The ProtekDuo Cannula: A Comprehensive Review of Efficacy and Clinical Applications in Right Ventricular Failure
Abstract
:1. Introduction
2. Literature Review
2.1. Group 1: Comparative ProtekDuo Studies
2.2. Group 2: Non-Comparative ProtekDuo Studies
2.3. Literature Synthesis
3. Discussion
3.1. Clinical Use of the ProtekDuo Cannula
3.1.1. ProtekDuo Insertion
3.1.2. ProtekDuo Weaning and Removal
3.2. ProtekDuo Cannula Advantages
3.3. ProtekDuo Cannula Challenges
4. Future Directions
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haddad, F.; Doyle, R.; Murphy, D.J.; Hunt, S.A. Right ventricular function in cardiovascular disease, part II: Pathophysiology, clinical importance, and management of right ventricular failure. Circulation 2008, 117, 1717–1731. [Google Scholar] [CrossRef] [PubMed]
- Harjola, V.P.; Mebazaa, A.; Celutkiene, J.; Bettex, D.; Bueno, H.; Chioncel, O.; Crespo-Leiro, M.G.; Falk, V.; Filippatos, G.; Gibbs, S.; et al. Contemporary management of acute right ventricular failure: A statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur. J. Heart Fail. 2016, 18, 226–241. [Google Scholar] [CrossRef] [PubMed]
- Ritter, L.A.; Haj Bakri, M.; Fahey, H.C.; Sanghavi, K.K.; Kallur, A.; Bien-Aime, F.; Sallam, T.; Alassar, A.; Balsara, K.; Kitahara, H.; et al. Pulmonary artery dual-lumen cannulation versus two cannula percutaneous extracorporeal membrane oxygenation configuration in right ventricular failure. ASAIO J. 2023, 69, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Badu, B.; Cain, M.T.; Durham, L.A., 3rd; Joyce, L.D.; Sundararajan, S.; Gaglianello, N.; Ishizawar, D.; Saltzberg, M.; Mohammed, A.; Joyce, D.L. A dual-lumen percutaneous cannula for managing refractory right ventricular failure. ASAIO J. 2020, 66, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.S.; Ranasinghe, A.; Mascaro, J. The physiology of percutaneous right ventricular assist device-potential effects on ventilation-perfusion matching. ASAIO J. 2020, 66, e31–e32. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, E.; Collado, F.M.; Poulin, M.F.; Seder, C.W.; March, R.; Kavinsky, C.J. Percutaneous right ventricular assist device using the TandemHeart ProtekDuo: Real-world experience. J. Invasive Cardiol. 2021, 33, E407–E411. [Google Scholar] [PubMed]
- Ravichandran, A.K.; Baran, D.A.; Stelling, K.; Cowger, J.A.; Salerno, C.T. Outcomes with the Tandem Protek Duo dual-lumen percutaneous right ventricular assist device. ASAIO J. 2018, 64, 570–572. [Google Scholar] [CrossRef] [PubMed]
- Kremer, J.; Farag, M.; Brcic, A.; Zubarevich, A.; Schamroth, J.; Kreusser, M.M.; Karck, M.; Ruhparwar, A.; Schmack, B. Temporary right ventricular circulatory support following right ventricular infarction: Results of a groin-free approach. ESC Heart Fail. 2020, 7, 2853–2861. [Google Scholar] [CrossRef] [PubMed]
- Salna, M.; Garan, A.R.; Kirtane, A.J.; Karmpaliotis, D.; Green, P.; Takayama, H.; Sanchez, J.; Kurlansky, P.; Yuzefpolskaya, M.; Colombo, P.C.; et al. Novel percutaneous dual-lumen cannula-based right ventricular assist device provides effective support for refractory right ventricular failure after left ventricular assist device implantation. Interact. Cardiovasc. Thorac. Surg. 2020, 30, 499–506. [Google Scholar] [CrossRef]
- Schmack, B.; Farag, M.; Kremer, J.; Grossekettler, L.; Brcic, A.; Raake, P.W.; Kreusser, M.M.; Goldwasser, R.; Popov, A.F.; Mansur, A.; et al. Results of concomitant groin-free percutaneous temporary RVAD support using a centrifugal pump with a double-lumen jugular venous cannula in LVAD patients. J. Thorac. Dis. 2019, 11, S913–S920. [Google Scholar] [CrossRef]
- Kapur, N.K.; Esposito, M.L.; Bader, Y.; Morine, K.J.; Kiernan, M.S.; Pham, D.T.; Burkhoff, D. Mechanical circulatory support devices for acute right ventricular failure. Circulation 2017, 136, 314–326. [Google Scholar] [CrossRef] [PubMed]
