Impact of Idiopathic Scoliosis on the Cardiopulmonary Capacity of Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Test Protocols
2.3. Anthropometric Measurements
2.4. CPET
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, J.C.; Castelein, R.M.; Chu, W.C.; Danielsson, A.J.; Dobbs, M.B.; Grivas, T.B.; Gurnett, C.A.; Luk, K.D.; Moreau, A.; Newton, P.O.; et al. Adolescent idiopathic scoliosis. Nat. Rev. Dis. Primers 2015, 1, 15030. [Google Scholar] [CrossRef]
- Weinstein, S.L.; Dolan, L.A.; Spratt, K.F.; Peterson, K.K.; Spoonamore, M.J.; Ponseti, I.V. Health and function of patients with untreated idiopathic scoliosis: A 50-year natural history study. JAMA 2003, 289, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Kempen, D.H.; Heemskerk, J.L.; Kaçmaz, G.; Altena, M.C.; Reesink, H.J.; Vanhommerig, J.W.; Willigenburg, N.W. Pulmonary function in children and adolescents with untreated idiopathic scoliosis: A systematic review with meta-regression analysis. Spine J. 2022, 22, 1178–1190. [Google Scholar] [CrossRef] [PubMed]
- Newton, P.O.; Faro, F.D.; Gollogly, S.; Betz, R.R.; Lenke, L.G.; Lowe, T.G. Results of preoperative pulmonary function testing of adolescents with idiopathic scoliosis. A study of six hundred and thirty-one patients. J. Bone Jt. Surg. Am. 2005, 87, 1937–1946. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Wang, Y.; Qiu, G.; Shen, J.; Zhang, J.; Lao, L. The influence of preoperative brace treatment on the pulmonary function test in female adolescent idiopathic scoliosis. J. Spinal Disord. Tech. 2013, 26, E254–E258. [Google Scholar] [CrossRef] [PubMed]
- Johari, J.; Sharifudin, M.A.; Ab Rahman, A.; Omar, A.S.; Abdullah, A.T.; Nor, S.; Lam, W.C.; Yusof, M.I. Relationship between pulmonary function and degree of spinal deformity, location of apical vertebrae and age among adolescent idiopathic scoliosis patients. Singap. Med. J. 2016, 57, 33–38. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, F.; Wang, D.; Zhao, H.; Ma, Z.; Ma, P.; Hu, X.; Wang, S.; Kang, X.; Gao, B. Correlation analysis between the pulmonary function test and the radiological parameters of the main right thoracic curve in adolescent idiopathic scoliosis. J. Orthop. Surg. Res. 2019, 14, 443. [Google Scholar] [CrossRef]
- Shen, J.; Lin, Y.; Luo, J.; Xiao, Y. Cardiopulmonary exercise testing in patients with idiopathic scoliosis. J. Bone Jt. Surg. Am. 2016, 98, 1614–1622. [Google Scholar] [CrossRef]
- Barrios, C.; Pérez-Encinas, C.; Maruenda, J.I.; Laguía, M. Significant ventilatory functional restriction in adolescents with mild or moderate scoliosis during maximal exercise tolerance test. Spine 2005, 30, 1610–1615. [Google Scholar] [CrossRef]
