Intraocular Lens Power Calculation Formulas in Children—A Systematic Review
Abstract
:1. Introduction
2. Methods
Ethics
3. Results
3.1. Formulas Description
- 1.
- The Holladay 1 formula
- A constant—lens-specific constant
- R—desired post-operative refraction
- 2.
- The SRK/T formula
- 3.
- The Hoffer Q formula
- r—corneal radius
- 4.
- The Holladay 2 formula
- 5.
- The Haigis formula
- 6.
- The Olsen formula
- 7.
- The T2 formula
- 8.
- The Barrett Universal II formula
- 9.
- The Ladas Super Formula AI
- 10.
- The Hill−Radial Basis Function (RBF) formula
- 11.
- The Kane formula
- 12.
- The Emmetropia Verifying Optical (EVO) formula
3.2. Accuracy of IOL Calculation Formulas in Children
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Solebo, A.; Teoh, L.; Rahi, J. Epidemiology of blindness in children. Arch. Dis. Child. 2017, 102, 853–857. [Google Scholar] [CrossRef] [PubMed]
- Stopyra, W. Analysis of accuracy of twelve intraocular lens power calculation formulas for eyes with axial myopia. Taiwan J. Ophthalmol. 2022, 13, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Nemeth, G.; Modis, L., Jr. Accuracy of the Hill–radial basis function method and the Barrett Universal II formula. Eur. J. Ophthalmol. 2021, 31, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Stopyra, W. Analysis of accuracy of twelve intraocular lens power calculation formulas for eyes with axial hy-peropia. Saudi J Ophthalmol. 2023, 37, 125–130. [Google Scholar] [PubMed]
- Nihalani, B.R.; VanderVeen, D.K. Benchmarks for outcome indicators in pediatric cataract surgery. Eye 2017, 31, 417–421. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.B.; Ben Zion, I.; Neely, D.E.; Plager, D.A.; Ofner, S.; Sprunger, D.T.; Roberts, G.J. Accuracy of biometry in pediatric cataract extraction with primary intraocular lens implantation. J. Cataract. Refract. Surg. 2008, 34, 1940–1947. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Li, D.; Fan, Z.; Zhang, J.; Zhou, J.; Huang, Y. Accuracy of Intraocular Lens Power Calculation Formulas in Patients with Multifocal Intraocular Lens Implantation With Optic Capture in Berger Space for Pediatric Cataract. J. Pediatr. Ophthalmol. Strabismus 2023, 60, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Shmueli, O.; Azem, N.; Navarrete, A.; Matanis-Suidan, M.; David, R.; Mechoulam, H.; Anteby, I. Refractive predictive errors using Barrett II, Hoffer-Q, and SRKT formulae for pediatric IOL implantation. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 2309–2320. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Yu, Y.; Li, J.; Lu, B.; Li, S.; Zhu, Y. Accuracy of Intraocular Lens Power Calculation Formulas in Pediatric Cataract Patients: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 710492. [Google Scholar] [CrossRef]
- Touzé, R.; Dureau, P.; Edelson, C.; Borella, Y.; Barjol, A.; Meux, P.d.L.d.; Caputo, G. Congenital cataract surgery: Long-term refractive outcomes of a new intraocular lens power correction formula. Acta Ophthalmol. 2022, 100, e1641–e1645. [Google Scholar] [CrossRef] [PubMed]
- Dupessey, F.; Dalmas, F.; Aziz, A.; Denis, D.; Beylerian, M. A new strategy to calculate the intraocular lens power in congenital cataracts according to age and axial length at implantation. Acta Ophthalmol. 2023, 102, 15805. [Google Scholar] [CrossRef] [PubMed]
