Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches
Abstract
:1. Introduction
2. Sex Hormones and Renal Health
2.1. Oxidative Stress and Inflammation
2.2. Apoptosis, Cell Senescence, and Renal Aging
2.3. Transgender Therapies and Implications for Kidney Health
2.4. Renal Hemodynamics and Gender Disparities
2.5. Functional and Structural Effects of Sex Hormones on Nephrons
2.6. Sex Hormones and Cardiac Health
2.7. Sex Hormones and Cardiac Hypertrophy
2.8. Sex Hormones and Cardiac Bioenergetics
2.9. Sex Hormones and Cardiomyocyte Apoptosis
2.10. Sex Hormones and Cardiac Regeneration
2.11. Sex Hormones and Cardiac Electrical Conductance and Contraction
2.12. Sex Hormones and Heart Failure
2.13. Sex Hormones and Coronary Heart Disease
3. Sex Hormones and Vascular Health
3.1. Sex Hormones and Hypertension
3.2. Sex Hormones and Atherosclerosis
4. Sex Hormones and Obesity
4.1. Sex Hormones and Hyperlipidemia
4.2. Sex Hormones and Hypercholesterolemia
4.3. Sex Hormones and Insulin Resistance
4.4. Sex Hormones and Inflammation
4.5. Sex Hormones and Fat Accumulation & Distribution
5. Ongoing Clinical Trials and Future Directions
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ndumele, C.E.; Neeland, I.J.; Tuttle, K.R.; Chow, S.L.; Mathew, R.O.; Khan, S.S.; Coresh, J.; Baker-Smith, C.M.; Carnethon, M.R.; Després, J.P.; et al. A Synopsis of the Evidence for the Science and Clinical Management of Cardiovascular-Kidney-Metabolic (CKM) Syndrome: A Scientific Statement from the American Heart Association. Circulation 2023, 148, 1636–1664. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, S.A.; Padda, I.; Johal, G. Cardiovascular-Kidney-Metabolic (CKM) syndrome: A state-of-the-art review. Curr. Probl. Cardiol. 2024, 49, 102344. [Google Scholar] [CrossRef] [PubMed]
- Kadowaki, T.; Maegawa, H.; Watada, H.; Yabe, D.; Node, K.; Murohara, T.; Wada, J. Interconnection between cardiovascular, renal and metabolic disorders: A narrative review with a focus on Japan. Diabetes Obes. Metab. 2022, 24, 2283–2296. [Google Scholar] [CrossRef] [PubMed]
- Forbes, J.M.; Cooper, M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013, 93, 137–188. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.S.; MacFadyen, R.J.; Lip, G.Y. Diabetes mellitus, the renin-angiotensin-aldosterone system, and the heart. Arch. Intern. Med. 2004, 164, 1737–1748. [Google Scholar] [CrossRef] [PubMed]
- Sumien, N.; Cunningham, J.T.; Davis, D.L.; Engelland, R.; Fadeyibi, O.; Farmer, G.E.; Mabry, S.; Mensah-Kane, P.; Trinh, O.T.P.; Vann, P.H.; et al. Neurodegenerative Disease: Roles for Sex, Hormones, and Oxidative Stress. Endocrinology 2021, 162, bqab185. [Google Scholar] [CrossRef]
- Bereshchenko, O.; Bruscoli, S.; Riccardi, C. Glucocorticoids, Sex Hormones, and Immunity. Front. Immunol. 2018, 9, 1332. [Google Scholar] [CrossRef]
- Pepine, C.J.; Nichols, W.W.; Pauly, D.F. Estrogen and different aspects of vascular disease in women and men. Circ. Res. 2006, 99, 459–461. [Google Scholar] [CrossRef] [PubMed]
- Bruns, C.M.; Kemnitz, J.W. Sex hormones, insulin sensitivity, and diabetes mellitus. ILAR J. 2004, 45, 160–169. [Google Scholar] [CrossRef]
- Gao, Z.; Chen, Z.; Sun, A.; Deng, X. Gender differences in cardiovascular disease. Med. Nov. Technol. Devices 2019, 4, 100025. [Google Scholar] [CrossRef]
- Lewandowski, M.J.; Krenn, S.; Kurnikowski, A.; Bretschneider, P.; Sattler, M.; Schwaiger, E.; Antlanger, M.; Gauckler, P.; Pirklbauer, M.; Brunner, M.; et al. Chronic kidney disease is more prevalent among women but more men than women are under nephrological care: Analysis from six outpatient clinics in Austria 2019. Wien. Klin. Wochenschr. 2023, 135, 89–96. [Google Scholar] [CrossRef]
- Lima-Posada, I.; Bobadilla, N.A. Understanding the opposite effects of sex hormones in mediating renal injury. Nephrology 2021, 26, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Hockham, C.; Bao, L.; Tiku, A.; Badve, S.V.; Bello, A.K.; Jardine, M.J.; Jha, V.; Toyama, T.; Woodward, M.; Jun, M. Sex differences in chronic kidney disease prevalence in Asia: A systematic review and meta-analysis. Clin. Kidney J. 2022, 15, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Neugarten, J.; Golestaneh, L. Influence of Sex on the Progression of Chronic Kidney Disease. Mayo Clin. Proc. 2019, 94, 1339–1356. [Google Scholar] [CrossRef] [PubMed]
- Ricardo, A.C.; Yang, W.; Sha, D.; Appel, L.J.; Chen, J.; Krousel-Wood, M.; Manoharan, A.; Steigerwalt, S.; Wright, J.; Rahman, M.; et al. Sex-Related Disparities in CKD Progression. J. Am. Soc. Nephrol. 2019, 30, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Toth-Manikowski, S.M.; Yang, W.; Appel, L.; Chen, J.; Deo, R.; Frydrych, A.; Krousel-Wood, M.; Rahman, M.; Rosas, S.E.; Sha, D.; et al. Sex Differences in Cardiovascular Outcomes in CKD: Findings from the CRIC Study. Am. J. Kidney Dis. 2021, 78, 200–209.e201. [Google Scholar] [CrossRef] [PubMed]
- Valdivielso, J.M.; Jacobs-Cachá, C.; Soler, M.J. Sex hormones and their influence on chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2019, 28, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Ryu, D.R.; Kim, S.J.; Choi, K.B.; Kang, D.H. Clinical implication of metabolic syndrome on chronic kidney disease depends on gender and menopausal status: Results from the Korean National Health and Nutrition Examination Survey. Nephrol. Dial. Transplant. 2010, 25, 469–477. [Google Scholar] [CrossRef]
- Landray, M.J.; Wheeler, D.C.; Lip, G.Y.; Newman, D.J.; Blann, A.D.; McGlynn, F.J.; Ball, S.; Townend, J.N.; Baigent, C. Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: The chronic renal impairment in Birmingham (CRIB) study. Am. J. Kidney Dis. 2004, 43, 244–253. [Google Scholar] [CrossRef]
- Goicoechea, M.; de Vinuesa, S.G.; Lahera, V.; Cachofeiro, V.; Gómez-Campderá, F.; Vega, A.; Abad, S.; Luño, J. Effects of atorvastatin on inflammatory and fibrinolytic parameters in patients with chronic kidney disease. J. Am. Soc. Nephrol. 2006, 17 (Suppl. S3), S231–S235. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Karin, M. Is NF-kappaB the sensor of oxidative stress? FASEB J. 1999, 13, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Dounousi, E.; Papavasiliou, E.; Makedou, A.; Ioannou, K.; Katopodis, K.P.; Tselepis, A.; Siamopoulos, K.C.; Tsakiris, D. Oxidative stress is progressively enhanced with advancing stages of CKD. Am. J. Kidney Dis. 2006, 48, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Karamouzis, I.; Sarafidis, P.A.; Karamouzis, M.; Iliadis, S.; Haidich, A.B.; Sioulis, A.; Triantos, A.; Vavatsi-Christaki, N.; Grekas, D.M. Increase in oxidative stress but not in antioxidant capacity with advancing stages of chronic kidney disease. Am. J. Nephrol. 2008, 28, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Cachofeiro, V.; Goicochea, M.; de Vinuesa, S.G.; Oubiña, P.; Lahera, V.; Luño, J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. Suppl. 2008, 74, S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.P.; Lee, J.E.; Lee, A.S.; Jung, Y.J.; Kim, D.; Lee, S.; Hwang, H.P.; Kim, W.; Park, S.K. Effect of gender differences on the regulation of renal ischemia-reperfusion-induced inflammation in mice. Mol. Med. Rep. 2014, 9, 2061–2068. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, F.; Nieto-Cerón, S.; Fenoy, F.J.; López, B.; Hernández, I.; Martinez, R.R.; Soriano, M.J.; Salom, M.G. Sex differences in nitrosative stress during renal ischemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R1387–R1395. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kil, I.S.; Seok, Y.M.; Yang, E.S.; Kim, D.K.; Lim, D.G.; Park, J.W.; Bonventre, J.V.; Park, K.M. Orchiectomy attenuates post-ischemic oxidative stress and ischemia/reperfusion injury in mice. A role for manganese superoxide dismutase. J. Biol. Chem. 2006, 281, 20349–20356. [Google Scholar] [CrossRef] [PubMed]