- Nakashima, H.; Kawakami, N.; Matsumoto, H.; Redding, G.J. Preoperative 6-minute walk performance in children with congenital scoliosis. J. Pediatr. Orthop. 2020, 40, e818–e821. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Shen, J.; Chen, L.; Yuan, W.; Cong, H.; Luo, J.; Kwan, K.Y.H. Cardiopulmonary function in patients with congenital scoliosis: An observational study. J. Bone Jt. Surg. Am. 2019, 101, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.L.; Avanzi, O. Objective assessment of the cardiorespiratory function of adolescents with idiopathic scoliosis through the six-minute walk test. Spine 2009, 34, E926–E929. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, A.A.M.; Abd El Kafy, E.M.A.E.S.; Elayat, M.S.E.M.; Sabbahi, M.; Badghish, M.S.S. Changes in pulmonary function and functional capacity in adolescents with mild idiopathic scoliosis: Observational cohort study. J. Int. Med. Res. 2018, 46, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Jagger, F.; Tsirikos, A.I.; Blacklock, S.; Urquhart, D.S. Adaptation to reduced lung function in children and young people with spinal deformity. J. Clin. Orthop. Trauma 2020, 11, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.; King, J.; White, H.; Augsburger, S.; Milbrandt, T.; Iwinski, H. A cross-sectional study of chest kinematics and VO2 in children with adolescent idiopathic scoliosis during steady-state walking. Spine 2016, 41, 778–784. [Google Scholar] [CrossRef]
- Czaprowski, D.; Kotwicki, T.; Biernat, R.; Urniaż, J.; Ronikier, A. Physical capacity of girls with mild and moderate idiopathic scoliosis: Influence of the size, length and number of curvatures. Eur. Spine J. 2012, 21, 1099–1105. [Google Scholar] [CrossRef]
- Sperandio, E.F.; Alexandre, A.S.; Yi, L.C.; Poletto, P.R.; Gotfryd, A.O.; Vidotto, M.C.; Dourado, V.Z. Functional aerobic exercise capacity limitation in adolescent idiopathic scoliosis. Spine J. 2014, 14, 2366–2372. [Google Scholar] [CrossRef]
- Saraiva, B.M.A.; Araujo, G.S.; Sperandio, E.F.; Gotfryd, A.O.; Dourado, V.Z.; Vidotto, M.C. impact of scoliosis severity on functional capacity in patients with adolescent idiopathic scoliosis. Pediatr. Exerc. Sci. 2018, 30, 243–250. [Google Scholar] [CrossRef]
- Nowotny-Czupryna, O.; Kowalczyk, A.; Czupryna, K.; Nowotny, J. Health status of adults treated for 1st degree scoliosis at school age. Ortop. Traumatol. Rehabil. 2012, 14, 229–238. [Google Scholar] [CrossRef]
- Amăricăi, E.; Suciu, O.; Onofrei, R.R.; Miclăuș, R.S.; Iacob, R.E.; Caţan, L.; Popoiu, C.M.; Cerbu, S.; Boia, E. Respiratory function, functional capacity, and physical activity behaviours in children and adolescents with scoliosis. J. Int. Med. Res. 2020, 48, 300060519895093. [Google Scholar] [CrossRef]
- World Health Organization. Body Mass Index-for-Age (BMI-for-Age). Available online: https://www.who.int/toolkits/child-growth-standards/standards/body-mass-index-for-age-bmi-for-age (accessed on 22 May 2021).