- Konstam, M.A.; Kiernan, M.S.; Bernstein, D.; Bozkurt, B.; Jacob, M.; Kapur, N.K.; Kociol, R.D.; Lewis, E.F.; Mehra, M.R.; Pagani, F.D.; et al. Evaluation and management of right-sided heart failure: A scientific statement from the American Heart Association. Circulation 2018, 137, e578–e622. [Google Scholar] [CrossRef] [PubMed]
- Kormos, R.L.; Teuteberg, J.J.; Pagani, F.D.; Russell, S.D.; John, R.; Miller, L.W.; Massey, T.; Milano, C.A.; Moazami, N.; Sundareswaran, K.S.; et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: Incidence, risk factors, and effect on outcomes. J. Thorac. Cardiovasc. Surg. 2010, 139, 1316–1324. [Google Scholar] [CrossRef] [PubMed]
- Melenovsky, V.; Hwang, S.J.; Lin, G.; Redfield, M.M.; Borlaug, B.A. Right heart dysfunction in heart failure with preserved ejection fraction. Eur. Heart J. 2014, 35, 3452–3462. [Google Scholar] [CrossRef]
- Norton, C.; Georgiopoulou, V.V.; Kalogeropoulos, A.P.; Butler, J. Epidemiology and cost of advanced heart failure. Prog. Cardiovasc. Dis. 2011, 54, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Voelkel, N.F.; Quaife, R.A.; Leinwand, L.A.; Barst, R.J.; McGoon, M.D.; Meldrum, D.R.; Dupuis, J.; Long, C.S.; Rubin, L.J.; Smart, F.W.; et al. Right ventricular function and failure: Report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation 2006, 114, 1883–1891. [Google Scholar] [CrossRef]
- Iglesias-Garriz, I.; Olalla-Gómez, C.; Garrote, C.; López-Benito, M.; Martín, J.; Alonso, D.; Rodríguez, M.A. Contribution of right ventricular dysfunction to heart failure mortality: A meta-analysis. Rev. Cardiovasc. Med. 2012, 13, e62–e69. [Google Scholar] [CrossRef] [PubMed]
- Khalid, N.; Rogers, T.; Shlofmitz, E.; Chen, Y.; Musallam, A.; Khan, J.M.; Iantorno, M.; Gajanana, D.; Hashim, H.; Torguson, R.; et al. Adverse Events and Modes of Failure Related to Impella RP: Insights from the Manufacturer and User Facility Device Experience (MAUDE) Database. Cardiovasc. Revasc Med. 2019, 20, 503–506. [Google Scholar] [CrossRef]
- Leidenfrost, J.; Prasad, S.; Itoh, A.; Lawrance, C.P.; Bell, J.M.; Silvestry, S.C. Right ventricular assist device with membrane oxygenator support for right ventricular failure following implantable left ventricular assist device placement. Eur. J. Cardiothorac. Surg. 2016, 49, 73–77. [Google Scholar] [CrossRef]
- Sciaccaluga, C.; Procopio, M.C.; Potena, L.; Masetti, M.; Bernazzali, S.; Maccherini, M.; Landra, F.; Righini, F.M.; Cameli, M.; Valente, S. Right ventricular dysfunction in left ventricular assist device candidates: Is it time to change our prospective? Heart Fail. Rev. 2024, 29, 559–569. [Google Scholar] [CrossRef]
- Bhatia, M.; Jia, S.; Smeltz, A.; Kumar, P.A. Right Heart Failure Management: Focus on Mechanical Support Options. J. Cardiothorac. Vasc. Anesth. 2022, 36, 3278–3288. [Google Scholar] [CrossRef] [PubMed]
- George, T.J.; Sheasby, J.; Kabra, N.; DiMaio, J.M.; Rawitscher, D.A.; Afzal, A. Temporary Right Ventricular Assist Device Support for Acute Right Heart Failure: A Single-Center Experience. J. Surg. Res. 2023, 282, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Schmack, B.; Weymann, A.; Popov, A.F.; Patil, N.P.; Sabashnikov, A.; Kremer, J.; Farag, M.; Brcic, A.; Lichtenstern, C.; Karck, M.; et al. Concurrent Left Ventricular Assist Device (LVAD) Implantation and Percutaneous Temporary RVAD Support via CardiacAssist Protek-Duo TandemHeart to Preempt Right Heart Failure. Med. Sci. Monit. Basic. Res. 2016, 22, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Cheung, A.W.; White, C.W.; Davis, M.K.; Freed, D.H. Short-term mechanical circulatory support for recovery from acute right ventricular failure: Clinical outcomes. J. Heart Lung Transpl. 2014, 33, 794–799. [Google Scholar] [CrossRef] [PubMed]
