Exploring Pattern of Relapse in Pediatric Patients with Acute Lymphocytic Leukemia and Acute Myeloid Leukemia Undergoing Stem Cell Transplant Using Machine Learning Methods
Abstract
:1. Introduction
2. Materials & Methods
2.1. Study Design and Data Acquisition
2.2. Standard Statistical Analysis
2.3. Machine Learning Analysis
2.4. Data Sharing
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Rooij, J.D.; Zwaan, C.M.; van den Heuvel-Eibrink, M. Pediatric AML: From Biology to Clinical Management. J. Clin. Med. 2015, 4, 127–149. [Google Scholar] [CrossRef] [PubMed]
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Styczyński, J.; Tridello, G.; Koster, L.; Iacobelli, S.; van Biezen, A.; van der Werf, S.; Mikulska, M.; Gil, L.; Cordonnier, C.; Ljungman, P.; et al. Death after hematopoietic stem cell transplantation: Changes over calendar year time, infections and associated factors. Bone Marrow Transplant. 2020, 55, 126–136. [Google Scholar] [CrossRef]
- Broglie, L.; Helenowski, I.; Jennings, L.J.; Schafernak, K.; Duerst, R.; Schneiderman, J.; Tse, W.; Kletzel, M.; Chaudhury, S. Early mixed T-cell chimerism is predictive of pediatric AML or MDS relapse after hematopoietic stem cell transplant. Pediatr. Blood Cancer 2017, 64, e26493. [Google Scholar] [CrossRef] [PubMed]
- Kinsella, F.A.; Inman, C.F.; Gudger, A.; Chan, Y.T.; Murray, D.J.; Zuo, J.; McIlroy, G.; Nagra, S.; Nunnick, J.; Holder, K.; et al. Very early lineage-specific chimerism after reduced intensity stem cell transplantation is highly predictive of clinical outcome for patients with myeloid disease. Leuk. Res. 2019, 83, 106173. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Saliba, R.M.; Rondon, G.; Chen, J.; Charafeddine, Y.; Medeiros, L.J.; Alatrash, G.; Andersson, B.S.; Popat, U.; Kebriaei, P.; et al. Mixed T Lymphocyte Chimerism after Allogeneic Hematopoietic Transplantation Is Predictive for Relapse of Acute Myeloid Leukemia and Myelodysplastic Syndromes. Biol. Blood Marrow Transplant. 2015, 21, 1948–1954. [Google Scholar] [CrossRef] [PubMed]
- Preuner, S.; Peters, C.; Potschger, U.; Daxberger, H.; Fritsch, G.; Geyeregger, R.; Schrauder, A.; von Stackelberg, A.; Schrappe, M.; Bader, P.; et al. Risk assessment of relapse by lineage-specific monitoring of chimerism in children undergoing allogeneic stem cell transplantation for acute lymphoblastic leukemia. Haematologica 2016, 101, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Thompson, P.A.; Stingo, F.; Keating, M.J.; Wierda, W.G.; O’Brien, S.M.; Estrov, Z.; Ledesma, C.; Rezvani, K.; Qazilbash, M.; Shah, N.; et al. Long-term follow-up of patients receiving allogeneic stem cell transplant for chronic lymphocytic leukaemia: Mixed T-cell chimerism is associated with high relapse risk and inferior survival. Br. J. Haematol. 2017, 177, 567–577. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.J.; Savani, B.N.; Mohty, M.; Gorin, N.C.; Labopin, M.; Ruggeri, A.; Schmid, C.; Baron, F.; Esteve, J.; Giebel, S.; et al. Post-remission strategies for the prevention of relapse following allogeneic hematopoietic cell transplantation for high-risk acute myeloid leukemia: Expert review from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. Bone Marrow Transplant. 2019, 54, 519–530. [Google Scholar]