- Berdishevsky, H.; Lebel, V.A.; Bettany-Saltikov, J.; Rigo, M.; Lebel, A.; Hennes, A.; Romano, M.; Białek, M.; M’hango, A.; Betts, T.; et al. Physiotherapy scoliosis-specific exercises—A comprehensive review of seven major schools. Scoliosis Spinal Disord. 2016, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Kułaga, Z.; Grajda, A.; Gurzkowska, B.; Góźdź, M.; Wojtyło, M.; Świąder, A.; Różdżyńska-Świątkowska, A.; Litwin, M. Polish 2012 growth references for preschool children. Eur. J. Pediatr. 2013, 172, 753–761. [Google Scholar] [CrossRef]
- Wołoszyn, F.; Mazur, A. Comprehensive use of cardiopulmonary exercise testing in pediatrics. Pediatr. Endocrinol. Diabetes Metab. 2021, 27, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, S.; Davies, C.T.; Wozniak, E.; Barnes, C.A. Cardio-respiratory response to exercise in normal children. Clin. Sci. 1971, 40, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, J.; Blais, S.; Chetaille, P.; Bisson, M.; Counil, F.P.; Huard-Girard, T.; Berbari, J.; Boulay, P.; Dallaire, F. New reference values for cardiopulmonary exercise testing in children. Med. Sci. Sports Exerc. 2018, 50, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Grzyb, A.; Domagalska-Szopa, M.; Siwiec, A.; Kwiecień-Czerwieniec, I.; Szopa, A. Cardiopulmonary capacity in overweight and obese children and adolescents: A cross-sectional study. Front. Physiol. 2021, 12, 671827. [Google Scholar] [CrossRef]
- Dilber, D.; Malčić, I.; Ćaleta, T.; Zovko, A. Reference values for cardiopulmonary exercise testing in children and adolescents in northwest Croatia. Paediatr. Croat. 2015, 59, 195–202. [Google Scholar] [CrossRef]
Parameters | Study Group (n = 92) | Control Group (n = 94) | t | p |
---|---|---|---|---|
Age, years, mean ± SD (range) | 13.30 ± 2.46 (10–17) | 13.26 ± 2.42 (10–17) | 0.68 | 0.74 |
Height, cm, mean ± SD (range) | 156 ± 15.55 (131–182) | 159.05 ± 12.16 (135–185) | 0.87 | 0.31 |
Weight, kg, mean ± SD (range) | 45.61 ± 17.00 (32.7–95.0) | 47.49 ± 15.12 (33.7–95) | 0.62 | 0.77 |
Z BMI | 0.7 ± 1.3 (−1.8–2.0) | 1.2 ± 0.8 (−2.0–2.0) | −6.25 | <0.001 |
Girls N (%) | 63 (68.5%) | 64 (68.0%) | ||
Boys N (%) | 29 (31.5%) | 30 (32.0%) | ||
Cobb (p), mean ± SD (range) | 20.90 ± 11 (11–40) | |||
Cobb (s), mean ± SD (range) | 15.83 ± 8.87 (3–33) | |||
King–Moe classification | ||||
3 | 63 (68.5%) | |||
4 | 29 (31.5%) |
Parameter | Abbreviation | Definition |
---|---|---|
Peak workload [W] | Wpeak | Maximal work rate achieved |
Total test duration [min] | T | Total duration of the cardiopulmonary exercise testing. Longer duration of the cardiopulmonary exercise testing is associated with higher levels of exercise tolerance/aerobic capacity |
Time to reach VO2 max [min] | VO2max Time | Time to reach VO2 max |
Heartrate peak (beats/min) | HR | Maximal heart rate at peak exercise |