- Hodeify, R.; Megyesi, J.; Tarcsafalvi, A.; Mustafa, H.I.; Hti Lar Seng, N.S.; Price, P.M. Gender differences control the susceptibility to ER stress-induced acute kidney injury. Am. J. Physiol. Renal Physiol. 2013, 304, F875–F882. [Google Scholar] [CrossRef]
- Denic, A.; Glassock, R.J.; Rule, A.D. Structural and Functional Changes with the Aging Kidney. Adv. Chronic Kidney Dis. 2016, 23, 19–28. [Google Scholar] [CrossRef]
- Wiggins, J.E. Aging in the glomerulus. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 1358–1364. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Wang, J.; Wu, Y.; Zhu, X.; Xu, L. Renal aging and mitochondrial quality control. Biogerontology 2024, 25, 399–414. [Google Scholar] [CrossRef] [PubMed]
- Verzola, D.; Gandolfo, M.T.; Salvatore, F.; Villaggio, B.; Gianiorio, F.; Traverso, P.; Deferrari, G.; Garibotto, G. Testosterone promotes apoptotic damage in human renal tubular cells. Kidney Int. 2004, 65, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Hosszu, A.; Kaucsar, T.; Seeliger, E.; Fekete, A. Animal Models of Renal Pathophysiology and Disease. Methods Mol. Biol. 2021, 2216, 27–44. [Google Scholar] [CrossRef]
- Ciarambino, T.; Crispino, P.; Giordano, M. Gender and Renal Insufficiency: Opportunities for Their Therapeutic Management? Cells 2022, 11, 3820. [Google Scholar] [CrossRef] [PubMed]
- Millington, K.; Barrera, E.; Daga, A.; Mann, N.; Olson-Kennedy, J.; Garofalo, R.; Rosenthal, S.M.; Chan, Y.M. The effect of gender-affirming hormone treatment on serum creatinine in transgender and gender-diverse youth: Implications for estimating GFR. Pediatr. Nephrol. 2022, 37, 2141–2150. [Google Scholar] [CrossRef]
- Kummer, S.; Jeruschke, S.; Wegerich, L.V.; Peters, A.; Lehmann, P.; Seibt, A.; Mueller, F.; Koleganova, N.; Halbenz, E.; Schmitt, C.P.; et al. Estrogen receptor alpha expression in podocytes mediates protection against apoptosis in-vitro and in-vivo. PLoS ONE 2011, 6, e27457. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Yi, H.; Bao, Y.; Liu, Y.; Gao, X. Oestrogen inhibits PTPRO to prevent the apoptosis of renal podocytes. Exp. Ther. Med. 2019, 17, 2373–2380. [Google Scholar] [CrossRef] [PubMed]
- Doublier, S.; Lupia, E.; Catanuto, P.; Periera-Simon, S.; Xia, X.; Korach, K.; Berho, M.; Elliot, S.J.; Karl, M. Testosterone and 17β-estradiol have opposite effects on podocyte apoptosis that precedes glomerulosclerosis in female estrogen receptor knockout mice. Kidney Int. 2011, 79, 404–413. [Google Scholar] [CrossRef]
- Verzola, D.; Villaggio, B.; Procopio, V.; Gandolfo, M.T.; Gianiorio, F.; Famà, A.; Tosetti, F.; Traverso, P.; Deferrari, G.; Garibotto, G. Androgen-mediated apoptosis of kidney tubule cells: Role of c-Jun amino terminal kinase. Biochem. Biophys. Res. Commun. 2009, 387, 531–536. [Google Scholar] [CrossRef]
- Krupka, E.; Curtis, S.; Ferguson, T.; Whitlock, R.; Askin, N.; Millar, A.C.; Dahl, M.; Fung, R.; Ahmed, S.B.; Tangri, N.; et al. The Effect of Gender-Affirming Hormone Therapy on Measures of Kidney Function: A Systematic Review and Meta-Analysis. Clin. J. Am. Soc. Nephrol. 2022, 17, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, A.K.; Dines, V.; Davidge-Pitts, C.J.; Kattah, A.G. Effect on Kidney Function During Gender Affirming Hormonal Treatment in Transgender Individuals. J. Endocr. Soc. 2021, 5 (Suppl. S1), A790. [Google Scholar] [CrossRef]
- Collister, D.; Saad, N.; Christie, E.; Ahmed, S. Providing Care for Transgender Persons with Kidney Disease: A Narrative Review. Can. J. Kidney Health Dis. 2021, 8, 2054358120985379. [Google Scholar] [CrossRef] [PubMed]
- Lichtenecker, D.C.K.; Argeri, R.; Castro, C.H.M.; Dias-da-Silva, M.R.; Gomes, G.N. Cross-sex testosterone therapy modifies the renal morphology and function in female rats and might underlie increased systolic pressure. Clin. Exp. Pharmacol. Physiol. 2021, 48, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Gusmão-Silva, J.V.; Lichtenecker, D.C.K.; Ferreira, L.G.A.; Gois, Í.; Argeri, R.; Gomes, G.N.; Dias-da-Silva, M.R. Body, metabolic and renal changes following cross-sex estrogen/progestogen therapy in a rodent model simulating its use by transwomen. J. Endocrinol. Investig. 2022, 45, 1875–1885. [Google Scholar] [CrossRef] [PubMed]
- Gohar, E.Y.; Giachini, F.R.; Pollock, D.M.; Tostes, R.C. Role of the endothelin system in sexual dimorphism in cardiovascular and renal diseases. Life Sci. 2016, 159, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Ellison, K.E.; Ingelfinger, J.R.; Pivor, M.; Dzau, V.J. Androgen regulation of rat renal angiotensinogen messenger RNA expression. J. Clin. Investig. 1989, 83, 1941–1945. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Baessler, A.; Schunkert, H. Renin angiotensin system and gender differences in the cardiovascular system. Cardiovasc. Res. 2002, 53, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Melo Junior, A.F.; Dalpiaz, P.L.M.; Escouto, L.D.S.; Sousa, G.J.; Aires, R.; Oliveira, N.D.; Carmona, A.K.; Gava, Á.L.; Bissoli, N.S. Involvement of sex hormones, oxidative stress, ACE and ACE2 activity in the impairment of renal function and remodelling in SHR. Life Sci. 2020, 257, 118138. [Google Scholar] [CrossRef] [PubMed]
- Wenner, M.M.; Sebzda, K.N.; Kuczmarski, A.V.; Pohlig, R.T.; Edwards, D.G. ET(B) receptor contribution to vascular dysfunction in postmenopausal women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, R51–R57. [Google Scholar] [CrossRef]
- Verhagen, A.M.; Attia, D.M.; Koomans, H.A.; Joles, J.A. Male gender increases sensitivity to proteinuria induced by mild NOS inhibition in rats: Role of sex hormones. Am. J. Physiol. Renal Physiol. 2000, 279, F664–F670. [Google Scholar] [CrossRef]
- Long, D.A.; Kolatsi-Joannou, M.; Price, K.L.; Dessapt-Baradez, C.; Huang, J.L.; Papakrivopoulou, E.; Hubank, M.; Korstanje, R.; Gnudi, L.; Woolf, A.S. Albuminuria is associated with too few glomeruli and too much testosterone. Kidney Int. 2013, 83, 1118–1129. [Google Scholar] [CrossRef]
