Hip Axis Length and Femoral Neck-Shaft Angle as Risk Factors for Proximal Femur Fractures in Octogenarians to Centenarians
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Radiological Measurements
2.3. Statistical Analysis
3. Results
3.1. Collected Data and Group Comparison
3.2. Inter- and Intra-Rater Reliability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lima, A.; Miranda, S.C.; Vasconcelos, H.F.O. Radiographic anatomy of the proximal femur: Femoral neck fracture vs. transtrochanteric fracture. Rev. Bras. Ortop. 2017, 52, 651–657. [Google Scholar] [CrossRef]
- Thalmann, B.H.; Latz, D.; Schiffner, E.; Jungbluth, P.; Windolf, J.; Grassmann, J. CCD angle & hip fractures—Predictor of fracture symmetry? J. Orthop. 2021, 24, 1–4. [Google Scholar]
- Alnemer, M.S.; Kotliar, K.E.; Neuhaus, V.; Pape, H.C.; Ciritsis, B.D. Cost-effectiveness analysis of surgical proximal femur fracture prevention in elderly: A Markov cohort simulation model. Cost Eff. Resour. Alloc. 2023, 21, 77. [Google Scholar] [CrossRef] [PubMed]
- Pugely, A.J.; Martin, C.T.; Gao, Y.; Klocke, N.F.; Callaghan, J.J.; Marsh, J.L. A risk calculator for short-term morbidity and mortality after hip fracture surgery. J. Orthop. Trauma 2014, 28, 63–69. [Google Scholar] [CrossRef]
- Tosteson, A.N.; Gabriel, S.E.; Grove, M.R.; Moncur, M.M.; Kneeland, T.S.; Melton, L.J., 3rd. Impact of hip and vertebral fractures on quality-adjusted life years. Osteoporos. Int. 2001, 12, 1042–1049. [Google Scholar] [CrossRef]
- Blain, H.; Miot, S.; Bernard, P.L. How Can We Prevent Falls? In Orthogeriatrics: The Management of Older Patients with Fragility Fractures, 2nd ed.; Falaschi, P., Marsh, D., Eds.; Springer: Cham, Switzerland, 2021; pp. 273–290. [Google Scholar]
- Montero-Odasso, M.M.; Kamkar, N.; Pieruccini-Faria, F.; Osman, A.; Sarquis-Adamson, Y.; Close, J.; Hogan, D.B.; Hunter, S.W.; Kenny, R.A.; Lipsitz, L.A.; et al. Evaluation of Clinical Practice Guidelines on Fall Prevention and Management for Older Adults: A Systematic Review. JAMA Netw. Open 2021, 4, e2138911. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, D.; Kumar, A.; Carpenter, H.; Zijlstra, G.A.; Skelton, D.A.; Cook, J.R.; Stevens, Z.; Belcher, C.M.; Haworth, D.; Gawler, S.J.; et al. Exercise for reducing fear of falling in older people living in the community. Cochrane Database Syst. Rev. 2014, 2014, Cd009848. [Google Scholar] [CrossRef]
- Conley, R.B.; Adib, G.; Adler, R.A.; Åkesson, K.E.; Alexander, I.M.; Amenta, K.C.; Blank, R.D.; Brox, W.T.; Carmody, E.E.; Chapman-Novakofski, K.; et al. Secondary Fracture Prevention: Consensus Clinical Recommendations from a Multistakeholder Coalition. J. Bone Miner. Res. 2020, 35, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Leslie, W.D.; Lix, L.M.; Morin, S.N.; Johansson, H.; Odén, A.; McCloskey, E.V.; Kanis, J.A. Hip axis length is a FRAX- and bone density-independent risk factor for hip fracture in women. J. Clin. Endocrinol. Metab. 2015, 100, 2063–2070. [Google Scholar] [CrossRef]
- Marshall, D.; Johnell, O.; Wedel, H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996, 312, 1254–1259. [Google Scholar] [CrossRef]
- Cranney, A.; Jamal, S.A.; Tsang, J.F.; Josse, R.G.; Leslie, W.D. Low bone mineral density and fracture burden in postmenopausal women. CMAJ 2007, 177, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Johnell, O.; Oden, A.; Johansson, H.; McCloskey, E. FRAX and the assessment of fracture probability in men and women from the, U.K. Osteoporos. Int. 2008, 19, 385–397. [Google Scholar] [CrossRef] [PubMed]