- Dahan, E.; Drusedau, M.U. Choice of lens and dioptric power in pediatric pseudophakia. J. Cataract. Refract. Surg. 1997, 23 (Suppl. 1), 618–623. [Google Scholar] [CrossRef] [PubMed]
- Enyedi, L.B.; Peterseim, M.W.; Freedman, S.F.; Buckley, E.G. Refractive changes after pediatric intraocular lens implantation. Am. J. Ophthalmol. 1988, 126, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Plager, D.A.; Kipfer, H.; Sprunger, D.T.; Sondhi, N.; Neely, D.E. Refractive change in pediatric pseudophakia: 6-year follow-up. J. Cataract. Refract. Surg. 2002, 28, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, R.H.; Barnwell, E.; Wolf, B.; Wilson, M.E. A Model to Predict Postoperative Axial Length in Children Undergoing Bilateral Cataract Surgery with Primary Intraocular Lens Implantation. Am. J. Ophthalmol. 2019, 206, 228–234. [Google Scholar] [CrossRef] [PubMed]
- VanderVeen, D.K.; Drews-Botsch, C.D.; Nizam, A.; Bothun, E.D.; Wilson, L.B.; Wilson, M.E.; Lambert, S.R. Outcomes of secondary intraocular lens implantation in the Infant Aphakia Treatment Study. J. Cataract. Refract. Surg. 2021, 47, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Elbaz, U.; Khalili, S.; Sella, R.; Reitblat, O.; Vega, Y.; Achiron, A.; Tuuminen, R.; Ali, A.; Mireskandari, K. Comparison of the Barrett Universal II formula to previous generation formulae for paediatric cataract surgery. Acta Ophthalmol. 2022, 100, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Z.; Wang, R.; Cheng, H.; Zhao, J.; Liu, L.; Chen, W.; Wu, M.; Liu, Y. Accuracy of intraocular lens power calculations in paediatric eyes. Clin. Exp. Ophthalmol. 2020, 48, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.; Lin, L.; Li, Z.; Wang, L.; Huang, J.; Zhao, Y.-E. Accuracy of 8 intraocular lens power calculation formulas in pediatric cataract patients. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 1123–1131. [Google Scholar] [CrossRef] [PubMed]
- Reitblat, O.; Khalili, S.; Ali, A.; Mireskandari, K.; Vega, Y.; Tuuminen, R.; Elbaz, U.; Sella, R. Evaluation of IOL power calculation with the Kane formula for pediatric cataract surgery. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 2877–2885. [Google Scholar] [CrossRef]
- Rastogi, A.; Singiri, D.; Kumar, P.; Thakar, M.; Baindur, S.; Bhardwaj, A. Predictive Accuracy of the Hill-RBF 2.0 Formula in Pediatric Eyes: Comparison of 5 Intraocular Lens Formulas. J. Pediatr. Ophthalmol. Strabismus 2023, 60, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Ram, J.; Kaur, S.; Sukhija, J. Intraocular lens power calculation formula in congenital cataracts: Are we using the correct formula for pediatric eyes? Indian J. Ophthalmol. 2021, 69, 3442–3445. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Sun, Y.; Xiao, B.; Ainiwaer, M.; Ji, Y. A Bayesian network meta-analysis on comparisons of intraocular lens power calculation methods for paediatric cataract eyes. Eye 2023, 37, 3313–3321. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, K.J.; Savini, G. Update on Intraocular Lens Power Calculation Study Protocols: The Better Way to Design and Report Clinical Trials. Ophthalmology 2021, 128, e115–e120. [Google Scholar] [CrossRef] [PubMed]