- Gross, M.L.; Adamczak, M.; Rabe, T.; Harbi, N.A.; Krtil, J.; Koch, A.; Hamar, P.; Amann, K.; Ritz, E. Beneficial Effects of Estrogens on Indices of Renal Damage in Uninephrectomized SHRsp Rats. J. Am. Soc. Nephrol. 2004, 15, 348–358. [Google Scholar] [CrossRef]
- Catanuto, P.; Doublier, S.; Lupia, E.; Fornoni, A.; Berho, M.; Karl, M.; Striker, G.E.; Xia, X.; Elliot, S. 17 beta-estradiol and tamoxifen upregulate estrogen receptor beta expression and control podocyte signaling pathways in a model of type 2 diabetes. Kidney Int. 2009, 75, 1194–1201. [Google Scholar] [CrossRef]
- Michel, M.C.; Brunner, H.R.; Foster, C.; Huo, Y. Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease. Pharmacol. Ther. 2016, 164, 1–81. [Google Scholar] [CrossRef]
- Gohar, E.Y.; Almutlaq, R.N.; Daugherty, E.M.; Butt, M.K.; Jin, C.; Pollock, J.S.; Pollock, D.M.; De Miguel, C. Activation of G protein-coupled estrogen receptor 1 ameliorates proximal tubular injury and proteinuria in Dahl salt-sensitive female rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2021, 320, R297–R306. [Google Scholar] [CrossRef] [PubMed]
- Han, H.J.; Jung, J.C.; Taub, M. Response of primary rabbit kidney proximal tubule cells to estrogens. J. Cell Physiol. 1999, 178, 35–43. [Google Scholar] [CrossRef]
- Han, H.J.; Park, S.H.; Park, H.J.; Lee, J.H.; Lee, B.C.; Hwang, W.S. Effects of sex hormones on Na+/glucose cotransporter of renal proximal tubular cells following oxidant injury. Kidney Blood Press. Res. 2001, 24, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.K.; Arany, I. Sex hormones differentially modulate STAT3-dependent antioxidant responses during oxidative stress in renal proximal tubule cells. In Vivo 2014, 28, 1097–1100. [Google Scholar]
- Pawluczyk, I.Z.; Tan, E.K.; Harris, K.P. Rat mesangial cells exhibit sex-specific profibrotic and proinflammatory phenotypes. Nephrol. Dial. Transplant. 2009, 24, 1753–1758. [Google Scholar] [CrossRef]
- Kwan, G.; Neugarten, J.; Sherman, M.; Ding, Q.; Fotadar, U.; Lei, J.; Silbiger, S. Effects of sex hormones on mesangial cell proliferation and collagen synthesis. Kidney Int. 1996, 50, 1173–1179. [Google Scholar] [CrossRef] [PubMed]
- Silbiger, S.; Lei, J.; Neugarten, J. Estradiol suppresses type I collagen synthesis in mesangial cells via activation of activator protein-1. Kidney Int. 1999, 55, 1268–1276. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Kim, J.K. The Role of Estrogen and Estrogen Receptors on Cardiomyocytes: An Overview. Can. J. Cardiol. 2016, 32, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Lizotte, E.; Grandy, S.A.; Tremblay, A.; Allen, B.G.; Fiset, C. Expression, distribution and regulation of sex steroid hormone receptors in mouse heart. Cell. Physiol. Biochem. 2009, 23, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.H.; Liu, R.; Perez, E.J.; Wen, Y.; Stevens, S.M., Jr.; Valencia, T.; Brun-Zinkernagel, A.M.; Prokai, L.; Will, Y.; Dykens, J.; et al. Mitochondrial localization of estrogen receptor beta. Proc. Natl. Acad. Sci. USA 2004, 101, 4130–4135. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E. Estrogen signaling and cardiovascular disease. Circ. Res. 2011, 109, 687–696. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, M.E. Genomic and nongenomic effects of estrogen in the vasculature. Am. J. Cardiol. 2002, 90, 3f–6f. [Google Scholar] [CrossRef] [PubMed]
- Heinlein, C.A.; Chang, C. The roles of androgen receptors and androgen-binding proteins in nongenomic androgen actions. Mol. Endocrinol. 2002, 16, 2181–2187. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, I.; Minamino, T. Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 2016, 97, 245–262. [Google Scholar] [CrossRef]
- Pedram, A.; Razandi, M.; Aitkenhead, M.; Levin, E.R. Estrogen inhibits cardiomyocyte hypertrophy in vitro. Antagonism of calcineurin-related hypertrophy through induction of MCIP1. J. Biol. Chem. 2005, 280, 26339–26348. [Google Scholar] [CrossRef]
- Mahmoodzadeh, S.; Dworatzek, E.; Fritschka, S.; Pham, T.H.; Regitz-Zagrosek, V. 17beta-Estradiol inhibits matrix metalloproteinase-2 transcription via MAP kinase in fibroblasts. Cardiovasc. Res. 2010, 85, 719–728. [Google Scholar] [CrossRef]
- Gürgen, D.; Kusch, A.; Klewitz, R.; Hoff, U.; Catar, R.; Hegner, B.; Kintscher, U.; Luft, F.C.; Dragun, D. Sex-specific mTOR signaling determines sexual dimorphism in myocardial adaptation in normotensive DOCA-salt model. Hypertension 2013, 61, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, M.; Rachelska, G.; Donghao, W.; McCann, S.M.; Gutkowska, J. Estrogen receptors activate atrial natriuretic peptide in the rat heart. Proc. Natl. Acad. Sci. USA 2001, 98, 11765–11770. [Google Scholar] [CrossRef] [PubMed]
- Pedram, A.; Razandi, M.; Narayanan, R.; Dalton, J.T.; McKinsey, T.A.; Levin, E.R. Estrogen regulates histone deacetylases to prevent cardiac hypertrophy. Mol. Biol. Cell 2013, 24, 3805–3818. [Google Scholar] [CrossRef] [PubMed]
- Kararigas, G.; Nguyen, B.T.; Jarry, H. Estrogen modulates cardiac growth through an estrogen receptor α-dependent mechanism in healthy ovariectomized mice. Mol. Cell. Endocrinol. 2014, 382, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Altamirano, F.; Oyarce, C.; Silva, P.; Toyos, M.; Wilson, C.; Lavandero, S.; Uhlén, P.; Estrada, M. Testosterone induces cardiomyocyte hypertrophy through mammalian target of rapamycin complex 1 pathway. J. Endocrinol. 2009, 202, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Duran, J.; Oyarce, C.; Pavez, M.; Valladares, D.; Basualto-Alarcon, C.; Lagos, D.; Barrientos, G.; Troncoso, M.F.; Ibarra, C.; Estrada, M. GSK-3β/NFAT Signaling Is Involved in Testosterone-Induced Cardiac Myocyte Hypertrophy. PLoS ONE 2016, 11, e0168255. [Google Scholar] [CrossRef]
- Duran, J.; Lagos, D.; Pavez, M.; Troncoso, M.F.; Ramos, S.; Barrientos, G.; Ibarra, C.; Lavandero, S.; Estrada, M. Ca(2+)/Calmodulin-Dependent Protein Kinase II and Androgen Signaling Pathways Modulate MEF2 Activity in Testosterone-Induced Cardiac Myocyte Hypertrophy. Front. Pharmacol. 2017, 8, 604. [Google Scholar] [CrossRef] [PubMed]
- Fiebach, N.H.; Viscoli, C.M.; Horwitz, R.I. Differences between women and men in survival after myocardial infarction. Biology or methodology? JAMA 1990, 263, 1092–1096. [Google Scholar] [CrossRef]
- Crabbe, D.L.; Dipla, K.; Ambati, S.; Zafeiridis, A.; Gaughan, J.P.; Houser, S.R.; Margulies, K.B. Gender differences in post-infarction hypertrophy in end-stage failing hearts. J. Am. Coll. Cardiol. 2003, 41, 300–306. [Google Scholar] [CrossRef]
- Rattanasopa, C.; Phungphong, S.; Wattanapermpool, J.; Bupha-Intr, T. Significant role of estrogen in maintaining cardiac mitochondrial functions. J. Steroid Biochem. Mol. Biol. 2015, 147, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ramjiawan, A.; Bagchi, R.A.; Albak, L.; Czubryt, M.P. Mechanism of cardiomyocyte PGC-1α gene regulation by ERRα. Biochem. Cell Biol. 2013, 91, 148–154. [Google Scholar] [CrossRef]
