IPINeT Ped-unPAD Study: Goals, Design, and Preliminary Results
Abstract
:1. Background
2. Methods
2.1. Ped-unPAD Study Goals and Study Design
- Absence of symptoms.
- Recurrent bacterial infections (>6 upper tract respiratory infections and/or >3 acute otitis media and/or >1 acute sinusitis and/or >1 bronchopneumonia in one year) or severe bacterial infections (abscesses, sepsis, meningitis, or osteomyelitis).
- Autoimmune diseases (i.e., cytopenia, thyroiditis, diabetes, SLE, alopecia, psoriasis, or Addison Disease).
- Non-malignant lymphoid proliferation.
- Positive family history for IEI.
- IgG values < 2 SD of the normal levels for the age and/or normal or reduced IgG1, IgG2, and IgG3 values and/or normal or reduced IgA values and/or normal or reduced IgM values with impaired or normal specific antibody response to vaccines.
- Combined IgA, IgM, and IgG subclass defect, with impaired or normal specific antibody response to vaccines.
- No defects of T-cell compartment.
- Refusal of parents or legal guardians to sign written informed consent.
- Documented secondary causes of hypogammaglobulinemia due to infections, hematologic/neoplastic or iatrogenic conditions, genetic syndromes, chromosomal abnormalities, protein-losing enteropathy and/or nephropathy, and thymoma.
- Diagnosis of other IEI according to ESID criteria.
2.2. Recruiting Measures, Data Collection, and Storage
2.3. Sample Size and Statistical Analysis
3. Preliminary Results
4. Discussion
5. Conclusions
6. Summary Box
- UnPAD is a heterogeneous and mutable clinical entity, mostly representing a “basket diagnosis”. Long-term monitoring is key to a better understanding of each patient’s long-term health trajectory and for the conduct of a definitive diagnosis.
- UnPAD is usually symptomatic with a wide range of clinical manifestations. A proportion of unPAD patients experience severe infectious and non-infectious manifestations, sometimes requiring hospitalization.
- Asymptomatic UnPAD children deserve accurate monitoring since a diagnostic reclassification might occur. An asymptomatic status at diagnosis may not predict a benign outcome.
- Some UnPAD patients may show abnormal B-cell memory subsets and a variable specific Ab response, as observed in other antibody deficiencies, including CVID.
- A proportion of UnPAD children may evolve into THI. Some patients may maintain the UnPAD status and others may be later reclassified as CVID, a selective IgA deficiency, or a selective IgM deficiency.
- Preliminary data in UnPAD children show the following predictive markers of IEI persistence: (a) age at diagnosis > 4 years, (b) history of RRTI and pneumonia, (c) hospitalization due to severe infections and, particularly, to pneumonia, (d) a combined Ig isotype deficiency, (e) a poor specific Ab response, (f) impaired switched memory B cell subsets.
- In the setting of fever and signs suggestive of an acute infectious process, the prompt and accurate clinical evaluation and initiation of broad-spectrum antimicrobial therapy are required. Additionally, direct microbiological testing is essential, with the subsequent tailoring of antimicrobial therapy based on the cultured organism and its antimicrobial susceptibility profile.
- IRT in patients with unPAD is not universally recommended; however, IRT should be considered in those who experience either severe and/or recurrent infections or severe side effects after antibiotic prophylaxis.
- Considering the risk of both infectious and non-infectious complications, a multidisciplinary approach providing the expertise of different medical specialists in collaboration with the immunologist in charge, is essential to deliver the best possible care to unPAD patients.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://esid.org/Working-Parties/Registry-Working-Party/Diagnosis-criteria (accessed on 1 May 2024).
- ESID Reporting and Statistics. Available online: https://cci-reporting.uniklinik-freiburg.de/#/ (accessed on 1 May 2024).