Metabolic and gas exchange parameters | ||
Absolute peak oxygen uptake [L/min] | VO2peak | VO2peak is the highest oxygen intake that was sustained for at least 30 s during cycling |
Normative values of peak oxygen uptake [%] | VO2 NORM | Normative reference values of absolute peak oxygen uptake |
Peak oxygen uptake per body mass [mL/min/kg] | VO2peak/kg | VO2peak/kg is a peak oxygen uptake per body weight calculated by dividing VO2peak by total body mass for at least 30 s during cycling |
Peak oxygen pulse (mL/beat−1) | Peak O2pulse | VO2 ÷ heart rate, highest recorded value averaged over 30 s during exercise |
Respiratory exchange ratio | RER | A ratio of the volume of CO2 being produced by the body to the amount of O2 being consumed |
Ventilation equivalent for oxygen [L/min] | VE/VO2 | The ventilation volume required for the consumption of 1 L of oxygen |
Ventilation equivalent for carbon dioxide VE/VO2 | VE/VCO2 | The ventilation volume required to remove 1 L of carbon dioxide |
Ventilation parameters | ||
Minute ventilation volume [L/min] | VE | The ventilation in liters per minute |
Tidal volume [L] | VT | The volume of gas inspired and expired during one respiratory cycle |
Breathing frequency [bpm] | BF | The number of breaths per minute when working at a maximum intensity. Anaerobic threshold and peak exercise in breaths per minute |
Breathing reserve [%] | BR | The difference between the maximal voluntary ventilation (MVV) and the maximum exercise ventilation (VE) in absolute terms, or this difference as a fraction of the MVV |
Parameters | Group | |||||
---|---|---|---|---|---|---|
Control | Study | Control | Study | |||
Mean ± SD | Range | Mean ± SD | Range | S–W; p | S–W; p | |
Wpeak [W] | 156.64 ± 93.03 | 91–198 | 178.23 ± 47.82 | 94–193 | 0.61; <0.001 | 0.72; <0.001 |
T [min] | 10.05 ± 4.44 | 7.27–14.58 | 10.93 ± 4.06 | 9.51–15.00 | 0.64; <0.001 | 0.82; <0.001 |
VO2 TIME [min] | 8.36 ± 5.99 | 8.24–14.57 | 8.53 ± 5.95 | 9.45–14.00 | 0.66;<0001 | 0.82; <0.001 |
HRpeak (beats/min) | 181.68 ± 18.04 | 112–210 | 178.41 ± 15.58 | 113–206 | 0.89; <0.001 | 0.91; <0.001 |
VO2peak [L/min]; | 1.51 ± 0.59 | 0.53–3.58 | 1.46 ± 0.43 | 0.74–3.40 | 0.87; <0.001 | 0.88; <0.001 |
VO2 %NOR | 66.99 ± 17.25 | 50.61–76 | 62.06 ± 21.04 | 40.53–99.00 | 0.93; <0.001 | 0.86; <0.001 |
VO2peak/kg [mL/kg/min] | 43.04 ± 8.34 | 21–52 | 33.59 ± 7.45 | 19–51 | 0.99; 0.671 | 0.97; 0.043 |
VO2/HR | 8.28 ± 2.93 | 4–19 | 8.13 ± 2.26 | 5–19 | 0.85; <0.001 | 0.85; <0.001 |
RER | 0.92 ± 0.08 | 0.83–1.10 | 0.97 ± 0.10 | 0.85–1.02 | 0.92; <0.001 | 0.83; <0.001 |
VE/VO2 [L/min] | 30.28 ± 4.49 | 20.60–42.30 | 30.61 ± 5.26 | 21–43 | 0.98; 0.252 | 0.97; 0.071 |
(VE/VCO2) [L/min] | 29.58 ± 3.50 | 21.80–35.10 | 29.20 ± 3.95 | 15.80–38.50 | 0.98; 0.157 | 0.97; 0.017 |