- Cruz-Topete, D.; Dominic, P.; Stokes, K.Y. Uncovering sex-specific mechanisms of action of testosterone and redox balance. Redox Biol. 2020, 31, 101490. [Google Scholar] [CrossRef] [PubMed]
- Willemars, M.M.A.; Nabben, M.; Verdonschot, J.A.J.; Hoes, M.F. Evaluation of the Interaction of Sex Hormones and Cardiovascular Function and Health. Curr. Heart Fail. Rep. 2022, 19, 200–212. [Google Scholar] [CrossRef]
- Patten, R.D.; Pourati, I.; Aronovitz, M.J.; Baur, J.; Celestin, F.; Chen, X.; Michael, A.; Haq, S.; Nuedling, S.; Grohe, C.; et al. 17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ. Res. 2004, 95, 692–699. [Google Scholar] [CrossRef]
- Shen, T.; Ding, L.; Ruan, Y.; Qin, W.; Lin, Y.; Xi, C.; Lu, Y.; Dou, L.; Zhu, Y.; Cao, Y.; et al. SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection in angiotensin II-induced heart hypertrophy. Oxidative Med. Cell. Longev. 2014, 2014, 713894. [Google Scholar] [CrossRef] [PubMed]
- Pelzer, T.; Neumann, M.; de Jager, T.; Jazbutyte, V.; Neyses, L. Estrogen effects in the myocardium: Inhibition of NF-kappaB DNA binding by estrogen receptor-alpha and -beta. Biochem. Biophys. Res. Commun. 2001, 286, 1153–1157. [Google Scholar] [CrossRef]
- Cong, B.; Zhu, X.; Cao, B.; Xiao, J.; Wang, Z.; Ni, X. Estrogens protect myocardium against ischemia/reperfusion insult by up-regulation of CRH receptor type 2 in female rats. Int. J. Cardiol. 2013, 168, 4755–4760. [Google Scholar] [CrossRef]
- Satoh, M.; Matter, C.M.; Ogita, H.; Takeshita, K.; Wang, C.Y.; Dorn, G.W., 2nd; Liao, J.K. Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen. Circulation 2007, 115, 3197–3204. [Google Scholar] [CrossRef]
- Huang, C.; Gu, H.; Zhang, W.; Herrmann, J.L.; Wang, M. Testosterone-down-regulated Akt pathway during cardiac ischemia/reperfusion: A mechanism involving BAD, Bcl-2 and FOXO3a. J. Surg. Res. 2010, 164, e1–e11. [Google Scholar] [CrossRef]
- Wang, L.; Gu, H.; Turrentine, M.; Wang, M. Estradiol treatment promotes cardiac stem cell (CSC)-derived growth factors, thus improving CSC-mediated cardioprotection after acute ischemia/reperfusion. Surgery 2014, 156, 243–252. [Google Scholar] [CrossRef]
- Hasan, A.S.; Luo, L.; Baba, S.; Li, T.S. Estrogen is required for maintaining the quality of cardiac stem cells. PLoS ONE 2021, 16, e0245166. [Google Scholar] [CrossRef]
- McHugh, N.A.; Cook, S.M.; Schairer, J.L.; Bidgoli, M.M.; Merrill, G.F. Ischemia- and reperfusion-induced ventricular arrhythmias in dogs: Effects of estrogen. Am. J. Physiol. 1995, 268 Pt 2, H2569–H2573. [Google Scholar] [CrossRef]
- Ribeiro, R.F., Jr.; Pavan, B.M.; Potratz, F.F.; Fiorim, J.; Simoes, M.R.; Dias, F.M.; Lima, F.L.; Fernandes, A.A.; Vassallo, D.V.; Stefanon, I. Myocardial contractile dysfunction induced by ovariectomy requires AT1 receptor activation in female rats. Cell. Physiol. Biochem. 2012, 30, 1–12. [Google Scholar] [CrossRef]
- Anderson, S.E.; Kirkland, D.M.; Beyschau, A.; Cala, P.M. Acute effects of 17beta-estradiol on myocardial pH, Na+, and Ca2+ and ischemia-reperfusion injury. Am. J. Physiol. Cell Physiol. 2005, 288, C57–C64. [Google Scholar] [CrossRef]
- Node, K.; Kitakaze, M.; Kosaka, H.; Minamino, T.; Funaya, H.; Hori, M. Amelioration of ischemia- and reperfusion-induced myocardial injury by 17beta-estradiol: Role of nitric oxide and calcium-activated potassium channels. Circulation 1997, 96, 1953–1963. [Google Scholar] [CrossRef]
- Johnson, B.D.; Zheng, W.; Korach, K.S.; Scheuer, T.; Catterall, W.A.; Rubanyi, G.M. Increased expression of the cardiac L-type calcium channel in estrogen receptor-deficient mice. J. Gen. Physiol. 1997, 110, 135–140. [Google Scholar] [CrossRef]
- Golden, K.L.; Marsh, J.D.; Jiang, Y. Testosterone regulates mRNA levels of calcium regulatory proteins in cardiac myocytes. Horm. Metab. Res. 2004, 36, 197–202. [Google Scholar] [CrossRef]
- Nakagawa, M.; Ooie, T.; Ou, B.; Ichinose, M.; Takahashi, N.; Hara, M.; Yonemochi, H.; Saikawa, T. Gender differences in autonomic modulation of ventricular repolarization in humans. J. Cardiovasc. Electrophysiol. 2005, 16, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Romhilt, D.W.; Chaffin, C.; Choi, S.C.; Irby, E.C. Arrhythmias on ambulatory electrocardiographic monitoring in women without apparent heart disease. Am. J. Cardiol. 1984, 54, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, M.H.; Hardy, S.; Archibald, D.; MacNeil, D.J. JTc prolongation with d,l-sotalol in women versus men. Am. J. Cardiol. 1999, 83, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Regitz-Zagrosek, V.; Seeland, U. Sex and gender differences in myocardial hypertrophy and heart failure. Wien. Med. Wochenschr. 2011, 161, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.K.; Lee, S.O.; Chang, E.; Pang, H.; Chang, C. Androgen receptor (AR) in cardiovascular diseases. J. Endocrinol. 2016, 229, R1–R16. [Google Scholar] [CrossRef] [PubMed]
- Keating, N.L.; O’Malley, A.J.; Freedland, S.J.; Smith, M.R. Diabetes and cardiovascular disease during androgen deprivation therapy: Observational study of veterans with prostate cancer. J. Natl. Cancer Inst. 2010, 102, 39–46. [Google Scholar] [CrossRef]
- Moriyama, Y.; Yasue, H.; Yoshimura, M.; Mizuno, Y.; Nishiyama, K.; Tsunoda, R.; Kawano, H.; Kugiyama, K.; Ogawa, H.; Saito, Y.; et al. The plasma levels of dehydroepiandrosterone sulfate are decreased in patients with chronic heart failure in proportion to the severity. J. Clin. Endocrinol. Metab. 2000, 85, 1834–1840. [Google Scholar] [CrossRef]
- Rydlewska, A.; Maj, J.; Katkowski, B.; Biel, B.; Ponikowska, B.; Banasiak, W.; Ponikowski, P.; Jankowska, E.A. Circulating testosterone and estradiol, autonomic balance and baroreflex sensitivity in middle-aged and elderly men with heart failure. Aging Male 2013, 16, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, E.A.; Biel, B.; Majda, J.; Szklarska, A.; Lopuszanska, M.; Medras, M.; Anker, S.D.; Banasiak, W.; Poole-Wilson, P.A.; Ponikowski, P. Anabolic deficiency in men with chronic heart failure: Prevalence and detrimental impact on survival. Circulation 2006, 114, 1829–1837. [Google Scholar] [CrossRef]
- Jankowska, E.A.; Rozentryt, P.; Ponikowska, B.; Hartmann, O.; Kustrzycka-Kratochwil, D.; Reczuch, K.; Nowak, J.; Borodulin-Nadzieja, L.; Polonski, L.; Banasiak, W.; et al. Circulating estradiol and mortality in men with systolic chronic heart failure. JAMA 2009, 301, 1892–1901. [Google Scholar] [CrossRef]
- Pedersen, L.R.; Frestad, D.; Michelsen, M.M.; Mygind, N.D.; Rasmusen, H.; Suhrs, H.E.; Prescott, E. Risk Factors for Myocardial Infarction in Women and Men: A Review of the Current Literature. Curr. Pharm. Des. 2016, 22, 3835–3852. [Google Scholar] [CrossRef]
- Hulley, S.; Grady, D.; Bush, T.; Furberg, C.; Herrington, D.; Riggs, B.; Vittinghoff, E. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA 1998, 280, 605–613. [Google Scholar] [CrossRef]