- Slade, C.A.; Bosco, J.J.; Giang, T.B.; Kruse, E.; Stirling, R.G.; Cameron, P.U.; Hore-Lacy, F.; Sutherland, M.F.; Barnes, S.L.; Holdsworth, S.; et al. Delayed Diagnosis and Complications of Predominantly Antibody Deficiencies in a Cohort of Australian Adults. Front. Immunol. 2018, 9, 694. [Google Scholar] [CrossRef] [PubMed]
- Sgrulletti, M.; Costagliola, G.; Giardino, G.; Graziani, S.; Del Duca, E.; Di Cesare, S.; Di Matteo, G.; Consolini, R.; Pignata, C.; Moschese, V. The Evolutionary Scenario of Pediatric Unclassified Primary Antibody Deficiency to Adulthood. J. Clin. Med. 2023, 12, 4206. [Google Scholar] [CrossRef] [PubMed]
- Filion, C.A.; Taylor-Black, S.; Maglione, P.J.; Radigan, L.; Cunningham-Rundles, C. Differentiation of Common Variable Immunodeficiency from IgG Deficiency. J. Allergy Clin. Immunol. Pract. 2018, 7, 1277–1284. [Google Scholar] [CrossRef]
- Keles, S.; Artac, H.; Kara, R.; Gokturk, B.; Ozen, A.; Reisli, I. Transient hypogammaglobulinemia and unclassified hypogammaglobulinemia: ‘similarities and differences’. Pediatr. Allergy Immunol. 2010, 21, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Kutukculer, N.; Gulez, N. The outcome of patients with unclassified hypogammaglobulinemia in early childhood. Pediatr. Allergy Immunol. 2009, 20, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Vivarelli, E.; Matucci, A.; Parronchi, P.; Liotta, F.; Cosmi, L.; Rossi, O.; Cavigli, E.; Vultaggio, A. Primary antibody deficiencies represent an underestimated comorbidity in asthma patients: Efficacy of immunoglobulin replacement therapy in asthma control. J. Asthma 2022, 60, 1227–1236. [Google Scholar] [CrossRef]
- Karaman, S.; Erdem, S.B.; Gülez, N.; Genel, F. The Significance of B-cell Subsets in Patients with Unclassified Hypogammaglobulinemia and Association with Intravenous Immunoglobulin Replacement Requirement. Iran. J. Immunol. 2018, 15, 1–13. [Google Scholar]
- Moschese, V.; Graziani, S.; Avanzini, M.; Carsetti, R.; Marconi, M.; La Rocca, M.; Chini, L.; Pignata, C.; Soresina, A.R.; Consolini, R.; et al. A prospective study on children with initial diagnosis of transient hypogammaglobulinemia of infancy: Results from the Italian Primary Immunodeficiency Network. Int. J. Immunopathol. Pharmacol. 2008, 21, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Ameratunga, R.; Ahn, Y.; Steele, R.; Woon, S. Transient hypogammaglobulinaemia of infancy: Many patients recover in adolescence and adulthood. Clin. Exp. Immunol. 2019, 198, 224–232. [Google Scholar] [CrossRef]
- Moschese, V.; Carsetti, R.; Graziani, S.; Chini, L.; Soresina, A.R.; La Rocca, M.; Bossi, G.; Di Cesare, S.; Plebani, A. Memory B-cell subsets as a predictive marker of outcome in hypogammaglobulinemia during infancy. J. Allergy Clin. Immunol. 2007, 120, 474–476. [Google Scholar] [CrossRef]
- Janssen, L.M.A.; Reijnen, I.C.G.M.; Milito, C.; Edgar, D.; Chapel, H.; de Vries, E.; The unPAD consortium. Protocol for the unclassified primary antibody deficiency (unPAD) study: Characterization and classification of patients using the ESID online Registry. PLoS ONE 2022, 17, e0266083. [Google Scholar] [CrossRef] [PubMed]
- Gathmann, B.; Grimbacher, B.; Beauté, J.; Dudoit, Y.; Mahlaoui, N.; Fischer, A.; Knerr, V.; Kindle, G. The European internet-based patient and research database for primary immunodeficiencies: Results 2006–2008. Clin. Exp. Immunol. 2009, 157 (Suppl. S1), 3–11. [Google Scholar] [CrossRef] [PubMed]
- Janssen, L.M.A.; Bassett, P.; Macken, T.; van Esch, J.; Pruijt, H.; Knoops, A.; Sköld, M.; Parker, A.; de Vries, J.; de Vries, E. Mild Hypogammaglobulinemia Can Be a Serious Condition. Front. Immunol. 2018, 9, 2384. [Google Scholar] [CrossRef]
- Hanitsch, L.; Baumann, U.; Boztug, K.; Burkhard-Meier, U.; Fasshauer, M.; Habermehl, P.; Hauck, F.; Klock, G.; Liese, J.; Meyer, O.; et al. Treatment and management of primary antibody deficiency: German interdisciplinary evidence-based consensus guideline. Eur. J. Immunol. 2020, 50, 1432–1446. [Google Scholar] [CrossRef]
- Bousfiha, A.; Moundir, A.; Tangye, S.G.; Picard, C.; Jeddane, L.; Al-Herz, W.; Rundles, C.C.; Franco, J.L.; Holland, S.M.; Klein, C.; et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J. Clin. Immunol. 2022, 42, 1508–1520. [Google Scholar] [CrossRef] [PubMed]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef]
- R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available online: https://www.R-project.org/ (accessed on 1 May 2024).