- Cooke, D.L.; Cooke, T.L. Comparison of 9 intraocular lens power calculation formulas. J. Cataract. Refract. Surg. 2016, 42, 1157–1164. [Google Scholar] [CrossRef]
- Holladay, J.T.M.; Wilcox, R.R.P.D.; Koch, D.D.; Wang, L. Review and recommendations for univariate statistical analysis of spherical equivalent prediction error for IOL power calculations. J. Cataract. Refract. Surg. 2021, 47, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Holladay, J.T.M.; Wilcox, R.R.; Koch, D.D.; Wang, L. Statistics of prediction error for dependent and independent datasets. J. Cataract. Refract. Surg. 2023, 49, 440–442. [Google Scholar] [CrossRef]
- Mo, E.; Feng, K.; Li, Q.; Xu, J.; Cen, J.; Li, J.; Zhao, Y.-E. Efficacy of corneal curvature on the accuracy of 8 intraocular lens power calculation formulas in 302 highly myopic eyes. J. Cataract. Refract. Surg. 2023, 49, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- Stopyra, W.; Langenbucher, A.; Grzybowski, A. Intraocular lens power calculation formulas—A systematic review. Ophthalmol. Ther. 2023, 12, 2881–2902. [Google Scholar] [CrossRef]
- Retzlaff, J.A.; Sanders, D.R.; Kraff, M.C. Development of the SRK/T intraocular lens implant power calculation formula. J. Cataract. Refract. Surg. 1990, 16, 333–340. [Google Scholar] [CrossRef]
- Hoffer, K.J. The Hoffer Q formula: A comparison of theoretic and regression formulas. J. Cataract. Refract. Surg. 1993, 19, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Stopyra, W. Effectiveness, Sensitivity, and Specificity of Intraocular Lens Power Calculation Formulas for Short Eyes. Turk. J. Ophthalmol. 2022, 52, 201–207. [Google Scholar] [CrossRef]
- Stopyra, W. The Exactness of Intraocular Lens Power Calculation Formulas for Short Eyes and Correlation Between Method Accuracy and Eyeball Axial Length. Czech Slovak Ophthalmol. 2022, 78, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, K.J. Clinical results using the Holladay 2 intraocular lens power formula. J. Cataract. Refract. Surg. 2000, 26, 1233–1237. [Google Scholar] [CrossRef] [PubMed]
- Olsen, T.; Hoffmann, P. C constant: New concept for ray tracing–assisted intraocular lens power calculation. J. Cataract. Refract. Surg. 2014, 40, 764–773. [Google Scholar] [CrossRef] [PubMed]
- Sheard, R.M.; Smith, G.T.; Cooke, D.L. Improving the prediction accuracy of the SRK/T formula: The T2 formula. J. Cataract. Refract. Surg. 2010, 36, 1829–1834. [Google Scholar] [CrossRef] [PubMed]
- Ladas, J.G.; Siddiqui, A.A.; Devgan, U.; Jun, A.S. A 3-D “Super Surface” Combining Modern Intraocular Lens Formulas to Generate a “Super Formula” and Maximize Accuracy. JAMA Ophthalmol. 2015, 133, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Stopyra, W. Comparison of the accuracy of six intraocular lens power calculation formulas for eyes of axial length exceeding 25.0 mm. J. Francais. D Ophtalmol. 2021, 44, 1332–1339. [Google Scholar] [CrossRef] [PubMed]
- Ladas, J.G.; Lin, S.R. Artificial Intelligence in Calculating IOL Power. In Artificial Intelligence in Ophthalmology; Grzybowski, A., Ed.; Springer Nature: Cham, Switzerland, 2021; pp. 257–262. ISBN 978-3-030-78601-4. [Google Scholar]