- Beller, J.P.; Mehaffey, J.H.; Wegermann, Z.K.; Grau-Sepulveda, M.; O’Brien, S.M.; Brennan, J.M.; Thourani, V.; Badhwar, V.; Pagani, F.D.; Ailawadi, G.; et al. Strategies for Mechanical Right Ventricular Support During Left Ventricular Assist Device Implant. Ann. Thorac. Surg. 2022, 114, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Lemor, A.; Alkhatib, A.; McBride, P.; Cowger, J.; Grafton, G.; Alaswad, K.; O’Neill, W.; Villablanca, P.; Basir, M.B. Use of percutaneous mechanical circulatory support for right ventricular failure. Catheter. Cardiovasc. Interv. 2024, 103, 909–916. [Google Scholar] [CrossRef]
- Kapur, N.K.; Paruchuri, V.; Korabathina, R.; Al-Mohammdi, R.; Mudd, J.O.; Prutkin, J.; Esposito, M.; Shah, A.; Kiernan, M.S.; Sech, C.; et al. Effects of a percutaneous mechanical circulatory support device for medically refractory right ventricular failure. J. Heart Lung Transpl. 2011, 30, 1360–1367. [Google Scholar] [CrossRef]
- Dandel, M.; Hetzer, R. Temporary assist device support for the right ventricle: Pre-implant and post-implant challenges. Heart Fail. Rev. 2018, 23, 157–171. [Google Scholar] [CrossRef]
- Lorusso, R.; Raffa, G.M.; Heuts, S.; Lo Coco, V.; Meani, P.; Natour, E.; Bidar, E.; Delnoij, T.; Loforte, A. Pulmonary artery cannulation to enhance extracorporeal membrane oxygenation management in acute cardiac failure. Interact. Cardiovasc. Thorac. Surg. 2020, 30, 215–222. [Google Scholar] [CrossRef]
- Noly, P.E.; Kirsch, M.; Quessard, A.; Leger, P.; Pavie, A.; Amour, J.; Leprince, P. Temporary right ventricular support following left ventricle assist device implantation: A comparison of two techniques. Interact. Cardiovasc. Thorac. Surg. 2014, 19, 49–55. [Google Scholar] [CrossRef]
- Alkhawam, H.; Rafeedheen, R.; Abo-Salem, E. Right ventricular failure following placement of a percutaneous left ventricular assist device. Heart Lung 2019, 48, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Kiernan, M.S.; Grandin, E.W.; Brinkley, M., Jr.; Kapur, N.K.; Pham, D.T.; Ruthazer, R.; Rame, J.E.; Atluri, P.; Birati, E.Y.; Oliveira, G.H.; et al. Early Right Ventricular Assist Device Use in Patients Undergoing Continuous-Flow Left Ventricular Assist Device Implantation: Incidence and Risk Factors From the Interagency Registry for Mechanically Assisted Circulatory Support. Circ. Heart Fail. 2017, 10, e003863. [Google Scholar] [CrossRef]
- Saeed, D.; Maxhera, B.; Kamiya, H.; Lichtenberg, A.; Albert, A. Alternative right ventricular assist device implantation technique for patients with perioperative right ventricular failure. J. Thorac. Cardiovasc. Surg. 2015, 149, 927–932. [Google Scholar] [CrossRef] [PubMed]
- Maybauer, M.O.; Koerner, M.M.; Swol, J.; El Banayosy, A.; Maybauer, D.M. The novel ProtekDuo ventricular assist device: Configurations, technical aspects, and present evidence. Perfusion 2023, 38, 887–893. [Google Scholar] [CrossRef]
- Brewer, J.M.; Broman, L.M.; Swol, J.; Lorusso, R.; Conrad, S.A.; Maybauer, M.O. Standardized nomenclature for peripheral percutaneous cannulation of the pulmonary artery in extracorporeal membrane oxygenation: Current uptake and recommendations for improvement. Perfusion, 2023; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Brewer, J.M.; Lorusso, R.; Broman, L.M.; Conrad, S.A.; Swol, J.; Maybauer, M.O. Central Venopulmonary Extracorporeal Membrane Oxygenation: Background and Standardized Nomenclature. ASAIO J. 2024; ahead of print. [Google Scholar] [CrossRef]
- Coromilas, E.J.; Takeda, K.; Ando, M.; Cevasco, M.; Green, P.; Karmpaliotis, D.; Kirtane, A.; Topkara, V.K.; Yuzefpolskaya, M.; Takayama, H.; et al. Comparison of Percutaneous and Surgical Right Ventricular Assist Device Support After Durable Left Ventricular Assist Device Insertion. J. Card. Fail. 2019, 25, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Einhorn, B.N.; Cohen, H.A. Current status of percutaneous right ventricular assist devices: First-in-man use of a novel dual lumen cannula. Catheter. Cardiovasc. Interv. 2016, 88, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.B.; Goldstein, J.; Milano, C.; Morris, L.D.; Kormos, R.L.; Bhama, J.; Kapur, N.K.; Bansal, A.; Garcia, J.; Baker, J.N.; et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: The prospective RECOVER RIGHT study of the Impella RP device. J. Heart Lung Transpl. 2015, 34, 1549–1560. [Google Scholar] [CrossRef]