- Staus, P.; Rusch, S.; El-Helou, S.; Müller, G.; Krausz, M.; Geisen, U.; Caballero-Oteyza, A.; Krüger, R.; Bakhtiar, S.; Lee-Kirsch, M.A.; et al. The GAIN Registry—A New Prospective Study for Patients with Multi-organ Autoimmunity and Autoinflammation. J. Clin. Immunol. 2023, 43, 1289–1301. [Google Scholar] [CrossRef]
- Pieniawska-Śmiech, K.; Pasternak, G.; Lewandowicz-Uszyńska, A.; Jutel, M. Diagnostic challenges in patients with inborn errors of immunity with different manifestations of immune dysregulation. J. Clin. Med. 2022, 11, 4220. [Google Scholar] [CrossRef]
- Thalhammer, J.; Kindle, G.; Nieters, A.; Rusch, S.; Seppänen, M.R.; Fischer, A.; Grimbacher, B.; Edgar, D.; Buckland, M.; Mahlaoui, N.; et al. Initial presenting manifestations in 16,486 patients with inborn errors of immunity include infections and noninfectious manifestations. J. Allergy Clin. Immunol. 2021, 148, 1332–1341.e5. [Google Scholar] [CrossRef]
- Pickett, G.; Motazedi, T.; Kutac, C.; Cahill, G.; Cunnigham-Rundles, C.; Fuleihan, R.L.; Sullivan, K.E.; Rider, N.L. Infection Phenotypes among Patients with Primary Antibody Deficiency Mined from a US Patient Registry. J. Clin. Immunol. 2020, 41, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Milito, C.; Pulvirenti, F.; Cinetto, F.; Lougaris, V.; Soresina, A.; Pecoraro, A.; Vultaggio, A.; Carrabba, M.; Lassandro, G.; Plebani, A.; et al. Double-blind, placebo-controlled, randomized trial on low-dose azithromycin prophylaxis in patients with primary antibody deficiencies. J. Allergy Clin. Immunol. 2019, 144, 584–593.e7. [Google Scholar] [CrossRef] [PubMed]
- Kronbichler, A.; Kerschbaum, J.; Gopaluni, S.; Tieu, J.; Alberici, F.; Jones, R.B.; Smith, R.; Jayne, D. Trimethoprim-sulfamethoxazole prophylaxis prevents severe/life-threatening infections following rituximab in antineutrophil cytoplasm antibody-associated vasculitis. Ann. Rheum Dis. 2018, 77, 1440–1447. [Google Scholar] [CrossRef] [PubMed]
- Stegeman, C.A.; Tervaert, J.W.C.; de Jong, P.E.; Kallenberg, C.G. Trimethoprim-sulfamethoxazole (cotrimoxazole) for the prevention of relapses of Wegener’s granulomatosis. Dutch Cotrimoxazole Wegener Study Group. N. Engl. J. Med. 1996, 335, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Smits, B.M.; Budde, I.K.; de Vries, E.; Berge, I.J.M.T.; Bredius, R.G.M.; van Deuren, M.; van Dissel, J.T.; Ellerbroek, P.M.; van der Flier, M.; van Hagen, P.M.; et al. Immunoglobulin Replacement Therapy Versus Antibiotic Prophylaxis as Treatment for Incomplete Primary Antibody Deficiency. J. Clin. Immunol. 2020, 41, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Hajjar, J.; Nguyen, A.L.; Constantine, G.; Kutac, C.; Syed, M.N.; Orange, J.S.; Sullivan, K.E. Prophylactic Antibiotics Versus Immunoglobulin Replacement in Specific Antibody Deficiency. J. Clin. Immunol. 