- DeFilipp, Z.; Langston, A.A.; Chen, Z.; Zhang, C.; Arellano, M.L.; El Rassi, F.; Flowers, C.R.; Kota, V.K.; Al-Kadhimi, Z.; Veldman, R.; et al. Does Post-Transplant Maintenance Therapy with Tyrosine Kinase Inhibitors Improve Outcomes of Patients with High-Risk Philadelphia Chromosome-Positive Leukemia? Clin. Lymphoma Myeloma Leuk. 2016, 16, 466–471.e461. [Google Scholar] [CrossRef]
- Yan, C.H.; Liu, Q.F.; Wu, D.P.; Zhang, X.; Xu, L.P.; Zhang, X.H.; Wang, Y.; Huang, H.; Bai, H.; Huang, F.; et al. Prophylactic Donor Lymphocyte Infusion (DLI) Followed by Minimal Residual Disease and Graft-versus-Host Disease-Guided Multiple DLIs Could Improve Outcomes after Allogeneic Hematopoietic Stem Cell Transplantation in Patients with Refractory/Relapsed Acute Leukemia. Biol. Blood Marrow Transplant. 2017, 23, 1311–1319. [Google Scholar] [PubMed]
- Lankester, A.C.; Locatelli, F.; Bader, P.; Rettinger, E.; Egeler, M.; Katewa, S.; Pulsipher, M.A.; Nierkens, S.; Schultz, K.; Handgretinger, R.; et al. Will post-transplantation cell therapies for pediatric patients become standard of care? Biol. Blood Marrow Transplant. 2015, 21, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Hastie, T.; Tibshirani, R.; Friedman, J. Boosting and Additive Trees. In The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Hastie, T., Tibshirani, R., Friedman, J., Eds.; Springer: New York, NY, USA, 2009; pp. 337–387. [Google Scholar]
- Shouval, R.; Fein, J.A.; Savani, B.; Mohty, M.; Nagler, A. Machine learning and artificial intelligence in haematology. Br. J. Haematol. 2021, 192, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Muhsen, I.N.; Shyr, D.; Sung, A.D.; Hashmi, S.K. Machine Learning Applications in the Diagnosis of Benign and Malignant Hematological Diseases. Clin. Hematol. Int. 2021, 3, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Smith, J.; Keerthi, D.; Li, C.; Sun, Y.; Mothi, S.S.; Shyr, D.C.; Spitzer, B.; Harris, A.C.; Chatterjee, A.; et al. Longitudinal clinical data improve survival prediction after hematopoietic cell transplantation using machine learning. Blood Adv. 2024, 8, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Powers, S.; Qian, J.; Jung, K.; Schuler, A.; Shah, N.H.; Hastie, T.; Tibshirani, R. Some methods for heterogeneous treatment effect estimation in high dimensions. Stat. Med. 2018, 37, 1767–1787. [Google Scholar] [CrossRef] [PubMed]
- Fuse, K.; Uemura, S.; Tamura, S.; Suwabe, T.; Katagiri, T.; Tanaka, T.; Ushiki, T.; Shibasaki, Y.; Sato, N.; Yano, T.; et al. Patient-based prediction algorithm of relapse after allo-HSCT for acute Leukemia and its usefulness in the decision-making process using a machine learning approach. Cancer Med. 2019, 8, 5058–5067. [Google Scholar] [CrossRef]
- Shouval, R.; Labopin, M.; Unger, R.; Giebel, S.; Ciceri, F.; Schmid, C.; Esteve, J.; Baron, F.; Gorin, N.C.; Savani, B.; et al. Prediction of Hematopoietic Stem Cell Transplantation Related Mortality- Lessons Learned from the In-Silico Approach: A European Society for Blood and Marrow Transplantation Acute Leukemia Working Party Data Mining Study. PLoS ONE 2016, 11, e0150637. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, C. A strategy to apply machine learning to small datasets in materials science. NPJ Comput. Mater. 2018, 4, 25. [Google Scholar] [CrossRef]
- Caiafa, C.F.; Sun, Z.; Tanaka, T.; Marti-Puig, P.; Solé-Casals, J. Machine Learning Methods with Noisy, Incomplete or Small Datasets. Appl. Sci. 2021, 11, 4132. [Google Scholar] [CrossRef]