- Stopyra, W.; Cooke, D.L.; Grzybowski, A. A Review of Intraocular Lens Power Calculation Formulas Based on Artificial Intelligence. J. Clin. Med. 2024, 13, 498. [Google Scholar] [CrossRef]
- Connell, B.J.; Kane, J.X. Comparison of the Kane formula with existing formulas for intraocular lens power selection. BMJ Open Ophthalmol. 2019, 4, e000251. [Google Scholar] [CrossRef] [PubMed]
- An-Nakhli, F.R. Accuracy of new and standard intraocular lens power calculations formulae in Saudi pediatric patients. Taiwan J. Ophthalmol. 2019, 9, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Kou, J.; Chang, P.; Lin, L.; Li, Z.; Fu, Y.; Zhao, Y.-E. Comparison of the Accuracy of IOL Power Calculation Formulas for Pediatric Eyes in Children of Different Ages. J. Ophthalmol. 2020, 2020, 8709375. [Google Scholar] [CrossRef] [PubMed]
- Shuaib, A.M.; Elhusseiny, A.M.; Hassanein, D.H.; Zedan, R.H.; Elhilali, H.M. Predictive Value of Intraocular Lens Power Calculation Formulae in Children. Clin. Ophthalmol. 2021, 15, 2527–2536. [Google Scholar] [CrossRef] [PubMed]
- Eppley, S.E.; Arnold, B.F.; Tadros, D.; Pasricha, N.; Campomanes, A.G.d.A. Accuracy of a universal theoretical formula for power calculation in pediatric intraocular lens implantation. J. Cataract. Refract. Surg. 2021, 47, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.; Jaisingh, K.; Suresh, P.; Anand, K.; Baindur, S.; Gaonker, T. Comparative Evaluation of Intraocular Lens Power Calculation Formulas in Children. Cureus 2022, 14, e24991. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, I.E.; Kimyon, S.; Mete, A. Challenges in pediatric cataract surgery: Comparison of intraocular lens power calculation formulas using optical biometry. Int. Ophthalmol. 2022, 42, 3071–3077. [Google Scholar] [CrossRef]
- Lin, L.; Fang, J.; Sun, W.; Gu, S.; Xu, L.; Chen, S.; Chang, P.; Zhao, Y.-E. Accuracy of newer generation intraocular lens power calculation formulas in pediatric cataract patients. Graefe’s Arch. Clin. Exp. Ophthalmol. 2023, 261, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Hoffer, K.J.; Aramberri, J.; Haigis, W.; Olsen, T.; Savini, G.; Shammas, H.J.; Bentow, S. Protocols for studies of intraocular lens formula accuracy. Am. J. Ophthalmol. 2015, 160, 403–405.e1. [Google Scholar] [CrossRef] [PubMed]
Study | Holl 1 | SRK/T | Hoff Q | Holl 2 | Haigis | Olsen | T 2 | Barr Uni | Ladas | Hill RBF | Kane | EVO | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Raja an Nakhli 2019 (44 eyes) [42] | MAE | 1.43 | 1.43 | 1.48 | 1.52 | 2.23 | 1.58 | 1.49 | |||||
±0.5 D [%] | 25.0 | 15.9 | 22.7 | 15.9 | 6.8 | 11.4 | 13.6 | ||||||
±1.0 D [%] | 36.4 | 38.6 | 36.4 | 31.8 | 15.9 | 31.8 | 38.6 | ||||||
Li 2020 (377 eyes) [18] | MAE | 0.94 | 1.02 | 0.92 | 1.0 | 0.94 | |||||||
±0.5 D [%] | 37.0 | 36.0 | 38.0 | 37.5 | 36.5 | ||||||||
±1.0 D [%] | 65.0 | 60.0 | 66.0 | 60.0 | 62.5 | ||||||||
Chang 2020 (68 eyes) [19] | MAE | 1.00 | 0.93 | 1.01 | 1.23 | 1.11 | 1.19 | 0.95 | |||||
±0.5 D [%] | 28.0 | 38.2 | 29.4 | 23.6 | 38.2 | 26.5 | 36.8 | ||||||
±1.0 D [%] | 57.4 | 66.2 | 61.8 | 51.5 | 58.8 | 54.4 | 66.2 | ||||||
Kou 2020 (102 eyes) [43] | MAE | 1.51 | 1.02 | 1.03 | 1.71 | 0.87 | |||||||