2020, 40, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Olinder-Nielsen, A.-M.; Granert, C.; Forsberg, P.; Friman, V.; Vietorisz, A.; Björkander, J. Immunoglobulin prophylaxis in adults with IgG subclass deficiency and recurrent respiratory tract infections: A long-term follow-up. Scand. J. Infect. Dis. 2007, 39, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Abdou, N.I.; Greenwell, C.A.; Mehta, R.; Narra, M.; Hester, J.D.; Halsey, J.F. Efficacy of intravenous gammaglobulin for immunoglobulin G subclass and/or antibody deficiency in adults. Int. Arch. Allergy Immunol. 2009, 149, 267–274. [Google Scholar] [CrossRef]
- Abrahamian, F.; Agrawal, S.; Gupta, S. Immunological and clinical profile of adult patients with selective immunoglobulin subclass deficiency: Response to intravenous immunoglobulin therapy. Clin. Exp. Immunol. 2010, 159, 344–350. [Google Scholar] [CrossRef]
- Khokar, A.; Gupta, S. Clinical and immunological features of 78 adult patients with primary selective IgG subclass deficiencies. Arch. Immunol. et Ther. Exp. 2019, 67, 325–334. [Google Scholar] [CrossRef]
- Vivarelli, E.; Matucci, A.; Bormioli, S.; Parronchi, P.; Liotta, F.; Cosmi, L.; Almerigogna, F.; Vultaggio, A. Effectiveness of low-dose intravenous immunoglobulin therapy in minor primary antibody deficiencies: A 2-year real-life experience. Clin. Exp. Immunol. 2021, 205, 346–353. [Google Scholar] [CrossRef] [PubMed]
AICDA | MAP3K14 |
AKT1 | CD20 |
BLK | MYD88 |
BLNK | NFKB1 |
BTK | NFKB2 |
CD19 | IKBA |
CD27 | IKBB |
CD40 | IKBE |
CD40L | PAX5 |
CD79A | PIK3CD |
CD79B | PIK3R1 |
CD81 | PLCG2 |
IKKA | PRKCD |
CR2 | PTEN |
CTLA4 | RAC2 |
FYN | REL |
ICOS | RELA |
IFNGR1 | RELB |
IFNGR2 | STK4 |
IKKB | SYK |
IKZF1 | TCF3 |
IL12B | EVER1 |
IL12RB1 | EVER2 |
IL21 | TNFRSF13B |
IL21R | TNFRSF13C |
IRAK4 | TNFRSF17 |
IRF2BP2 | TNFSF12 |
ISG15 | TNFSF13 |
LAT | TNFSF13B |
LRBA | UNG |
LYN | VAV1 |
IGHM | IGLL1 |
SLC39A7 | TOP2B |
SPI1 | FNIP1 |
PIK3CG | ATP6AP1 |
MOGS | TRNT1 |
IKZF2 | IKZF3 |
ARHGEF | SH3KBP1 |
SEC61A1 | CTNNBL1 |
CD21 | TWEAK |
POU2AF1 | MSH6 |
INO80 | IGKC |
CARD11 |
1. Incidence and minimal prevalence of unPAD in Italian scenario |
2. Median age at disease onset and symptoms at onset |
3. Median age at diagnosis (time span from clinical onset to clinical diagnosis to quantify diagnostic delay) |
4. Clinical–immunological profile at diagnosis and during follow-up |
5. Treatment performed and patient’s response |
6. Genetic Characterization |
7. Quality of Life |
Demographic data | Patient’s initials Date of birth |
Family History | Family History (IEI, autoimmunity, allergy, etc.) Consanguinity |
Clinical Manifestations |
|
Treatments |
|
Laboratory Investigations |
|
Genetic analysis | Not yet performed, ongoing, or carried out Type of mutation |