- Vandenput, L.; Johansson, H.; McCloskey, E.V.; Liu, E.; Åkesson, K.E.; Anderson, F.A.; Azagra, R.; Bager, C.L.; Beaudart, C.; Bischoff-Ferrari, H.A.; et al. Update of the fracture risk prediction tool FRAX: A systematic review of potential cohorts and analysis plan. Osteoporos. Int. 2022, 33, 2103–2136. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tutaworn, T.; Wishman, M.D.; Levin, J.E.; Hentschel, I.G.; Lane, J.M. Fracture Risk Assessment Tool Scores and Radiographical Bone Measurements in Total Hip Arthroplasty Patients. J. Arthroplast. 2022, 37, 2381–2386. [Google Scholar] [CrossRef] [PubMed]
- Goldshtein, I.; Gerber, Y.; Ish-Shalom, S.; Leshno, M. Fracture Risk Assessment with FRAX Using Real-World Data in a Population-Based Cohort from Israel. Am. J. Epidemiol. 2018, 187, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.M.; Gaspar, H.A.; Oliveira, C.F. Fracture risk assessment in home care patients using the FRAX® tool. Einstein 2018, 16, eAO4236. [Google Scholar] [CrossRef] [PubMed]
- Kanis, J.A.; Johansson, H.; Oden, A.; McCloskey, E.V. Assessment of fracture risk. Eur. J. Radiol. 2009, 71, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Morales-Torres, J.; Clark, P.; Delezé-Hinojosa, M.; Cons-Molina, F.; Messina, O.D.; Hernández, J.; Jaller-Raad, J.J.; Quevedo-Solidoro, H.; Radominski, S.C. Fracture risk assessment in Latin America: Is Frax an adaptable instrument for the region? Clin. Rheumatol. 2010, 29, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Leslie, W.D.; Lix, L.M.; Johansson, H.; Oden, A.; McCloskey, E.; Kanis, J.A. Spine-hip discordance and fracture risk assessment: A physician-friendly FRAX enhancement. Osteoporos. Int. 2011, 22, 839–847. [Google Scholar] [CrossRef]
- Oka, R.; Ohira, M.; Suzuki, S.; Yoshida, T.; Koide, H.; Tanaka, T.; Tatsuno, I. Fracture risk assessment tool (FRAX) and for the diagnosis of osteoporosis in Japanese middle-aged and elderly women: Chiba bone survey. Endocr. J. 2018, 65, 193–202. [Google Scholar] [CrossRef]
- Iolascon, G.; Moretti, A.; Cannaviello, G.; Resmini, G.; Gimigliano, F. Proximal femur geometry assessed by hip structural analysis in hip fracture in women. Aging Clin. Exp. Res. 2015, 27 (Suppl. S1), S17–S21. [Google Scholar] [CrossRef] [PubMed]
- Gnudi, S.; Sitta, E.; Pignotti, E. Prediction of incident hip fracture by femoral neck bone mineral density and neck-shaft angle: A 5-year longitudinal study in post-menopausal females. Br. J. Radiol. 2012, 85, e467–e473. [Google Scholar] [CrossRef]
- Faulkner, K.G.; Wacker, W.K.; Barden, H.S.; Simonelli, C.; Burke, P.K.; Ragi, S.; Del Rio, L. Femur strength index predicts hip fracture independent of bone density and hip axis length. Osteoporos. Int. 2006, 17, 593–599. [Google Scholar] [CrossRef]