- Han, J.J. Impella RP Flex with SmartAssist receives FDA pre-market approval. Artif. Organs 2023, 47, 10–11. [Google Scholar] [CrossRef]
- Margey, R.; Chamakura, S.; Siddiqi, S.; Senapathi, M.; Schilling, J.; Fram, D.; Hirst, J.; Saddiq, I.; Silverman, D.; Kiernan, F. First experience with implantation of a percutaneous right ventricular Impella right side percutaneous support device as a bridge to recovery in acute right ventricular infarction complicated by cardiogenic shock in the United States. Circ. Cardiovasc. Interv. 2013, 6, e37–e38. [Google Scholar] [CrossRef] [PubMed]
- Usman, A.A.; Spelde, A.E.; Olia, S.E.; Cevasco, M.; Bermudez, C.; Haddle, J.; Ibrahim, M.; Szeto, W.; Vernick, W.; Gutsche, J. First-in-man successful use of the SPECTRUM percutaneous dual-stage right ventricle and right atrium to pulmonary artery ventricular assist device. J. Card. Surg. 2022, 37, 3403–3407. [Google Scholar] [CrossRef] [PubMed]
- Brewer, J.M.; Capoccia, M.; Maybauer, D.M.; Lorusso, R.; Swol, J.; Maybauer, M.O. The ProtekDuo dual-lumen cannula for temporary acute mechanical circulatory support in right heart failure: A systematic review. Perfusion 2023, 38, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Baran, D.A.; Doshi, H.; Van Zyl, J.; Patlolla, S.; Salem, M.; Afzal, A.; Al-Saffar, F.; Hall, S.A. Safety and efficacy of ProtekDuo right ventricular assist device: A systemic review. Artif. Organs 2023, 47, 1094–1103. [Google Scholar] [CrossRef] [PubMed]
- Abdelshafy, M.; Caliskan, K.; Guven, G.; Elkoumy, A.; Elsherbini, H.; Elzomor, H.; Tenekecioglu, E.; Akin, S.; Soliman, O. Temporary Right-Ventricular Assist Devices: A Systematic Review. J. Clin. Med. 2022, 11, 613. [Google Scholar] [CrossRef] [PubMed]
- Maybauer, M.O.; Capoccia, M.; Maybauer, D.M.; Lorusso, R.; Swol, J.; Brewer, J.M. The ProtekDuo in ECMO configuration for ARDS secondary to COVID-19: A systematic review. Int. J. Artif. Organs 2023, 46, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Hameed, F.; Battel, L.; Arora, A.; Kumar, S.; Akkanti, B.; Bhardwaj, A.; Hussain, R.; Jumean, M.; Nathan, S. Clinical outcomes in acute right ventricular failure with percutaneous right ventricular assist devices: Impella RP and Protek Duo. J. Am. Coll. Cardiol. 2021, 77, 634. [Google Scholar] [CrossRef]
- Hernandez Montfort, J.; Walec, K.; Garan, A.; Sinha, S.; Zazzali, P.; Sangal, P.; Li, B.; Hernandez-Montfort, J.; Kanwar, M.; Burkhoff, D.; et al. Clinical outcomes and the impact of SCAI stage among ProtekDuo right ventricular assist device recipients with cardiogenic shock: A report from the Cardiogenic Shock Working Group. J. Am. Coll. Cardiol. 2024, 83, 340. [Google Scholar] [CrossRef]
- Maybauer, M.O.; Lorusso, R.; Swol, J. The ProtekDuo cannula for extracorporeal membrane oxygenation: A game changer in COVID-19! Artif. Organs 2022, 46, 2107–2108. [Google Scholar] [CrossRef]
- Condello, I. Percutaneous right ventricular assist device, rapid employment in right ventricular failure during septic shock. Crit. Care. 2020, 24, 674. [Google Scholar] [CrossRef]
- Brewer, J.M.; Sharif, A.; Maybauer, M.O. The ProtekDuo cannula for acute mechanical circulatory support. In Ventricular Assist Devices: Advances and Applications in Heart Failure; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Geller, B.J.; Sinha, S.S.; Kapur, N.K.; Bakitas, M.; Balsam, L.B.; Chikwe, J.; Klein, D.G.; Kochar, A.; Masri, S.C.; Sims, D.B.; et al. Escalating and De-escalating Temporary Mechanical Circulatory Support in Cardiogenic Shock: A Scientific Statement From the American Heart Association. Circulation 2022, 146, e50–e68. [Google Scholar] [CrossRef] [PubMed]