- Koppe, G.; Meyer-Lindenberg, A.; Durstewitz, D. Deep learning for small and big data in psychiatry. Neuropsychopharmacology 2021, 46, 176–190. [Google Scholar] [CrossRef] [PubMed]
- Shaikhina, T.; Lowe, D.; Daga, S.; Briggs, D.; Higgins, R.; Khovanova, N. Machine Learning for Predictive Modelling based on Small Data in Biomedical Engineering. IFAC-PapersOnLine 2015, 48, 469–474. [Google Scholar] [CrossRef]
- Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, methods, and applications in interpretable machine learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [Google Scholar] [CrossRef] [PubMed]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Kumarakulasinghe, N.B.; Blomberg, T.; Liu, J.; Leao, A.S.; Papapetrou, P. Evaluating Local Interpretable Model-Agnostic Explanations on Clinical Machine Learning Classification Models. In Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, 28–30 July 2020. [Google Scholar]
- Kaphan, E.; Bettega, F.; Forcade, E.; Labussière-Wallet, H.; Fegueux, N.; Robin, M.; De Latour, R.P.; Huynh, A.; Lapierre, L.; Berceanu, A.; et al. Late relapse after hematopoietic stem cell transplantation for acute leukemia: A retrospective study by SFGM-TC. Transplant. Cell Ther. 2023, 29, 362.e1–362.e12. [Google Scholar] [CrossRef] [PubMed]
- Ray, P.; Reddy, S.S.; Banerjee, T. Various dimension reduction techniques for high dimensional data analysis: A review. Artif. Intell. Rev. 2021, 54, 3473–3515. [Google Scholar] [CrossRef]
- Jelic, T.M.; Estalilla, O.C.; Vos, J.A.; Harvey, G.; Stricker, C.J.; Adelanwa, A.O.; Khalid, A.; Plata, M.J. Flow Cytometric Enumeration of Peripheral Blood CD34+ Cells Predicts Bone Marrow Pathology in Patients with Less Than 1% Blasts by Manual Count. J. Blood Med. 2023, 14, 519–535. [Google Scholar] [CrossRef]
- RCoreTeam. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org (accessed on 30 November 2023).
- Esplin, I.N.D.; Berg, J.A.; Sharma, R.; Allen, R.C.; Arens, D.K.; Ashcroft, C.R.; Bairett, S.R.; Beatty, N.J.; Bickmore, M.; Bloomfield, T.J.; et al. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages. Genome Announc. 2017, 5, e00931-17. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 26. [Google Scholar] [CrossRef]
- Cabitza, F.; Campagner, A. The need to separate the wheat from the chaff in medical informatics: Introducing a comprehensive checklist for the (self)-assessment of medical AI studies. Int. J. Med. Inform. 2021, 153, 104510. [Google Scholar] [CrossRef]
- Friedman, J.H.; Popescu, B.E. Predictive Learning via Rule Ensembles. Ann. Appl. Stat. 2008, 2, 916–954. [Google Scholar] [CrossRef]
- Admiraal, R.; Nierkens, S.; A de Witte, M.; Petersen, E.J.; Fleurke, G.-J.; Verrest, L.; Belitser, S.V.; Bredius, R.G.M.; Raymakers, R.A.P.; Knibbe, C.A.J.; et al. Association between anti-thymocyte globulin exposure and survival outcomes in adult unrelated haemopoietic cell transplantation: A retrospective, pharmacodynamic cohort analysis. Lancet Haematol. 2017, 4, e183–e191. [Google Scholar] [CrossRef]
- Pulsipher, M.A.; Han, X.; Maude, S.L.; Laetsch, T.W.; Qayed, M.; Rives, S.; Boyer, M.W.; Hiramatsu, H.; Yanik, G.A.; Driscoll, T.; et al. Next-Generation Sequencing of Minimal Residual Disease for Predicting Relapse after Tisagenlecleucel in Children and Young Adults with Acute Lymphoblastic Leukemia. Blood Cancer Discov. 2022, 3, 66–81. [Google Scholar] [CrossRef]