- Gnudi, S.; Ripamonti, C.; Lisi, L.; Fini, M.; Giardino, R.; Giavaresi, G. Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos. Int. 2002, 13, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Fajar, J.K.; Taufan, T.; Syarif, M.; Azharuddin, A. Hip geometry and femoral neck fractures: A meta-analysis. J. Orthop. Transl. 2018, 13, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Leslie, W.D.; Lix, L.M.; Morin, S.N.; Johansson, H.; Odén, A.; McCloskey, E.V.; Kanis, J.A. Adjusting Hip Fracture Probability in Men and Women Using Hip Axis Length: The Manitoba Bone Density Database. J. Clin. Densitom. 2016, 19, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Li, G.W.; Chang, S.X.; Xu, Z.; Chen, Y.; Bao, H.; Shi, X. Prediction of hip osteoporotic fractures from composite indices of femoral neck strength. Skelet. Radiol. 2013, 42, 195–201. [Google Scholar] [CrossRef]
- Frisoli, A., Jr.; Paula, A.P.; Pinheiro, M.; Szejnfeld, V.L.; Delmonte Piovezan, R.; Takata, E.; Silva, T.A.; Chaves, P.H.M. Hip axis length as an independent risk factor for hip fracture independently of femural bone mineral density in Caucasian elderly Brazilian women. Bone 2005, 37, 871–875. [Google Scholar] [CrossRef]
- Faulkner, K.G.; Cummings, S.R.; Black, D.; Palermo, L.; Glüer, C.C.; Genant, H.K. Simple measurement of femoral geometry predicts hip fracture: The study of osteoporotic fractures. J. Bone Miner. Res. 1993, 8, 1211–1217. [Google Scholar] [CrossRef]
- Jiamton, C.; Boernert, K.; Babst, R.; Beeres, F.J.P.; Link, B.C. The nail-shaft-axis of the of proximal femoral nail antirotation (PFNA) is an important prognostic factor in the operative treatment of intertrochanteric fractures. Arch. Orthop. Trauma Surg. 2018, 138, 339–349. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Harris-Hayes, M.; Commean, P.K.; Patterson, J.D.; Clohisy, J.C.; Hillen, T.J. Bony abnormalities of the hip joint: A new comprehensive, reliable and radiation-free measurement method using magnetic resonance imaging. J. Hip Preserv. Surg. 2014, 1, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Wakao, N.; Hida, T.; Matsui, Y.; Abe, Y.; Aoyagi, K.; Uetani, M.; Harada, A. Analysis of hip geometry by clinical CT for the assessment of hip fracture risk in elderly Japanese women. Bone 2010, 46, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Duboeuf, F.; Hans, D.; Schott, A.M.; Kotzki, P.O.; Favier, F.; Marcelli, C.; Meunier, P.J.; Delmas, P.D. Different morphometric and densitometric parameters predict cervical and trochanteric hip fracture: The EPIDOS Study. J. Bone Miner. Res. 1997, 12, 1895–1902. [Google Scholar] [CrossRef]
- Im, G.I.; Lim, M.J. Proximal hip geometry and hip fracture risk assessment in a Korean population. Osteoporos. Int. 2011, 22, 803–807. [Google Scholar] [CrossRef] [PubMed]
- Çukurlu, M.; Karagoz, B.; Keceli, O. The effect of pre-fracture proximal femur geometry on hip fracture type in elderly patients. Medicine 2023, 102, e33622. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Li, Y.; Lin, J.; Cai, D.; Cai, S.; Yan, L.; Yao, X. Cortical thickness in the intertrochanteric region may be relevant to hip fracture type. BMC Musculoskelet. Disord. 2017, 18, 305. [Google Scholar] [CrossRef] [PubMed]
- Pierre, M.A.; Zurakowski, D.; Nazarian, A.; Hauser-Kara, D.A.; Snyder, B.D. Assessment of the bilateral asymmetry of human femurs based on physical, densitometric, and structural rigidity characteristics. J. Biomech. 2010, 43, 2228–2236. [Google Scholar] [CrossRef]
- Zhao, R.; Cai, H.; Tian, H.; Zhang, K. Morphological consistency of bilateral hip joints in adults based on the X-ray and CT data. Surg. Radiol. Anat. 2021, 43, 1107–1115. [Google Scholar] [CrossRef]