- Randhawa, V.K.; Al-Fares, A.; Tong, M.Z.Y.; Soltesz, E.G.; Hernandez-Montfort, J.; Taimeh, Z.; Weiss, A.J.; Menon, V.; Campbell, J.; Cremer, P.; et al. A Pragmatic Approach to Weaning Temporary Mechanical Circulatory Support: A State-of-the-Art Review. JACC Heart Fail. 2021, 9, 664–673. [Google Scholar] [CrossRef] [PubMed]
- Noe, C.; Rottmann, F.A.; Bemtgen, X.; Supady, A.; Wengenmayer, T.; Staudacher, D.L. Dual lumen cannulation and mobilization of patients with venovenous extracorporeal membrane oxygenation. Artif. Organs 2023, 47, 1654–1662. [Google Scholar] [CrossRef] [PubMed]
- Tonna, J.E.; Bailey, M.; Abrams, D.; Brodie, D.; Hodgson, C.L. Predictors of early mobilization in patients requiring VV ECMO for greater than 7 days: An international cohort study. Heart Lung 2023, 62, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Mulaikal, T.A.; Bell, L.H.; Li, B.; Wagener, G.; Takayama, H. Isolated Right Ventricular Mechanical Support: Outcomes and Prognosis. ASAIO J. 2018, 64, e20–e27. [Google Scholar] [CrossRef] [PubMed]
- Chatziefstratiou, A.A.; Fotos, N.V.; Giakoumidakis, K.; Brokalaki, H. The early mobilization of patients on extracorporeal Membrane oxygenation: A systematic review. Nurs. Rep. 2023, 13, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Cucchi, M.; Mariani, S.; De Piero, M.E.; Ravaux, J.M.; Kawczynski, M.J.; Di Mauro, M.; Shkurka, E.; Hoskote, A.; Lorusso, R. Awake extracorporeal life support and physiotherapy in adult patients: A systematic review of the literature. Perfusion 2023, 38, 939–958. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hu, W.; Cai, Z.; Liu, J.; Wu, J.; Deng, Y.; Yu, K.; Chen, X.; Zhu, L.; Ma, J.; et al. Early mobilization of critically ill patients in the intensive care unit: A systematic review and meta-analysis. PLoS ONE 2019, 14, e0223185. [Google Scholar] [CrossRef]
- Jayaraman, A.L.; Cormican, D.; Shah, P.; Ramakrishna, H. Cannulation strategies in adult veno-arterial and veno-venous extracorporeal membrane oxygenation: Techniques, limitations, and special considerations. Ann. Card. Anaesth. 2017, 20, S11–S18. [Google Scholar] [CrossRef]
- Yeo, H.J.; Yoon, S.H.; Jeon, D.; Kim, Y.S.; Cho, W.H.; Kim, D.; Lee, S.E. The Utility of Preemptive Distal Perfusion Cannulation During Peripheral Venoarterial Extracorporeal Membrane Oxygenation Support. J. Interv. Cardiol. 2016, 29, 431–436. [Google Scholar] [CrossRef]
- Maybauer, M.O.; Swol, J.; Sharif, A.; Benson, C.; Brewer, J.M. The ProtekDuo in percutaneous peripheral venopulmonary-arterial ECMO and PROpella configuration for cardiogenic shock with biventricular failure. Ann. Card. Anaesth. 2023, 26, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Javidfar, J.; Dave, S.B.; Creel-Bolus, M.; Parrilla, G.A.; Frost Miller, C.; Chan, J.L.; Daneshmand, M.A. The left subclavian vein: An alternative site for percutaneous right ventricular assist device placement. JTCVS Tech. 2023, 21, 126–128. [Google Scholar] [CrossRef] [PubMed]
- Badu, B.; Durham, L., 3rd; Joyce, L.D.; Joyce, D.L. Iatrogenic superior vena cava syndrome from percutaneous right ventricular assist device. JTCVS Tech. 2021, 6, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Odish, M.F.; Owens, R.L.; Yi, C.; Golts, E.; Pollema, T. Fractured right atrial-pulmonary artery cannula (ProtekDuo) in a 164-day extracorporeal membrane oxygenation bridge to lung transplant. ASAIO J. 2023, 69, e401–e402. [Google Scholar] [CrossRef] [PubMed]
- Unger, E.D.; Sweis, R.N.; Bharat, A. Unusual complication of a right ventricular support-extracorporeal membrane oxygenation cannula. JAMA Cardiol. 2021, 6, 723–724. [Google Scholar] [CrossRef] [PubMed]