±0.5 D [%] | 18.4 | 26.3 | 23.7 | 18.4 | 34.2 | ||||||||
±1.0 D [%] | 42.1 | 50.0 | 57.9 | 36.8 | 60.5 | ||||||||
Shuaib 2021 (308 eyes) [44] | MAE | 1.58 | 1.42 | 1.70 | |||||||||
±0.5 D [%] | 35.0 | 37.0 | 32.5 | ||||||||||
±1.0 D [%] | 55.0 | 56.5 | 53.0 | ||||||||||
Eppley 2021 (64 eyes) [45] | MAE | 0.86 | 0.88 | 0.81 | 0.79 | ||||||||
±0.5 D [%] | 32.0 | 34.0 | 34.0 | 36.0 | |||||||||
±1.0 D [%] | 45.0 | 40.5 | 45.0 | 48.0 | |||||||||
Rastogi 2022 (60 eyes) [46] | MAE | 0.70 | 0.80 | 0.71 | 0.64 | ||||||||
±0.5 D [%] | 50.0 | 46.7 | 46.7 | 56.7 | |||||||||
±1.0 D [%] | 80.0 | 73.3 | 83.1 | 80.0 | |||||||||
Reitblat 2022 (62 eyes) [20] | MAE | 0.79 | 0.84 | 0.71 | 0.87 | 0.72 | 0.82 | ||||||
±0.5 D [%] | 44.4 | 29.6 | 51.9 | 51.9 | 55.6 | 44.4 | |||||||
±1.0 D [%] | 70.4 | 70.4 | 74.1 | 70.4 | 74.1 | 70.4 | |||||||
Elbaz 2022 (66 eyes) [17] | MAE | 0.92 | 0.95 | 0.87 | 0.96 | 0.89 | |||||||
±0.5 D [%] | 42.4 | 31.8 | 51.5 | 47.0 | 51.5 | ||||||||
±1.0 D [%] | 71.2 | 68.2 | 69.7 | 66.7 | 69.7 | ||||||||
Yilmaz 2022 (70 eyes) [47] | MAE | 0.65 | 0.67 | 0.67 | 1.06 | 0.64 | |||||||
±0.5 D [%] | 52.9 | 47.1 | 52.9 | 30.0 | 61.4 | ||||||||
±1.0 D [%] | 78.6 | 78.6 | 81.4 | 57.1 | 82.9 | ||||||||
Lin 2023 (110 eyes) [48] | MAE | 0.95 | 1.16 | 0.87 | 0.88 | 0.85 | |||||||
±0.5 D [%] | |||||||||||||
±1.0 D [%] | 61.8 | 55.5 | 68.2 | 64.6 | 68.2 | ||||||||
Wang 2023 (101 eyes) [7] | MAE | 0.47 | 0.52 | 0.49 | 0.54 | 0.67 | 0.52 | ||||||
±0.5 D [%] | 62.4 | 58.4 | 62.4 | 62.4 | 50.5 | 59.4 | |||||||
±1.0 D [%] | 90.0 | 90.0 | 84.2 | 85.1 | 75.2 | 88.1 | |||||||
Rastogi 2023 (99 eyes) [21] | MAE | 1.28 | 1.25 | 1.25 | 1.24 | 1.08 | |||||||
±0.5 D [%] | 16.6 | 13.3 | 23.3 | 30.0 | 43.3 | ||||||||
±1.0 D [%] | 49.9 | 59.9 | 46.6 | 66.6 | 73.3 | ||||||||
Shmueli 2024 (151 eyes) [8] | MAE | 1.53 | 1.07 | 1.10 | |||||||||
±0.5 D [%] | 10.0 | 35.0 | 34.0 | ||||||||||
±1.0 D [%] | 35.0 | 58.0 | 66.0 |
Study | Age (y) | IOL Power (D) | AL (mm) | Km (D) | ACD (mm) | LT (mm) | CCT (μm) | WTW (mm) | |
---|---|---|---|---|---|---|---|---|---|
Raja an Nakhli [42] | Mean | 21.16 | 21.87 | 44.47 | 3.57 | 3.73 | |||
SD | 3.79 | 1.47 | 2.67 | 1.47 | 0.89 | ||||
Median | 2.85 | 21.50 | 21.68 | 44.16 | 3.64 | 3.67 | |||
Min | 2.04 | 13.50 | 17.99 | 40.50 | 2.22 | 2.58 | |||
Max | 6.14 | 30.00 | 24.13 | 53.50 | 4.45 | 5.45 | |||
Li [18] | Mean | 4.60 | 22.56 | 22.48 | 43.95 | ||||
SD | 2.33 | 5.04 | 1.91 | 2.01 | |||||
Median | |||||||||
Min | 0.75 | 4.0 | 17.85 | 37.75 | |||||
Max | 12.5 | 34.0 | 31.46 | 53.63 | |||||
Chang [19] | Mean | 1.94 | 25.36 | 20.15 | 43.88 | 2.99 | 3.78 | 543.2 | 10.47 |
SD | 1.35 | 2.74 | 0.74 | 2.72 | 0.49 | 0.48 | 50.25 | 0.67 | |
Median | |||||||||
Min | |||||||||
Max | |||||||||
Kou [43] | Mean | 3.36 | 22.87 | 21.96 | 43.96 | 3.05 | 10.85 | ||
SD | |||||||||
Median | |||||||||
Min | 2.0 | 12.0 | 19.44 | 41.23 | 2.26 | 9.80 | |||
Max | 4.5 | 28.0 | 25.85 | 49.81 | 3.73 | 12.40 | |||
Shuaib [44] | Mean | 4.74 | 22.01 | 43.42 | |||||
SD | 3.19 | 1.93 | 3.57 | ||||||
Median | |||||||||
Min | 0.8 | 17.45 | 37.25 | ||||||
Max | 14.0 | 30.00 | 57.56 | ||||||
Eppley [45] | Mean | 5.90 | 20.86 | 22.55 | 44.43 | 3.43 | 4.08 | 555.65 | 11.68 |