Instrumental investigations (on clinical indication) |
|
Quality of life | Days of absence/year (School/Job) Recreative activities (practiced or not) |
unPAD (110 pts) | <4 Years (59 pts) | >4 Years (51 pts) | p Value | |
---|---|---|---|---|
CLINICAL MANIFESTATIONS | 104/110 (94%) | 55/59 (93%) | 49/51 (96%) | ns |
Infections | 84/104 (80%) | 46/55 (83%) | 38/49 (77%) | ns |
RRTI | 26/84 (31%) | 8/46 (17%) | 18/38 (47%) | 0.04 |
Otitis | 28/84 (33%) | 16/46 (35%) | 12/38 (32%) | ns |
Bronchiolitis | 17/84 (20%) | 14/46 (30%) | 3/38 (8%) | 0.01 |
Bronchitis | 11/84 (13%) | 6/46 (13%) | 5/38 (13%) | ns |
Sinusitis | 13/84 (15%) | 8/46 (17%) | 5/38 (13%) | ns |
Pneumonia | 26/84 (31%) | 9/46 (19%) | 17/38 (45%) | 0.018 |
Gastroenteritis | 14/84 (17%) | 11/46 (24%) | 3/38 (8%) | ns |
Viral Hepatitis | 1/84 (1%) | 1/46 (2%) | 0/38 (0%) | ns |
UTI | 7/84 (8%) | 6/46 (13%) | 1/38 (3%) | ns |
Meningitis | 2/84 (2%) | 0/46 (0%) | 2/38 (5%) | ns |
Skin Abscesses | 5/84 (6%) | 0/46 (0%) | 5/38 (13%) | 0.016 |
Giardiasis | 2/84 (2%) | 2/46 (4%) | 0/38 (0%) | ns |
Rheumatic disease | 2/84 (2%) | 2/46 (4%) | 0/38 (0%) | ns |
Skin infections | 1/84 (1%) | 1/46 (2%) | 0/38 (0%) | ns |
Allergy | 37/104 (36%) | 14/55 (25%) | 23/49 (47%) | 0.0257 |
Food Allergy | 8/37 (22%) | 4/14 (29%) | 4/23 (17%) | ns |
Atopic Dermatitis | 15/37 (40%) | 6/14 (43%) | 9/23 (39%) | ns |
Rhinitis | 23/37 (62%) | 9/14 (64%) | 14/23 (61%) | ns |
Urticaria | 5/37 (13%) | 2/14 (14%) | 3/23 (13%) | ns |
Asthma | 12/37 (32%) | 3/14 (21%) | 9/23 (39%) | ns |
Conjunctivitis | 12/37 (32%) | 4/14 (29%) | 8/23 (35%) | ns |
Angioedema | 1/37 (3%) | 1/14 (7%) | 0/23 (0%) | ns |
Vernal keratoconjunctivitis | 1/37 (3%) | 0/14 (0%) | 1/23 (4%) | ns |
Autoimmunity | 9/104 (9%) | 2/55 (4%) | 7/49 (14%) | ns |
Hashimoto Thyroiditis | 1/9 (11%) | 1/2 (50%) | 0/7 (0%) | ns |
Type 1 Diabetes | 1/9 (11%) | 0/2 (0%) | 1/7 (14%) | ns |
Psoriasis | 1/9 (11%) | 0/2 (0%) | 1/7 (14%) | ns |
Celiac Disease | 3/9 (33%) | 0/2 (0%) | 3/7 (43%) | ns |
Alopecia | 1/9 (11%) | 0/2 (0%) | 1/7 (14%) | ns |
Nephrotic syndrome | 2/9 (22%) | 0/2 (0%) | 2/7 (29%) | ns |
Glomerulonephritis | 1/9 (11%) | 1/2 (50%) | 0/7 (0%) | ns |
Non-infective pulmonary diseases | 2/104 (2%) | 2/55 (4%) | 0/49 (0%) | ns |
Bronchiectasis | 1/2 (50%) | 1/2 (50%) | - | - |
Cystic Fibrosis | 1/2 (50%) | 1/2 (50%) | - | - |
Benign lymphoproliferation | 4/104 (4%) | 2/55 (4%) | 2/49 (4%) | ns |
Lymphadenopathies | 3/4 (75%) | 2/2 (100%) | 1/2 (50%) | ns |
Splenomegaly | 1/4 (25%) | 0/2 (0%) | 1/2 (50%) | ns |
Hepatomegaly | 0/4 (0%) | 0/2 (0%) | 0/2 (0%) | ns |
Neoplasia | 0/104 (0%) | - | - | - |
HOSPITALIZATION | 28/110 (25%) | 15/59 (25%) | 13/51 (25%) | ns |
Pneumonia | 10/28 (36%) | 2/15 (13%) | 8/13 (61%) | 0.016 |
Meningitis | 2/28 (7%) | 0/15 (0%) | 2/13 (15%) | ns |