- Bzdok, D.; Altman, N.; Krzywinski, M. Statistics versus machine learning. Nat. Methods 2018, 15, 233–234. [Google Scholar] [CrossRef]
ALL (n = 63) | AML (n = 46) | |
---|---|---|
Age (year) | ||
Range | 1 to 22 | 1 to 23 |
Median | 12 | 11 |
Mean | 11 | 10 |
Sex (n) | ||
Male | 37 (59%) | 29 (63%) |
Female | 26 (41%) | 17 (27%) |
Pre-transplant Remission Status (n) | ||
Complete Remission 1 | 21 (33%) | 32 (70%) |
Complete Remission 2 | 36 (57%) | 10 (22%) |
Complete Remission 3 | 6 (10%) | 0 |
Relapse | 0 | 3 (7%) |
Unknown | 0 | 1 (2%) |
Graft Source (n) | ||
Bone Marrow | 37 (59%) | 22 (48%) |
Cord Blood | 8 (13%) | 9 (20%) |
Peripheral Blood Stem Cell | 18 (28%) | 15 (32%) |
Total Body Irradiation (n) | ||
Yes | 57 (90%) | 25 (54%) |
No | 6 (10%) | 21 (46%) |
Acute Graft versus Host Disease any grade (n) | ||
Yes | 38 (60%) | 22 (48%) |
No | 25 (40%) | 24 (52%) |
Relapsed | ||
Yes (n) | 14 (26%) | 13 (28%) |
Range (days) | 53 to 620 | 54 to 621 |
Mean (days) | 244 | 210 |
Median (days) | 188 | 174 |
Days from last peripheral blood chimerism | ||
Range (days) | 7 to 531 | 15 to 467 |
Mean (days) | 129 | 132 |
Median (days) | 63 | 39 |
Peripheral Blood | Bone Marrow | |||||
---|---|---|---|---|---|---|
ALL | Number of Tests (n, % Data Present) | Mean (Post-TX Days) | Range (Post-TX Days) | Number of Tests (n, % Data Present) | Mean (Post-TX Days) | Range (Post-TX Days) |
Chimerism #1 | 55 (87%) | 27 | 12 to 40 | 63 (100%) | 21 | 24 to 62 |
Chimerism #2 | 49 (78%) | 60 | 30 to 91 | 59 (94%) | 63 | 43 to 98 |
Chimerism #3 | 47 (74%) | 100 | 42 to 186 | 55 (87%) | 96 | 77 to 186 |
Chimerism #4 | 39 (62%) | 191 | 84 to 384 | 43 (68%) | 180 | 127 to 377 |
Chimerism #5 | 23 (37%) | 332 | 139 to 532 | 14 (22%) | 321 | 173 to 449 |
AML | ||||||
Chimerism #1 | 36 (78%) | 28 | 12 to 37 | 42 (91%) | 32 | 21 to 43 |
Chimerism #2 | 28 (61%) | 61 | 29 to 85 | 44 (95%) | 63 | 43 to 89 |
Chimerism #3 | 26 (57%) | 97 | 62 to 145 | 36 (78%) | 93 | 69 to 119 |
Chimerism #4 | 23 (50%) | 174 | 97 to 265 | 31 (67%) | 174 | 119 to 197 |
Chimerism #5 | 17 (37%) | 345 | 243 to 518 | 19 (41%) | 335 | 182 to 557 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shyr, D.; Zhang, B.M.; Saini, G.; Brewer, S.C. Exploring Pattern of Relapse in Pediatric Patients with Acute Lymphocytic Leukemia and Acute Myeloid Leukemia Undergoing Stem Cell Transplant Using Machine Learning Methods. J. Clin. Med. 2024, 13, 4021. https://doi.org/10.3390/jcm13144021
Shyr D, Zhang BM, Saini G, Brewer SC. Exploring Pattern of Relapse in Pediatric Patients with Acute Lymphocytic Leukemia and Acute Myeloid Leukemia Undergoing Stem Cell Transplant Using Machine Learning Methods. Journal of Clinical Medicine. 2024; 13(14):4021. https://doi.org/10.3390/jcm13144021
Chicago/Turabian StyleShyr, David, Bing M. Zhang, Gopin Saini, and Simon C. Brewer. 2024. "Exploring Pattern of Relapse in Pediatric Patients with Acute Lymphocytic Leukemia and Acute Myeloid Leukemia Undergoing Stem Cell Transplant Using Machine Learning Methods" Journal of Clinical Medicine 13, no. 14: 4021. https://doi.org/10.3390/jcm13144021
APA StyleShyr, D., Zhang, B. M., Saini, G., & Brewer, S. C. (2024). Exploring Pattern of Relapse in Pediatric Patients with Acute Lymphocytic Leukemia and Acute Myeloid Leukemia Undergoing Stem Cell Transplant Using Machine Learning Methods. Journal of Clinical Medicine, 13(14), 4021. https://doi.org/10.3390/jcm13144021