SD | 3.56 | 6.13 | 1.62 | 2.07 | 0.51 | 0.89 | 49.77 | 0.77 | |
Median | 5.37 | 21.00 | 22.23 | 44.35 | 3.41 | 3.72 | 557.50 | 11.78 | |
Min | 1.46 | 7.00 | 19.64 | 39.39 | 2.27 | 3.00 | 468.00 | 10.00 | |
Max | 15.45 | 33.00 | 26.30 | 48.75 | 4.40 | 6.49 | 672.00 | 14.00 | |
Rastogi [46] | Mean | 8.53 | 22.75 | 44.34 | |||||
SD | 3.43 | 1.39 | 1.82 | ||||||
Median | |||||||||
Min | 5 | 20.64 | 39.12 | ||||||
Max | 16 | 25.69 | 47.62 | ||||||
Reitblat [20] | Mean | 6.2 | 23.2 | 22.43 | 43.83 | 3.58 | |||
SD | 5.1 | 1.66 | 2.06 | 0.44 | |||||
Median | 5.98 | 39.0 | 3.41 | 12.0 | |||||
Min | 0.9 | 12.0 | 19.45 | 40.09 | 2.35 | 1.71 | 10.5 | ||
Max | 17.5 | 27.81 | 49.12 | 4.48 | 6.52 | 13.5 | |||
Elbaz [17] | Mean | 23.3 | 22.3 | 43.9 | 3.6 | ||||
SD | 5.1 | 1.6 | 2.3 | 0.4 | |||||
Median | 6.2 | 3.4 | 12.0 | ||||||
Min | 0.9 | 12.0 | 19.5 | 40.5 | 2.4 | 1.7 | 10.5 | ||
Max | 17.5 | 39.0 | 27.8 | 50.3 | 4.5 | 6.5 | 13.1 | ||
Yilmaz [47] | Mean | 7.9 | 25.8 | 22.27 | 43.74 | 3.76 | 571.5 | ||
SD | 3.6 | 3.5 | 1.19 | 1.98 | 0.41 | 33.6 | |||
Median | |||||||||
Min | 3.0 | 18 | 19.78 | 39.25 | 2.6 | 500 | |||
Max | 15.0 | 34 | 25.94 | 49.54 | 4.74 | 644 | |||
Lin [48] | Mean | 3.1 | |||||||
SD | 1.9 | ||||||||
Median | |||||||||
Min | |||||||||
Max | |||||||||
Wang [7] | Mean | 5.99 | 23.35 | 22.58 | 44.01 | 3.26 | |||
SD | 3.15 | 5.02 | 1.48 | 2.12 | 0.43 | ||||
Median | |||||||||
Min | 3 | 9.0 | 19.79 | 40.40 | 1.88 | ||||
Max | 14 | 33.5 | 28.26 | 50.31 | 3.97 | ||||
Rastogi [21] | Mean | 6.5 | |||||||
SD | |||||||||
Median | |||||||||
Min | 4 | ||||||||
Max | 18 | ||||||||
Shmueli [8] | Mean | 6.27 | 21.8 | 44.1 | |||||
SD | 4.03 | 1.2 | 2.0 | ||||||
Median | 6.17 | 21.6 | 44.7 | ||||||
Min | 0.83 | 19.5 | 39.7 | ||||||
Max | 16.25 | 25.9 | 48.3 |
Study | Bias | ||||
---|---|---|---|---|---|
Selection | Performance | Detection | Attrition | Reporting | |
Raja an Nakhli [42] | ++ | ― | ― | ― | ?? |
Li [18] | ― | ― | ― | ― | ― |
Chang [19] | ― | ― | ― | ― | ?? |
Kou [43] | ++ | ― | ― | ― | ++ |
Shuaib [44] | ― | ― | ++ | ― | ― |
Eppley [45] | ― | ― | ?? | ― | ― |
Rastogi [46] | ++ | ― | ― | ― | ― |
Reitblat [20] | ― | ― | ?? | ― | ― |
Elbaz [17] | ― | ― | ++ | ― | ?? |
Yilmaz [47] | ― | ++ | ?? | ― | ― |
Lin [48] | ++ | ― | ― | ?? | ― |
Wang [7] | ++ | ― | ― | ― | ++ |
Rastogi [21] | ++ | ?? | ― | ― | ― |
Shmueli [8] | ++ | ― | ― | ― | ?? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stopyra, W.; Grzybowski, A. Intraocular Lens Power Calculation Formulas in Children—A Systematic Review. J. Clin. Med. 2024, 13, 4400. https://doi.org/10.3390/jcm13154400
Stopyra W, Grzybowski A. Intraocular Lens Power Calculation Formulas in Children—A Systematic Review. Journal of Clinical Medicine. 2024; 13(15):4400. https://doi.org/10.3390/jcm13154400
Chicago/Turabian StyleStopyra, Wiktor, and Andrzej Grzybowski. 2024. "Intraocular Lens Power Calculation Formulas in Children—A Systematic Review" Journal of Clinical Medicine 13, no. 15: 4400. https://doi.org/10.3390/jcm13154400
APA StyleStopyra, W., & Grzybowski, A. (2024). Intraocular Lens Power Calculation Formulas in Children—A Systematic Review. Journal of Clinical Medicine, 13(15), 4400. https://doi.org/10.3390/jcm13154400