Bronchiolitis | 6/28 (21%) | 4/15 (27%) | 2/13 (15%) | ns |
Gastroenteritis | 3/28 (11%) | 3/15 (20%) | 0/13 (0%) | ns |
UTI | 2/28 (7%) | 1/15 (7%) | 1/13 (8%) | ns |
RRTI | 7/28 (25%) | 2/15 (13%) | 5/13 (38%) | ns |
Cellulitis | 1/28 (4%) | 0/15 (0%) | 1/13 (8%) | ns |
Mononucleosis | 1/28 (4%) | 1/15 (7%) | 0/13 (0%) | ns |
Rheumatic disease | 2/28 (7%) | 1/15 (7%) | 1/13 (8%) | ns |
IMMUNOLOGICAL ABNORMALITIES | 110/110 (100%) | 59/59 (100%) | 51/51 (100%) | ns |
Isolated or combined IgG defect | 81/110 (74%) | 45/59 (76%) | 36/51 (71%) | ns |
Isolated or combined IgA defect | 52/110 (47%) | 37/59 (63%) | 15/51 (29%) | 0.0006 |
Isolated or combined IgM defect | 60/110 (54%) | 34/59 (58%) | 26/51 (51%) | ns |
IgG subclass deficiency | 59/84 (70%) | 33/43 (77%) | 26/41 (63%) | ns |
Poor specific antibody response to tetanus | 8/54 (15%) | 4/35 (11%) | 4/19 (21%) | ns |
Poor specific antibody response to pneumococcus | 13/43 (30%) | 10/27 (37%) | 3/16 (19%) | ns |
Low switched memory B cells | 22/44 (50%) | 13/26 (50%) | 6/18 (33%) | ns |
Low IgM memory B cells | 4/44 (9%) | 1/26 (4%) | 3/18 (17%) | ns |
THERAPIES | ||||
Ig Replacement therapy | 3/110 (3%) | 2/59 (3%) | 1/51 (2%) | ns |
Antibiotic Prophylaxis | 7/110 (6%) | 3/59 (5%) | 4/51 (8%) | ns |
Persistent IEIs (83 pts) | THI (27 pts) | p Value | |
---|---|---|---|
Consanguinity | 2/83 (24%) | 0/27 (0%) | ns |
Positive Family History for IEIs | 11/83 (13%) | 3/27 (11%) | ns |
Age at diagnosis > 4 years | 45/83 (54%) | 6/27 (22%) | 0.004 (0.002 multivariate) |
Clinical manifestations at diagnosis | 78/83 (94%) | 26/27 (96%) | ns |
Infections | 61/78 (78%) | 23/26 (88%) | ns |
RRTI | 32/61 (52%) | 6/23 (26%) | 0.03 |
Otitis | 16/61 (26%) | 12/23 (52%) | ns |
Bronchiolitis | 11/61 (18%) | 6/23 (26%) | ns |
Bronchitis | 5/61 (8%) | 2/23 (9%) | ns |
Sinusitis | 10/61 (16%) | 3/23 (13%) | ns |
Pneumonia | 22/61 (36%) | 4/23 (17%) | 0.04 |
Gastroenteritis | 10/61 (16%) | 4/23 (17%) | ns |
Viral Hepatitis | 1/61 (2%) | 0/27 (0%) | ns |
UTI | 3/61 (5%) | 4/23 (17%) | ns |
Meningitis | 2/61 (3%) | 0/23 (0%) | ns |
Skin Abscesses | 5/61 (8%) | 0/23 (0%) | ns |
Giardiasis | 2/61 (3%) | 0/23 (0%) | ns |
Rheumatic Disease | 2/61 (3%) | 0/23 (0%) | ns |
Skin Infections | 0/61 (0%) | 1/23 (4%) | ns |
Allergy | 31/78 (39%) | 5/26 (19%) | ns |
Autoimmunity | 8/78 (10%) | 1/26 (4%) | ns |
Non-infective pulmonary diseases | 2/78 (3%) | 0/26 (0%) | ns |
Benign lymphoproliferation | 20/78 (26%) | 8/26 (31%) | ns |
HOSPITALIZATION | 20/78 (26%) | 8/26 (31%) | ns |
Pneumonia | 10/20 (50%) | 0/8 (0%) | 0.02 |
Meningitis | 2/20 (10%) | 0/8 (0%) | ns |
Bronchiolitis | 2/20 (10%) | 4/8 (50%) | 0.04 |
Gastroenteritis | 1/20 (5%) | 2/8 (25%) | ns |
UTI | 1/20 (5%) | 1/8 (12%) | ns |
RRTI | 5/20 (25%) | 0/8 (0%) | ns |
