type B Aortic Dissection Treatment: A Comprehensive Scoping Review. Journal of Clinical Medicine. 2024; 13(13):3897. https://doi.org/10.3390/jcm13133897
Chicago/Turabian StyleBissacco, Daniele, Jasper F. de Kort, Anna Ramella, Sara Allievi, Paolo Bellotti, Renato Casana, Maurizio Domanin, Francesco Migliavacca, and Santi Trimarchi. 2024. "Discussing on the Aortic Coverage in Type B Aortic Dissection Treatment: A Comprehensive Scoping Review" Journal of Clinical Medicine 13, no. 13: 3897. https://doi.org/10.3390/jcm13133897
APA StyleBissacco, D., de Kort, J. F., Ramella, A., Allievi, S., Bellotti, P., Casana, R., Domanin, M., Migliavacca, F., & Trimarchi, S. (2024). Discussing on the Aortic Coverage in Type B Aortic Dissection Treatment: A Comprehensive Scoping Review. Journal of Clinical Medicine, 13(13), 3897. https://doi.org/10.3390/jcm13133897