- Spelde, A.E.; Usman, A.A.; Olia, S.E.; Ibrahim, M.E.; Szeto, W.Y.; Cevasco, M.; Grimm, J.C.; Bermudez, C.A.; Steinberg, T.B.; Vernick, W.J.; et al. Intracannula thrombus formation associated with dual lumen ProtekDuo cannula in extracorporeal membrane oxygenation (ECMO). ASAIO J. 2023, 69, e391–e396. [Google Scholar] [CrossRef] [PubMed]
- de Bucourt, M.; Teichgraber, U.K. Image guided placement of extracorporeal life support through bi-caval dual lumen venovenous membrane oxygenation in an interventional radiology setting–initial experience. J. Vasc. Access 2012, 13, 221–225. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, T.; Michels, G.; Pfister, R.; Wendt, S.; Langebartels, G.; Wahlers, T. Comparison of the Avalon Dual-Lumen Cannula with Conventional Cannulation Technique for Venovenous Extracorporeal Membrane Oxygenation. Thorac. Cardiovasc. Surg. 2015, 63, 653–662. [Google Scholar] [CrossRef] [PubMed]
- Cain, M.T.; Smith, N.J.; Barash, M.; Simpson, P.; Durham, L.A., 3rd; Makker, H.; Roberts, C.; Falcucci, O.; Wang, D.; Walker, R.; et al. Extracorporeal Membrane Oxygenation with Right Ventricular Assist Device for COVID-19 ARDS. J. Surg. Res. 2021, 264, 81–89. [Google Scholar] [CrossRef]
- Maybauer, M.O.; Koerner, M.M.; Mihu, M.R.; Harper, M.D.; El Banayosy, A. The ProtekDuo as double lumen return cannula in V-VP ECMO configuration: A first-in-man method description. Ann. Card. Anaesth. 2022, 25, 217–219. [Google Scholar] [CrossRef]
- Mustafa, A.K.; Alexander, P.J.; Joshi, D.J.; Tabachnick, D.R.; Cross, C.A.; Pappas, P.S.; Tatooles, A.J. Extracorporeal membrane oxygenation for patients with COVID-19 in severe respiratory failure. JAMA Surg. 2020, 155, 990–992. [Google Scholar] [CrossRef] [PubMed]
- Saeed, O.; Stein, L.H.; Cavarocchi, N.; Tatooles, A.J.; Mustafa, A.; Jorde, U.P.; Alvarez, C.; Gluck, J.; Saunders, P.; Abrol, S.; et al. Outcomes by cannulation methods for venovenous extracorporeal membrane oxygenation during COVID-19: A multicenter retrospective study. Artif. Organs 2022, 46, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- El Banayosy, A.M.; El Banayosy, A.; Brewer, J.M.; Mihu, M.R.; Chidester, J.M.; Swant, L.V.; Schoaps, R.S.; Sharif, A.; Maybauer, M.O. The ProtekDuo for percutaneous V-P and V-VP ECMO in patients with COVID-19 ARDS. Int. J. Artif. Organs 2022, 45, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Settepani, F.; Marianeschi, S.M.; Costetti, A.; Russo, C.F. Switch from minimally invasive biventricular mechanical support to cardiopulmonary bypass during heart transplant. Eur. J. Cardiothorac. Surg. 2021, 59, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Budd, A.N.; Kozarek, K.; Kurihara, C.; Bharat, A.; Reynolds, A.; Kretzer, A. Use of ProtekDuo as veno-arterial and veno-venous extracorporeal membrane oxygenation during bilateral lung transplantation. J. Cardiothorac. Vasc. Anesth. 2019, 33, 2250–2254. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Coonse, K.; Zakhary, B.; Cigarroa, J.E. Novel method for left ventricular unloading utilizing percutaneous pulmonary artery drainage in cardiorespiratory failure due to COVID-19 infection. Catheter. Cardiovasc. Interv. 2022, 100, 175–178. [Google Scholar] [CrossRef] [PubMed]
- Chivasso, P.; Miele, M.; Romano, R.; Frunzo, F.; Presutto, O.; Colombino, M.; Cafarelli, F.; Baldi, C.; Fiore, E.; Masiello, P.; et al. Impella CP and ProtekDuo as a bridge to recovery following surgical revascularization complicated by electrical storm. Gen. Thorac. Cardiovasc. Surg. 2021, 69, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Maybauer, M.O.; Reaves, Z.R.; Brewer, J.M. Feasibility of using the ProtekDuo cannula in V-P ECMO and PROpella configurations during ground and air transport. Perfusion 2022, 39, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Patel, N.J.; Verma, D.R.; Gopalan, R.; Heuser, R.R.; Pershad, A. Percutaneous biventricular mechanical circulatory support with Impella CP and Protek Duo plus TandemHeart. J. Invasive Cardiol. 2019, 31, E46. [Google Scholar]