- Anderson, G.L.; Limacher, M.; Assaf, A.R.; Bassford, T.; Beresford, S.A.; Black, H.; Bonds, D.; Brunner, R.; Brzyski, R.; Caan, B.; et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: The Women’s Health Initiative randomized controlled trial. JAMA 2004, 291, 1701–1712. [Google Scholar] [CrossRef] [PubMed]
- Hale, S.L.; Birnbaum, Y.; Kloner, R.A. Estradiol, Administered Acutely, Protects Ischemic Myocardium in Both Female and Male Rabbits. J. Cardiovasc. Pharmacol. Ther. 1997, 2, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, A.M.; Murphy, E.; Sun, J. Estrogen receptor activation and cardioprotection in ischemia reperfusion injury. Trends Cardiovasc. Med. 2010, 20, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Gheorghe, G.S.; Hodorogea, A.S.; Ciobanu, A.; Nanea, I.T.; Gheorghe, A.C.D. Androgen Deprivation Therapy, Hypogonadism and Cardiovascular Toxicity in Men with Advanced Prostate Cancer. Curr. Oncol. 2021, 28, 3331–3346. [Google Scholar] [CrossRef] [PubMed]
- Visniauskas, B.; Kilanowski-Doroh, I.; Ogola, B.O.; McNally, A.B.; Horton, A.C.; Imulinde Sugi, A.; Lindsey, S.H. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J. Hum. Hypertens. 2023, 37, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Connelly, P.J.; Casey, H.; Montezano, A.C.; Touyz, R.M.; Delles, C. Sex steroids receptors, hypertension, and vascular ageing. J. Hum. Hypertens. 2022, 36, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Aryan, L.; Younessi, D.; Zargari, M.; Banerjee, S.; Agopian, J.; Rahman, S.; Borna, R.; Ruffenach, G.; Umar, S.; Eghbali, M. The Role of Estrogen Receptors in Cardiovascular Disease. Int. J. Mol. Sci. 2020, 21, 4314. [Google Scholar] [CrossRef] [PubMed]
- Dai-Do, D.; Espinosa, E.; Liu, G.; Rabelink, T.J.; Julmy, F.; Yang, Z.; Mahler, F.; Lüscher, T.F. 17 beta-estradiol inhibits proliferation and migration of human vascular smooth muscle cells: Similar effects in cells from postmenopausal females and in males. Cardiovasc. Res. 1996, 32, 980–985. [Google Scholar] [PubMed]
- Zhang, Y.; Stewart, K.G.; Davidge, S.T. Estrogen replacement reduces age-associated remodeling in rat mesenteric arteries. Hypertension 2000, 36, 970–974. [Google Scholar] [CrossRef]
- Ogola, B.O.; Abshire, C.M.; Visniauskas, B.; Kiley, J.X.; Horton, A.C.; Clark-Patterson, G.L.; Kilanowski-Doroh, I.; Diaz, Z.; Bicego, A.N.; McNally, A.B.; et al. Sex differences in vascular aging and impact of GPER deletion. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H336–H349. [Google Scholar] [CrossRef]
- Manrique, C.; Lastra, G.; Ramirez-Perez, F.I.; Haertling, D.; DeMarco, V.G.; Aroor, A.R.; Jia, G.; Chen, D.; Barron, B.J.; Garro, M.; et al. Endothelial Estrogen Receptor-α Does Not Protect Against Vascular Stiffness Induced by Western Diet in Female Mice. Endocrinology 2016, 157, 1590–1600. [Google Scholar] [CrossRef] [PubMed]
- Carbajal-García, A.; Reyes-García, J.; Montaño, L.M. Androgen Effects on the Adrenergic System of the Vascular, Airway, and Cardiac Myocytes and Their Relevance in Pathological Processes. Int. J. Endocrinol. 2020, 2020, 8849641. [Google Scholar] [CrossRef] [PubMed]
- Lorigo, M.; Mariana, M.; Lemos, M.C.; Cairrao, E. Vascular mechanisms of testosterone: The non-genomic point of view. J. Steroid Biochem. Mol. Biol. 2020, 196, 105496. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P. Membrane Androgen Receptors Unrelated to Nuclear Steroid Receptors. Endocrinology 2019, 160, 772–781. [Google Scholar] [CrossRef]
- Foradori, C.D.; Weiser, M.J.; Handa, R.J. Non-genomic actions of androgens. Front. Neuroendocrinol. 2008, 29, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Herald, A.K.; Touyz, R.M. Androgens and Androgen Receptors as Determinants of Vascular Sex Differences Across the Lifespan. Can. J. Cardiol. 2022, 38, 1854–1864. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Yang, C.; Zhang, J.; Huang, Y.; Yang, Y.; Zeng, P.; Cai, W.; Xiang, Z.; Wu, J.; Yang, J. Trends and influence factors in the prevalence, awareness, treatment, and control of hypertension among US adults from 1999 to 2018. PLoS ONE 2023, 18, e0292159. [Google Scholar] [CrossRef]
- Sabbatini, A.R.; Kararigas, G. Estrogen-related mechanisms in sex differences of hypertension and target organ damage. Biol. Sex. Differ. 2020, 11, 31. [Google Scholar] [CrossRef] [PubMed]
- Ganten, U.; Schröder, G.; Witt, M.; Zimmermann, F.; Ganten, D.; Stock, G. Sexual dimorphism of blood pressure in spontaneously hypertensive rats: Effects of anti-androgen treatment. J. Hypertens. 1989, 7, 721–726. [Google Scholar] [CrossRef]
- Reckelhoff, J.F.; Zhang, H.; Srivastava, K.; Granger, J.P. Gender differences in hypertension in spontaneously hypertensive rats: Role of androgens and androgen receptor. Hypertension 1999, 34 Pt 2, 920–923. [Google Scholar] [CrossRef]
- Rossouw, J.E.; Anderson, G.L.; Prentice, R.L.; LaCroix, A.Z.; Kooperberg, C.; Stefanick, M.L.; Jackson, R.D.; Beresford, S.A.; Howard, B.V.; Johnson, K.C.; et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA 2002, 288, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Reckelhoff, J.F.; Yanes, L.L.; Iliescu, R.; Fortepiani, L.A.; Granger, J.P. Testosterone supplementation in aging men and women: Possible impact on cardiovascular-renal disease. Am. J. Physiol. Renal Physiol. 2005, 289, F941–F948. [Google Scholar] [CrossRef] [PubMed]
- Schunkert, H.; Danser, A.H.; Hense, H.W.; Derkx, F.H.; Kürzinger, S.; Riegger, G.A. Effects of estrogen replacement therapy on the renin-angiotensin system in postmenopausal women. Circulation 1997, 95, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Proudler, A.J.; Ahmed, A.I.; Crook, D.; Fogelman, I.; Rymer, J.M.; Stevenson, J.C. Hormone replacement therapy and serum angiotensin-converting-enzyme activity in postmenopausal women. Lancet 1995, 346, 89–90. [Google Scholar] [CrossRef] [PubMed]
- Medina, D.; Mehay, D.; Arnold, A.C. Sex differences in cardiovascular actions of the renin-angiotensin system. Clin. Auton. Res. 2020, 30, 393–408. [Google Scholar] [CrossRef] [PubMed]
- Riedel, K.; Deussen, A.J.; Tolkmitt, J.; Weber, S.; Schlinkert, P.; Zatschler, B.; Friebel, C.; Müller, B.; El-Armouche, A.; Morawietz, H.; et al. Estrogen determines sex differences in adrenergic vessel tone by regulation of endothelial β-adrenoceptor expression. Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H243–H254. [Google Scholar] [CrossRef] [PubMed]
- Hajagos-Toth, J.; Bota, J.; Ducza, E.; Csanyi, A.; Tiszai, Z.; Borsodi, A.; Samavati, R.; Benyhe, S.; Gaspar, R. The effects of estrogen on the α2-adrenergic receptor subtypes in rat uterine function in late pregnancy in vitro. Croat. Med. J. 2016, 57, 100–109. [Google Scholar] [CrossRef] [PubMed]
- López-Canales, O.; Castillo-Hernández, M.D.C.; Vargas-Robles, H.; Rios, A.; López-Canales, J.; Escalante, B. Androgens Mediate β-adrenergic Vasorelaxation Impairment Using Adenylyl Cyclase. J. Cardiovasc. Pharmacol. 2018, 71, 147–154. [Google Scholar] [CrossRef] [PubMed]