- Young, E.Y.; Gebhart, J.; Cooperman, D.; Ahn, N.U. Are the left and right proximal femurs symmetric? Clin. Orthop. Relat. Res. 2013, 471, 1593–1601. [Google Scholar] [CrossRef]
- Crabtree, N.; Lunt, M.; Holt, G.; Kröger, H.; Burger, H.; Grazio, S.; Khaw, K.T.; Lorenc, R.S.; Nijs, J.; Stepan, J.; et al. Hip geometry, bone mineral distribution, and bone strength in European men and women: The EPOS study. Bone 2000, 27, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Peacock, M.; Liu, G.; Carey, M.; Ambrosius, W.; Turner, C.H.; Hui, S.; Johnston, C.C., Jr. Bone mass and structure at the hip in men and women over the age of 60 years. Osteoporos. Int. 1998, 8, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Nissen, N.; Hauge, E.M.; Abrahamsen, B.; Jensen, J.E.; Mosekilde, L.; Brixen, K. Geometry of the proximal femur in relation to age and sex: A cross-sectional study in healthy adult Danes. Acta Radiol. 2005, 46, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Hetsroni, I.; Dela Torre, K.; Duke, G.; Lyman, S.; Kelly, B.T. Sex differences of hip morphology in young adults with hip pain and labral tears. Arthroscopy 2013, 29, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Tuck, S.P.; Pearce, M.S.; Rawlings, D.J.; Birrell, F.N.; Parker, L.; Francis, R.M. Differences in bone mineral density and geometry in men and women: The Newcastle Thousand Families Study at 50 years old. Br. J. Radiol. 2005, 78, 493–498. [Google Scholar] [CrossRef]
- Nakahara, I.; Takao, M.; Sakai, T.; Nishii, T.; Yoshikawa, H.; Sugano, N. Gender differences in 3D morphology and bony impingement of human hips. J. Orthop. Res. 2011, 29, 333–339. [Google Scholar] [CrossRef]
FNFx Group | TFx Group | NFx Group | |
---|---|---|---|
Number of participants | 50 | 50 | 50 |
Age (years) 1 | 93.8 ± 3.2 | 92.9 ± 3.7 | 91.3 ± 3.2 |
Sex (female/male) | 30/20 | 38/12 | 35/15 |
HAL (mm) 1 | 115.24 ± 9.50 | 110.65 ± 8.54 | 111.58 ± 10.05 |
HAL range (mm) | 92.8–133.8 | 92.8–134.8 | 94.3–133.3 |
CCD (°) 1 | 127.41 ± 5.26 | 124.03 ± 5.98 | 123.65 ± 5.43 |
CCD range (°) | 118.4–139.1 | 111.1–140.7 | 110.6–136.1 |
FNFx vs. TFx | FNFx vs. NFx | TFx vs. NFx | |
---|---|---|---|
HAL 1 | 0.013 | 0.065 | 0.62 |
CCD 1 | 0.003 | 0.001 | 0.739 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumuchdjian, D.A.; Waltenspül, M.; Dietrich, M.; Kabelitz, M. Hip Axis Length and Femoral Neck-Shaft Angle as Risk Factors for Proximal Femur Fractures in Octogenarians to Centenarians. J. Clin. Med. 2024, 13, 4071. https://doi.org/10.3390/jcm13144071
Gumuchdjian DA, Waltenspül M, Dietrich M, Kabelitz M. Hip Axis Length and Femoral Neck-Shaft Angle as Risk Factors for Proximal Femur Fractures in Octogenarians to Centenarians. Journal of Clinical Medicine. 2024; 13(14):4071. https://doi.org/10.3390/jcm13144071
Chicago/Turabian StyleGumuchdjian, Daniel Alexandre, Manuel Waltenspül, Michael Dietrich, and Method Kabelitz. 2024. "Hip Axis Length and Femoral Neck-Shaft Angle as Risk Factors for Proximal Femur Fractures in Octogenarians to Centenarians" Journal of Clinical Medicine 13, no. 14: 4071. https://doi.org/10.3390/jcm13144071
APA StyleGumuchdjian, D. A., Waltenspül, M., Dietrich, M., & Kabelitz, M. (2024). Hip Axis Length and Femoral Neck-Shaft Angle as Risk Factors for Proximal Femur Fractures in Octogenarians to Centenarians. Journal of Clinical Medicine, 13(14), 4071. https://doi.org/10.3390/jcm13144071