- Routh, S.; Fabrizio, C.; Sciortino, C.M.; Kilic, A.; Toma, C.; Ramanan, R.; Fowler, J.A.; Randhawa, P.S.; Hickey, G.W. Acute right ventricular failure in a patient with nonischemic cardiogenic shock on left-sided mechanical circulatory support. J. Card. Surg. 2021, 36, 3884–3888. [Google Scholar] [CrossRef]
- Ruhparwar, A.; Zubarevich, A.; Osswald, A.; Raake, P.W.; Kreusser, M.M.; Grossekettler, L.; Karck, M.; Schmack, B. ECPELLA 2.0-Minimally invasive biventricular groin-free full mechanical circulatory support with Impella 5.0/5.5 pump and ProtekDuo cannula as a bridge-to-bridge concept: A first-in-man method description. J. Card. Surg. 2020, 35, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Alaeddine, M.; Ploutz, M.; Arabia, F.A.; Velez, D.A. Implantation of total artificial heart in a 10-year-old after support with a temporary perventricular assist device. J. Thorac. Cardiovasc. Surg. 2020, 159, e227–e229. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, M.L.; Roberts, S.; Lampert, B.C.; Whitson, B.A. Temporary extracorporeal left ventricular support with transapical ProtekDuo cannula. JTCVS Tech. 2021, 5, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Alouidor, B.; Smith, R.; Khalpey, Z. Ambulatory central VA-ECMO with biventricular decompression for acute cardiogenic shock. Catheter. Cardiovasc. Interv. 2018, 92, 1002–1004. [Google Scholar] [CrossRef]
- Khalpey, Z.; Smith, R.; Echeverria, A.; le Tran, P.; Kazui, T. A novel minimally invasive off-pump biventricular assist device insertion technique. J. Thorac. Cardiovasc. Surg. 2016, 151, e5–e7. [Google Scholar] [CrossRef]
First Author, Year | RVF Etiologies | Sample Size | Hemodynamic Changes | Complications n (%) | Survival n (%) |
---|---|---|---|---|---|
Group 1: Comparative ProtekDuo Studies | |||||
Agrawal, 2021 [47] | PCS, post-LVAD, MI, PE, PGD | 28 ProtekDuo: 14 Impella RP: 14 | NR | DRC: Malposition: ProtekDuo: 1 (7.1) Impella RP: 2 (14.3) Thrombosis: ProtekDuo: 2 (14.3) Impella RP: 2 (14.3) Hemolysis: ProtekDuo: 0 (0) Impella RP: 2 (14.3) Severe TR: ProtekDuo: 0 (0) Impella RP: 1 (7.1) | Weaning: ProtekDuo: 9 (64.3) Impella RP: 9 (64.3) Hospital discharge: ProtekDuo: 5 (35.7) Impella RP: 5 (35.7) 1-year: ProtekDuo: 4 (28.6) Impella RP: 4 (28.6) |
Ritter, 2023 [3] | Post-LVAD, PCS, HF | 24 Two-cannulas: 12 ProtekDuo: 12 | NR | DRC: Bleeding: * All patients: 14 (58.3) Two-cannula: 10 (83.3) ProtekDuo: 4 (33.3) Thrombosis: All patients: 6 (25.0) Two-cannula: 4 (33.3) ProtekDuo: 2 (16.7) Ischemia: * All patients: 5 (20.8) Two-cannula: 5 (41.7) ProtekDuo: 0 (0) Infection: All patients: 16 (66.7) Two-cannula: 8 (66.7) ProtekDuo: 8 (66.7) Neurological complication: All patients: 3 (12.5) Two-cannula: 3 (25.0) ProtekDuo: 0 (0) | ICU discharge: All patients: 13 (54.2) Two-cannula: 6 (50.0) ProtekDuo: 7 (58.3) Hospital discharge: All patients: 12 (50.0) Two-cannula: 5 (41.7) ProtekDuo: 7 (58.3) |
George, 2023 [22] | PCS, post-LVAD, MI, COVID-19 respiratory failure, HF, PE, other | 42 ProtekDuo: 32 Impella RP: 6 sRVAD: 4 | All patients: Significant reduction in median number vasopressor or inotropes throughout support | Major bleeding: All patients: 23 (54.8) Stroke: All patients: 3 (7.1) AKI requiring RRT: All patients: 18 (42.9) | 90 days: All patients: 16 (38.1) Impella RP: 2 (33.3) ProtekDuo: 11 (34.4) sRVAD: 3 (75.0) 1-year: All patients: 10 (23.8) Impella RP: 1 (16.7) ProtekDuo: 7 (21.9) sRVAD: 2 (50.0) |
Gupta, 2024 [26] | HF, complex PCI, ACS, PE, sepsis | 58 ProtekDuo: 29 Impella RP: 29 | All patients: Significant reduction in CVP and increase in CI at 24 h | NR | In-hospital: * Impella RP: 10 (34.5) ProtekDuo: 20 (69.0) |