- McConnaughey, M.M.; Iams, S.G. Sex hormones change adrenoceptors in blood vessels of the spontaneously hypertensive rat. Clin. Exp. Hypertens. 1993, 15, 153–170. [Google Scholar] [CrossRef]
- Trivedi, B.; Desai, R.; Mishra, K.; Hechanova, L.A.; Abolbashari, M. Role of Sex in Atherosclerosis: Does Sex Matter? Curr. Cardiol. Rep. 2022, 24, 1791–1798. [Google Scholar] [CrossRef]
- Dama, A.; Baggio, C.; Boscaro, C.; Albiero, M.; Cignarella, A. Estrogen Receptor Functions and Pathways at the Vascular Immune Interface. Int. J. Mol. Sci. 2021, 22, 4254. [Google Scholar] [CrossRef]
- Fontaine, C.; Morfoisse, F.; Tatin, F.; Zamora, A.; Zahreddine, R.; Henrion, D.; Arnal, J.F.; Lenfant, F.; Garmy-Susini, B. The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases. Int. J. Mol. Sci. 2020, 21, 3244. [Google Scholar] [CrossRef]
- Ogunmoroti, O.; Osibogun, O.; Zhao, D.; Mehta, R.C.; Ouyang, P.; Lutsey, P.L.; Robinson-Cohen, C.; Michos, E.D. Associations between endogenous sex hormones and FGF-23 among women and men in the Multi-Ethnic Study of Atherosclerosis. PLoS ONE 2022, 17, e0268759. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Wildman, R.P.; Matthews, K.; Powell, L.; Hollenberg, S.M.; Edmundowicz, D.; Sutton-Tyrrell, K. Effect modification of obesity on associations between endogenous steroid sex hormones and arterial calcification in women at midlife. Menopause 2011, 18, 906–914. [Google Scholar] [CrossRef]
- El Khoudary, S.R.; Wildman, R.P.; Matthews, K.; Thurston, R.C.; Bromberger, J.T.; Sutton-Tyrrell, K. Endogenous sex hormones impact the progression of subclinical atherosclerosis in women during the menopausal transition. Atherosclerosis 2012, 225, 180–186. [Google Scholar] [CrossRef]
- Hashemzadeh, M.; Romo, R.; Arreguin, J.M.; Movahed, M.R. The effects of estrogen and hormone replacement therapy on cardiovascular systems. Future Cardiol. 2021, 17, 347–353. [Google Scholar] [CrossRef]
- Mikkola, T.S.; Clarkson, T.B. Estrogen replacement therapy, atherosclerosis, and vascular function. Cardiovasc. Res. 2002, 53, 605–619. [Google Scholar] [CrossRef]
- Clarke, S.C.; Kelleher, J.; Lloyd-Jones, H.; Slack, M.; Schofiel, P.M. A study of hormone replacement therapy in postmenopausal women with ischaemic heart disease: The Papworth HRT atherosclerosis study. Br. J. Obstet. Gynaecol. 2002, 109, 1056–1062. [Google Scholar] [CrossRef]
- Alexandersen, P.; Tankó, L.B.; Bagger, Y.Z.; Qin, G.; Christiansen, C. The long-term impact of 2–3 years of hormone replacement therapy on cardiovascular mortality and atherosclerosis in healthy women. Climacteric 2006, 9, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Karim, R.; Hodis, H.N.; Stanczyk, F.Z.; Lobo, R.A.; Mack, W.J. Relationship between serum levels of sex hormones and progression of subclinical atherosclerosis in postmenopausal women. J. Clin. Endocrinol. Metab. 2008, 93, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Hodis, H.N.; Mack, W.J.; Azen, S.P.; Lobo, R.A.; Shoupe, D.; Mahrer, P.R.; Faxon, D.P.; Cashin-Hemphill, L.; Sanmarco, M.E.; French, W.J.; et al. Hormone therapy and the progression of coronary-artery atherosclerosis in postmenopausal women. N. Engl. J. Med. 2003, 349, 535–545. [Google Scholar] [CrossRef]
- Hodis, H.N.; Mack, W.J. Menopausal Hormone Replacement Therapy and Reduction of All-Cause Mortality and Cardiovascular Disease: It Is About Time and Timing. Cancer J. 2022, 28, 208–223. [Google Scholar] [CrossRef]
- Hodis, H.N.; Mack, W.J. Hormone replacement therapy and the association with coronary heart disease and overall mortality: Clinical application of the timing hypothesis. J. Steroid Biochem. Mol. Biol. 2014, 142, 68–75. [Google Scholar] [CrossRef]
- Clarkson, T.B. Estrogen effects on arteries vary with stage of reproductive life and extent of subclinical atherosclerosis progression. Menopause 2018, 25, 1262–1274. [Google Scholar] [CrossRef]
- Moreira Allgayer, R.M.C.; Borba, G.D.S.; Moraes, R.S.; Ramos, R.B.; Spritzer, P.M. The Effect of Gender-Affirming Hormone Therapy on the Risk of Subclinical Atherosclerosis in the Transgender Population: A Systematic Review. Endocr. Pract. 2023, 29, 498–507. [Google Scholar] [CrossRef]
- Price, J.; Leng, G.C. Steroid sex hormones for lower limb atherosclerosis. Cochrane Database Syst. Rev. 2012, 10, Cd000188. [Google Scholar] [CrossRef]
- Sharma, A.; Ogunmoroti, O.; Fashanu, O.E.; Zhao, D.; Ouyang, P.; Budoff, M.J.; Thomas, I.C.; Michos, E.D. Associations of endogenous sex hormone levels with the prevalence and progression of valvular and thoracic aortic calcification in the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 2022, 341, 71–79. [Google Scholar] [CrossRef]
- Son, B.K.; Akishita, M.; Iijima, K.; Ogawa, S.; Maemura, K.; Yu, J.; Takeyama, K.; Kato, S.; Eto, M.; Ouchi, Y. Androgen receptor-dependent transactivation of growth arrest-specific gene 6 mediates inhibitory effects of testosterone on vascular calcification. J. Biol. Chem. 2010, 285, 7537–7544. [Google Scholar] [CrossRef]
- Stone, J.C.; MacDonald, M.J. The impacts of endogenous progesterone and exogenous progestin on vascular endothelial cell, and smooth muscle cell function: A narrative review. Vasc. Pharmacol. 2023, 152, 107209. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, M.E. Protective effects of estrogen on the cardiovascular system. Am. J. Cardiol. 2002, 89, 12E–17E; discussion 17E–18E. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi-Reiner, E.; Ivekovic, R.; Novak-Laus, K.; Reiner, Z. Endogenous steroid sex hormones and atherosclerosis of retinal arteries in men. Med. Sci. Monit. 2009, 15, Cr211–Cr216. [Google Scholar] [PubMed]
- Malan, N.T.; Hamer, M.; Lambert, G.W.; Schutte, A.E.; Huisman, H.W.; Van Rooyen, J.M.; Mels, C.M.; Smith, W.; Fourie, C.M.; Schutte, R.; et al. Sex hormones associated with subclinical kidney damage and atherosclerosis in South African men: The SABPA study. J. Hypertens. 2012, 30, 2387–2394. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.J.; Gupta, S.R.; Moustafa, A.F.; Chao, A.M. Sex/Gender Differences in Obesity Prevalence, Comorbidities, and Treatment. Curr. Obes. Rep. 2021, 10, 458–466. [Google Scholar] [CrossRef] [PubMed]
- Després, J.P.; Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 2006, 444, 881–887. [Google Scholar] [CrossRef] [PubMed]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes Res. Clin. Pract. 2022, 188, 109924. [Google Scholar] [CrossRef] [PubMed]
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome. In Obesity and Lipotoxicity; Springer: Berlin/Heidelberg, Germany, 2017; Volume 960, pp. 1–17. [Google Scholar] [CrossRef]
- Olivares, A.; Méndez, J.P.; Zambrano, E.; Cárdenas, M.; Tovar, A.; Perera-Marín, G.; Ulloa-Aguirre, A. Reproductive axis function and gonadotropin microheterogeneity in a male rat model of diet-induced obesity. Gen. Comp. Endocrinol. 2010, 166, 356–364. [Google Scholar] [CrossRef] [PubMed]