Cellulitis | 1/20 (5%) | 0/8 (0%) | ns |
Mononucleosis | 1/20 (5%) | 0/8 (0%) | ns |
Rheumatic disease | 2/20 (10%) | 0/8 (0%) | ns |
HOSPITALIZATION due to serious infections | 13/20 (65%) | 1/8 (12%) | 0.03 |
IMMUNOLOGICAL ABNORMALITIES AT DIAGNOSIS | 83/83 (100%) | 27/27 (100%) | ns |
Isolated or combined IgG defect | 59/83 (71%) | 22/27 (81%) | ns |
Isolated or combined IgA defect | 42/83 (50%) | 10/27 (37%) | ns |
Isolated or combined IgM defect | 50/83 (60%) | 10/27 (37%) | 0.046 (0.012 multivariate) |
Isolated IgG defect | 18/ 83 (22%) | 14/27 (52%) | 0.0062 (<0.001 multivariate) |
Combined IgG, IgA, IgM defect | 23/83 (28%) | 3/27 (11%) | ns |
IgG and IgA defect | 10/83 (12%) | 3/27 (11%) | ns |
IgG and IgM defect | 8/83 (10%) | 2/27 (7%) | ns |
Combined IgA and IgM defect | 7/83 (8%) | 3/27 (11%) | 0.05 (multivariate) |
IgM and IgG subclass defect | 4/83 (5%) | 0/27 (0%) | ns |
IgA and IgG subclass defect | 3/83 (4%) | 1/27 (4%) | ns |
IgG subclass deficiency | 42/63 (67%) | 16/21 (76%) | ns |
Poor specific antibody response to tetanus | 6/39 (15%) | 2/16 (12%) | ns |
Poor specific antibody response to pneumococcus | 13/31 (42%) | 1/12 (8%) | 0.04 |
Low switched memory B cells | 19/37 (51%) | 0/9 (0%) | 0.006 |
Low IgM memory B cells | 4/37 (11%) | 0/9 (0%) | ns |
THERAPIES | 10/78 (13%) | 0/26 (0%) | 0.054 |
Ig Replacement therapy | 3/78 (4%) | - | - |
Antibiotic Prophylaxis | 7/78 (9%) | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sgrulletti, M.; Baselli, L.A.; Castagnoli, R.; Del Duca, E.; Graziani, S.; Moscato, G.M.F.; Di Cesare, S.; Di Matteo, G.; Cifaldi, C.; Rossano, M.; et al. IPINeT Ped-unPAD Study: Goals, Design, and Preliminary Results. J. Clin. Med. 2024, 13, 4321. https://doi.org/10.3390/jcm13154321
Sgrulletti M, Baselli LA, Castagnoli R, Del Duca E, Graziani S, Moscato GMF, Di Cesare S, Di Matteo G, Cifaldi C, Rossano M, et al. IPINeT Ped-unPAD Study: Goals, Design, and Preliminary Results. Journal of Clinical Medicine. 2024; 13(15):4321. https://doi.org/10.3390/jcm13154321
Chicago/Turabian StyleSgrulletti, Mayla, Lucia Augusta Baselli, Riccardo Castagnoli, Elisabetta Del Duca, Simona Graziani, Giusella Maria Francesca Moscato, Silvia Di Cesare, Gigliola Di Matteo, Cristina Cifaldi, Martina Rossano, and et al. 2024. "IPINeT Ped-unPAD Study: Goals, Design, and Preliminary Results" Journal of Clinical Medicine 13, no. 15: 4321. https://doi.org/10.3390/jcm13154321
APA StyleSgrulletti, M., Baselli, L. A., Castagnoli, R., Del Duca, E., Graziani, S., Moscato, G. M. F., Di Cesare, S., Di Matteo, G., Cifaldi, C., Rossano, M., Ballerini, C., Piciocchi, A., Licari, A., Marseglia, G. L., Consolini, R., & Moschese, V. (2024). IPINeT Ped-unPAD Study: Goals, Design, and Preliminary Results. Journal of Clinical Medicine, 13(15), 4321. https://doi.org/10.3390/jcm13154321