Group 2: Non-Comparative ProtekDuo Studies | |||||
Schmack, 2019 [10] | Post-LVAD | 11 | NR | DRC: None Non-DRC: Hemorrhagic stroke: 1 (9.0) | 30 d: 8 (72.7) 60 d: 7 (63.6) 360 d: 7 (63.6) |
Badu, 2020 [4] | PCS (including post-LVAD), MI, HF, hypoxemic respiratory failure | 40 PCS: 18 MI- or HF-CS: 12 Hypoxemic respiratory failure: 10 | Significant reduction in both VIS and CVP | DRC: Cannula migration: 3 (7.5) SVC syndrome: 3 (7.5) RIJV thrombus: 1 (2.5) Non-DRC: NR | Weaning: All patients: 29 (72.5) Postcardiotomy: 17 (94.4) Cardiogenic shock: 5 (41.7) Respiratory failure: 7 (70.0) Discharge: All patients: 27 (67.5) Postcardiotomy: 16 (88.9) Cardiogenic shock: 5 (41.7) Respiratory failure: 6 (60.0) |
Kremer, 2020 [8] | MI | 10 | Significant reduction in CVP and increase in ScvO2 | DRC: None Non-DRC: AKI requiring RRT: 8 (80.0) Post-operative bleeding: 4 (40.0) Hemorrhagic stroke: 1 (10.0) Organ ischemia: 1 (10.0) Infection/sepsis: 4 (40.0) | Discharge: 6 (60.0) 30 d: 6 (60.0) 1-year: 6 (60.0) |
Lim, 2020 [5] | Post-LVAD, post-heart transplant, HF | 11 | Significant reduction in CVP and increase in MAP a No significant change in vasopressor or inotropic dose a | DRC: NR Non-DRC: NR | 90 d: 7 (63.6) |
Salna, 2020 [9] | Post-LVAD | 27 | Significant reduction in CVP at 6 h, 12 h, and 48 h after ProtekDuo insertion Significant reduction in number of vasopressors at 6 h, 12 h, and 48 h after ProtekDuo insertion Significant reduction in epinephrine, norepinephrine, and vasopressin doses at 6 h after ProtekDuo initiation Significant reduction in milrinone dose at 48 h after ProtekDuo initiation | DRC: Mod-severe TR: 8 (36.4) b Cannula migration: 2 (7.4) Device thrombosis: 1 (3.7) Non-DRC: Hemolysis: 4 (14.8) Conversion to surgical RVAD: 3 (11.1) | Weaning: 24 (88.9) Discharge: 23 (85.2) 30 d: 23 (85.2) 1-year: 22 (81.5) |
Oliveros, 2021 [6] | Post-LVAD, PCS, MI, PE, post-partum CM, ARDS, post-lung resection | 11 | NR | DRC: NR Non-DRC: AKI requiring RRT: 5 (45.4) GI bleeding: 5 (45.4) HIT: 6 (54.5) Stroke: 2 (18.2) Sepsis: 7 (63.6) | 30 d: 9 (81.8) 180 d: 7 (63.6) |
Hernandez Montfort, 2024 [48] | MI, HF | 159 | NR | NR | In-hospital: 77 (48) |
Device | Invasiveness | Placement Complexity | Placement Requirements | Single Site | Flow L/min | Oxygenator | Ambulation |
---|---|---|---|---|---|---|---|
Surgical RVAD | Highly | High | Sternotomy or thoracotomy | No | >5 | Yes | Yes |
Impella RP | Minimally | Moderate | Real-time imaging to guide placement | Yes CFV | <4 | No | No |
ProtekDuo | Minimally | Moderate | Real-time imaging to guide placement | Yes RIJV | <4.5 | Yes | Yes |
Spectrum Cannula | Minimally | Moderate | Real-time imaging to guide placement | Yes RIJV | <4 | Yes | Yes |
Two-cannula configuration | Minimally | Low | Ultrasound for vascular access | No | <5 | Yes | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brewer, J.M.; Maybauer, M.O. The ProtekDuo Cannula: A Comprehensive Review of Efficacy and Clinical Applications in Right Ventricular Failure. J. Clin. Med. 2024, 13, 4077. https://doi.org/10.3390/jcm13144077
Brewer JM, Maybauer MO. The ProtekDuo Cannula: A Comprehensive Review of Efficacy and Clinical Applications in Right Ventricular Failure. Journal of Clinical Medicine. 2024; 13(14):4077. https://doi.org/10.3390/jcm13144077
Chicago/Turabian StyleBrewer, Joseph M., and Marc O. Maybauer. 2024. "The ProtekDuo Cannula: A Comprehensive Review of Efficacy and Clinical Applications in Right Ventricular Failure" Journal of Clinical Medicine 13, no. 14: 4077. https://doi.org/10.3390/jcm13144077
APA StyleBrewer, J. M., & Maybauer, M. O. (2024). The ProtekDuo Cannula: A Comprehensive Review of Efficacy and Clinical Applications in Right Ventricular Failure. Journal of Clinical Medicine, 13(14), 4077. https://doi.org/10.3390/jcm13144077