- Saad, F.; Doros, G.; Haider, K.S.; Haider, A. Differential effects of 11 years of long-term injectable testosterone undecanoate therapy on anthropometric and metabolic parameters in hypogonadal men with normal weight, overweight and obesity in comparison with untreated controls: Real-world data from a controlled registry study. Int. J. Obes. 2020, 44, 1264–1278. [Google Scholar] [CrossRef]
- De Pergola, G. The adipose tissue metabolism: Role of testosterone and dehydroepiandrosterone. Int. J. Obes. Relat. Metab. Disord. 2000, 24 (Suppl. S2), S59–S63. [Google Scholar] [CrossRef] [PubMed]
- Muraleedharan, V.; Jones, T.H. Testosterone and the metabolic syndrome. Ther. Adv. Endocrinol. Metab. 2010, 1, 207–223. [Google Scholar] [CrossRef]
- Yanase, T.; Fan, W.; Kyoya, K.; Min, L.; Takayanagi, R.; Kato, S.; Nawata, H. Androgens and metabolic syndrome: Lessons from androgen receptor knock out (ARKO) mice. J. Steroid Biochem. Mol. Biol. 2008, 109, 254–257. [Google Scholar] [CrossRef]
- Ambikairajah, A.; Walsh, E.; Cherbuin, N. Lipid profile differences during menopause: A review with meta-analysis. Menopause 2019, 26, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
- Nie, G.; Yang, X.; Wang, Y.; Liang, W.; Li, X.; Luo, Q.; Yang, H.; Liu, J.; Wang, J.; Guo, Q.; et al. The Effects of Menopause Hormone Therapy on Lipid Profile in Postmenopausal Women: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2022, 13, 850815. [Google Scholar] [CrossRef] [PubMed]
- Palmisano, B.T.; Le, T.D.; Zhu, L.; Lee, Y.K.; Stafford, J.M. Cholesteryl ester transfer protein alters liver and plasma triglyceride metabolism through two liver networks in female mice. J. Lipid Res. 2016, 57, 1541–1551. [Google Scholar] [CrossRef] [PubMed]
- Michalakis, K.; Mintziori, G.; Kaprara, A.; Tarlatzis, B.C.; Goulis, D.G. The complex interaction between obesity, metabolic syndrome and reproductive axis: A narrative review. Metabolism 2013, 62, 457–478. [Google Scholar] [CrossRef] [PubMed]
- Donahoo, W.T.; Stob, N.R.; Ammon, S.; Levin, N.; Eckel, R.H. Leptin increases skeletal muscle lipoprotein lipase and postprandial lipid metabolism in mice. Metabolism 2011, 60, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Isidori, A.M.; Caprio, M.; Strollo, F.; Moretti, C.; Frajese, G.; Isidori, A.; Fabbri, A. Leptin and androgens in male obesity: Evidence for leptin contribution to reduced androgen levels. J. Clin. Endocrinol. Metab. 1999, 84, 3673–3680. [Google Scholar] [CrossRef] [PubMed]
- Khodamoradi, K.; Khosravizadeh, Z.; Seetharam, D.; Mallepalli, S.; Farber, N.; Arora, H. The role of leptin and low testosterone in obesity. Int. J. Impot. Res. 2022, 34, 704–713. [Google Scholar] [CrossRef] [PubMed]
- Anagnostis, P.; Galanis, P.; Chatzistergiou, V.; Stevenson, J.C.; Godsland, I.F.; Lambrinoudaki, I.; Theodorou, M.; Goulis, D.G. The effect of hormone replacement therapy and tibolone on lipoprotein (a) concentrations in postmenopausal women: A systematic review and meta-analysis. Maturitas 2017, 99, 27–36. [Google Scholar] [CrossRef]
- Alomar, S.A.; Găman, M.A.; Prabahar, K.; Arafah, O.A.; Almarshood, F.; Baradwan, S.; Aboudi, S.A.S.; Abuzaid, M.; Almubarki, A.; Alomar, O.; et al. The effect of tamoxifen on the lipid profile in women: A systematic review and meta-analysis of randomized controlled trials. Exp. Gerontol. 2022, 159, 111680. [Google Scholar] [CrossRef]
- Pang, Q.; Jia, A.; Al Masri, M.K.; Varkaneh, H.K.; Abu-Zaid, A.; Gao, X. The effect of androstenedione supplementation on testosterone, estradiol, body composition, and lipid profile: A systematic review and meta-analysis of randomized controlled trials. Hormones 2022, 21, 545–554. [Google Scholar] [CrossRef]
- Corona, G.; Giagulli, V.A.; Maseroli, E.; Vignozzi, L.; Aversa, A.; Zitzmann, M.; Saad, F.; Mannucci, E.; Maggi, M. Testosterone supplementation and body composition: Results from a meta-analysis of observational studies. J. Endocrinol. Investig. 2016, 39, 967–981. [Google Scholar] [CrossRef] [PubMed]
- Francomano, D.; Lenzi, A.; Aversa, A. Effects of five-year treatment with testosterone undecanoate on metabolic and hormonal parameters in ageing men with metabolic syndrome. Int. J. Endocrinol. 2014, 2014, 527470. [Google Scholar] [CrossRef] [PubMed]
- De Paoli, M.; Zakharia, A.; Werstuck, G.H. The Role of Estrogen in Insulin Resistance: A Review of Clinical and Preclinical Data. Am. J. Pathol. 2021, 191, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Salpeter, S.R.; Walsh, J.M.; Ormiston, T.M.; Greyber, E.; Buckley, N.S.; Salpeter, E.E. Meta-analysis: Effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes. Metab. 2006, 8, 538–554. [Google Scholar] [CrossRef] [PubMed]
- Thörne, A.; Lönnqvist, F.; Apelman, J.; Hellers, G.; Arner, P. A pilot study of long-term effects of a novel obesity treatment: Omentectomy in connection with adjustable gastric banding. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Dakin, R.S.; Walker, B.R.; Seckl, J.R.; Hadoke, P.W.; Drake, A.J. Estrogens protect male mice from obesity complications and influence glucocorticoid metabolism. Int. J. Obes. 2015, 39, 1539–1547. [Google Scholar] [CrossRef]
- Derweesh, I.H.; Diblasio, C.J.; Kincade, M.C.; Malcolm, J.B.; Lamar, K.D.; Patterson, A.L.; Kitabchi, A.E.; Wake, R.W. Risk of new-onset diabetes mellitus and worsening glycaemic variables for established diabetes in men undergoing androgen-deprivation therapy for prostate cancer. BJU Int. 2007, 100, 1060–1065. [Google Scholar] [CrossRef] [PubMed]
- Naharci, M.I.; Pinar, M.; Bolu, E.; Olgun, A. Effect of testosterone on insulin sensitivity in men with idiopathic hypogonadotropic hypogonadism. Endocr. Pract. 2007, 13, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Hotamisligil, G.S.; Spiegelman, B.M. Tumor necrosis factor alpha: A key component of the obesity-diabetes link. Diabetes 1994, 43, 1271–1278. [Google Scholar] [CrossRef]
- Uysal, K.T.; Wiesbrock, S.M.; Hotamisligil, G.S. Functional analysis of tumor necrosis factor (TNF) receptors in TNF-alpha-mediated insulin resistance in genetic obesity. Endocrinology 1998, 139, 4832–4838. [Google Scholar] [CrossRef]
- Jacks, R.D.; Lumeng, C.N. Macrophage and T cell networks in adipose tissue. Nat. Rev. Endocrinol. 2024, 20, 50–61. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef]
- Shoelson, S.E.; Herrero, L.; Naaz, A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007, 132, 2169–2180. [Google Scholar] [CrossRef]
- Fried, S.K.; Bunkin, D.A.; Greenberg, A.S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: Depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 1998, 83, 847–850. [Google Scholar] [CrossRef]
- Vegeto, E.; Belcredito, S.; Etteri, S.; Ghisletti, S.; Brusadelli, A.; Meda, C.; Krust, A.; Dupont, S.; Ciana, P.; Chambon, P.; et al. Estrogen receptor-alpha mediates the brain antiinflammatory activity of estradiol. Proc. Natl. Acad. Sci. USA 2003, 100, 9614–9619. [Google Scholar] [CrossRef]
- Decensi, A.; Omodei, U.; Robertson, C.; Bonanni, B.; Guerrieri-Gonzaga, A.; Ramazzotto, F.; Johansson, H.; Mora, S.; Sandri, M.T.; Cazzaniga, M.; et al. Effect of transdermal estradiol and oral conjugated estrogen on C-reactive protein in retinoid-placebo trial in healthy women. Circulation 2002, 106, 1224–1228. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Wilchesky, M.; Mumford, S.L.; Whitcomb, B.W.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Endogenous reproductive hormones and C-reactive protein across the menstrual cycle: The BioCycle Study. Am. J. Epidemiol. 2012, 175, 423–431. [Google Scholar] [CrossRef]
- Laaksonen, D.E.; Niskanen, L.; Punnonen, K.; Nyyssönen, K.; Tuomainen, T.P.; Salonen, R.; Rauramaa, R.; Salonen, J.T. Sex hormones, inflammation and the metabolic syndrome: A population-based study. Eur. J. Endocrinol. 2003, 149, 601–608. [Google Scholar] [CrossRef]
- Chang, E.; Varghese, M.; Singer, K. Gender and Sex Differences in Adipose Tissue. Curr. Diabetes Rep. 2018, 18, 69. [Google Scholar] [CrossRef]
- Tchernof, A.; Brochu, D.; Maltais-Payette, I.; Mansour, M.F.; Marchand, G.B.; Carreau, A.M.; Kapeluto, J. Androgens and the Regulation of Adiposity and Body Fat Distribution in Humans. Compr. Physiol. 2018, 8, 1253–1290. [Google Scholar] [CrossRef]
- Traish, A.M.; Zitzmann, M. The complex and multifactorial relationship between testosterone deficiency (TD), obesity and vascular disease. Rev. Endocr. Metab. Disord. 2015, 16, 249–268. [Google Scholar] [CrossRef]
- Jones, M.E.; Thorburn, A.W.; Britt, K.L.; Hewitt, K.N.; Wreford, N.G.; Proietto, J.; Oz, O.K.; Leury, B.J.; Robertson, K.M.; Yao, S.; et al. Aromatase-deficient (ArKO) mice have a phenotype of increased adiposity. Proc. Natl. Acad. Sci. USA 2000, 97, 12735–12740. [Google Scholar] [CrossRef]
- Bracht, J.R.; Vieira-Potter, V.J.; De Souza Santos, R.; Öz, O.K.; Palmer, B.F.; Clegg, D.J. The role of estrogens in the adipose tissue milieu. Ann. N. Y. Acad. Sci. 2020, 1461, 127–143. [Google Scholar] [CrossRef]
- Crandall, D.L.; Busler, D.E.; Novak, T.J.; Weber, R.V.; Kral, J.G. Identification of estrogen receptor beta RNA in human breast and abdominal subcutaneous adipose tissue. Biochem. Biophys. Res. Commun. 1998, 248, 523–526. [Google Scholar] [CrossRef]
- Yu, I.C.; Lin, H.Y.; Liu, N.C.; Wang, R.S.; Sparks, J.D.; Yeh, S.; Chang, C. Hyperleptinemia without obesity in male mice lacking androgen receptor in adipose tissue. Endocrinology 2008, 149, 2361–2368. [Google Scholar] [CrossRef]
- Brown, L.M.; Clegg, D.J. Central effects of estradiol in the regulation of food intake, body weight, and adiposity. J. Steroid Biochem. Mol. Biol. 2010, 122, 65–73. [Google Scholar] [CrossRef]
- Heine, P.A.; Taylor, J.A.; Iwamoto, G.A.; Lubahn, D.B.; Cooke, P.S. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc. Natl. Acad. Sci. USA 2000, 97, 12729–12734. [Google Scholar] [CrossRef]
- Haarbo, J.; Marslew, U.; Gotfredsen, A.; Christiansen, C. Postmenopausal hormone replacement therapy prevents central distribution of body fat after menopause. Metabolism 1991, 40, 1323–1326. [Google Scholar] [CrossRef]
- U.S. NLoM. Metabolic Consequences of Cross-sex Hormonal Treatment in Transgender Persons. Available online: https://clinicaltrials.gov/study/NCT04508231 (accessed on 11 August 2020).
- U.S. NLoM. Gender-Affirming Hormone Therapy and Its Impact on Myocardial Mass and Cardiac Function, Heart, Liver and Pancreatic Fat Content. Available online: https://clinicaltrials.gov/study/NCT06291675 (accessed on 4 March 2024).
- U.S NLoM. Effects of Cross-sex Hormone Treatment on Cardiac Function, Myocardial and Hepatic Fat Content. Available online: https://clinicaltrials.gov/study/NCT06245681 (accessed on 7 February 2024).
- U.S. NLoM. Effect of Gender Affirming Hormone Therapy on Glucose Metabolism. Available online: https://clinicaltrials.gov/study/NCT04515472 (accessed on 9 July 2024).
- U.S. NLoM. Effects of Gender-Affirming Hormone Therapy Among Transgender Women. Available online: https://clinicaltrials.gov/study/NCT04128488 (accessed on 16 February 2024).
- U.S. NLoM. Effects of Cross-sex Hormone Therapy on Eating Behavior, Metabolism, Energy Balance and Cardiovascular System (HHS). Available online: https://clinicaltrials.gov/study/NCT04838249 (accessed on 14 November 2023).
- U.S. NLoM. Sex Differences in Myocardial Steatosis Induced Left Ventricular Dysfunction. Available online: https://clinicaltrials.gov/study/NCT04671966 (accessed on 20 February 2024).
- U.S. NLoM. FEmale Metabolic Risk and Androgens: An Irish Longitudinal (Femail) Study (Femail). Available online: https://clinicaltrials.gov/study/NCT04912648 (accessed on 2 May 2024).
- Ferdinand, K.C.; Rodriguez, F.; Nasser, S.A.; Caballero, A.E.; Puckrein, G.A.; Zangeneh, F.; Mansour, M.; Foody, J.M.; Pemu, P.E.; Ofili, E.O. Cardiorenal metabolic syndrome and cardiometabolic risks in minority populations. Cardiorenal Med. 2014, 4, 1–11. [Google Scholar] [CrossRef]
- Ussher, J.R.; Drucker, D.J. Glucagon-like peptide 1 receptor agonists: Cardiovascular benefits and mechanisms of action. Nat. Rev. Cardiol. 2023, 20, 463–474. [Google Scholar] [CrossRef]
- Zelniker, T.A.; Braunwald, E. Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 75, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Kazory, A.; McCullough, P.A.; Rangaswami, J.; Ronco, C. Cardionephrology: Proposal for a Futuristic Educational Approach to a Contemporary Need. Cardiorenal Med. 2018, 8, 296–301. [Google Scholar] [CrossRef] [PubMed]
Knowns | Unknowns | Future Research Recommendations | |
---|---|---|---|
Renal health |
|
|
|
Cardiac health |
|
|
|
Vascular health |
|
|
|
Obesity |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guldan, M.; Unlu, S.; Abdel-Rahman, S.M.; Ozbek, L.; Gaipov, A.; Covic, A.; Soler, M.J.; Covic, A.; Kanbay, M. Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches. J. Clin. Med. 2024, 13, 4354. https://doi.org/10.3390/jcm13154354
Guldan M, Unlu S, Abdel-Rahman SM, Ozbek L, Gaipov A, Covic A, Soler MJ, Covic A, Kanbay M. Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches. Journal of Clinical Medicine. 2024; 13(15):4354. https://doi.org/10.3390/jcm13154354
Chicago/Turabian StyleGuldan, Mustafa, Selen Unlu, Sama Mahmoud Abdel-Rahman, Laşin Ozbek, Abduzhappar Gaipov, Andreea Covic, Maria José Soler, Adrian Covic, and Mehmet Kanbay. 2024. "Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches" Journal of Clinical Medicine 13, no. 15: 4354. https://doi.org/10.3390/jcm13154354
APA StyleGuldan, M., Unlu, S., Abdel-Rahman, S. M., Ozbek, L., Gaipov, A., Covic, A., Soler, M. J., Covic, A., & Kanbay, M. (2024). Understanding the Role of Sex Hormones in Cardiovascular Kidney Metabolic Syndrome: Toward Personalized Therapeutic Approaches. Journal of Clinical Medicine, 13(15), 4354. https://doi.org/10.3390/jcm13154354