VE [L/min] | 53.12 ± 21.01 | 15.30–132.10 | 51.32 ± 16.10 | 21.90–103.00 | 0.89; <0.001 | 0.96; 0.005 |
VT [mL] | 1.14 ± 0.42 | 0.64–2.67 | 1.27 ± 0.33 | 0.67–2.60 | 0.87; <0.001 | 0.93; <0.001 |
BF [bpm] | 37.27 ± 10.86 | 19–55 | 40.92 ± 10.38 | 23–69 | 0.99; 0.567 | 0.96; 0.007 |
BR% | 43.63 ± 22.37 | 21–78 | 54.46 ± 17.74 | 50.50–82.00 | 0.86; <0.001 | 0.83; <0.001 |
Auth−Dependent Variables | Predictors | Unstandardized Coefficient | Standardized Coefficient | t−Value | p−Value | 95% CI for B | R2 | ||
---|---|---|---|---|---|---|---|---|---|
B | Std. Error | β | LL | UL | |||||
Wpeak | (Constant) | 72.67 | 68.89 | 1.05 | 0.293 | −63.25 | 208.59 | 0.23 ** | |
Age | 17.63 | 3.39 | 0.40 | 5.20 | <0.001 | 10.94 | 24.32 | ||
Sex | −63.64 | 17.32 | −0.24 | −3.67 | <0.001 | −97.81 | −29.47 | ||
Group | −19.74 | 19.65 | −0.08 | −1.00 | 0.316 | −58.52 | 19.04 | ||
T | (Constant) | 9.02 | 5.19 | 1.74 | 0.084 | −1.23 | 19.26 | 0.11 ** | |
Age | 0.67 | 0.26 | 0.21 | 2.62 | 0.010 | 0.17 | 1.17 | ||
Sex | −2.71 | 1.31 | −0.15 | −2.08 | 0.039 | −5.29 | −0.14 | ||
Group | 3.34 | 1.48 | 0.19 | 2.25 | 0.025 | 6.26 | 0.42 | ||
VO2 TIME | (Constant) | 7.77 | 4.55 | 1.71 | 0.090 | −1.22 | 16.75 | 0.12 ** | |
Age | 0.58 | 0.22 | 0.21 | 2.59 | 0.010 | 0.14 | 1.02 | ||
Sex | −2.39 | 1.15 | −0.15 | −2.09 | 0.038 | −4.65 | −0.13 | ||
Group | 2.85 | 1.30 | 0.18 | 2.20 | 0.029 | 5.41 | 0.29 | ||
HR | (Constant) | 181.90 | 10.38 | 17.52 | <0.001 | 161.41 | 202.38 | ||
Age | −0.15 | 0.51 | −0.03 | −0.29 | 0.769 | −1.16 | 0.86 | ||
Sex | −2.26 | 2.61 | −0.07 | −0.87 | 0.388 | −7.41 | 2.89 | ||
Group | 2.39 | 2.96 | 0.07 | 0.81 | 0.420 | −3.45 | 8.24 | ||
Metabolic and gas exchange parameters | |||||||||
VO2 Peak | (Constant) | 0.92 | 0.25 | 2.46 | 0.015 | 0.12 | 1.12 | 0.36 ** | |
Age | 0.10 | 0.01 | 0.55 | 7.94 | <0.001 | 0.07 | 0.12 | ||
Sex | −0.44 | 0.06 | −0.41 | −6.87 | <0.001 | −0.56 | −0.31 | ||
Group | −0.27 | 0.07 | −0.26 | −3.75 | <0.001 | 0.13 | 0.41 | ||
VO2 NOR | (Constant) | 39.04 | 11.76 | 3.32 | 0.001 | 15.85 | 62.24 | 0.02 | |
Age | 0.99 | 0.58 | 0.15 | 1.71 | 0.089 | −0.15 | 2.13 | ||
Sex | 1.00 | 2.96 | 0.03 | 0.34 | 0.736 | −4.83 | 6.83 | ||
Group | −8.13 | 3.35 | −0.21 | −2.42 | 0.016 | 1.51 | 14.75 | ||
VO2 Peak/kg | (Constant) | 42.11 | 4.73 | 8.91 | <0.001 | 32.77 | 51.43 | 0.07 ** | |
Age | −0.48 | 0.23 | −0.17 | −2.07 | 0.040 | −0.94 | −0.02 | ||
Sex | −3.21 | 1.19 | −0.20 | −2.70 | 0.008 | −5.55 | −0.87 | ||
Group | −0.39 | 1.35 | −0.03 | −0.29 | 0.771 | −2.27 | 3.05 | ||
VO2 HR | (Constant) | 3.96 | 1.24 | 3.18 | 0.002 | 1.51 | 6.41 | 0.40 ** | |
Age | 0.52 | 0.06 | 0.57 | 8.50 | <0.001 | 0.40 | 0.64 | ||
Sex | −2.35 | 0.31 | −0.44 | −7.52 | <0.001 | −2.97 | −1.74 | ||
Group | 1.29 | 0.36 | 0.25 | 3.65 | <0.001 | 0.59 | 1.99 | ||
RER | (Constant) | 1.00 | 0.06 | 17.72 | <0.001 | 0.89 | 1.12 | 0.06 * | |
Age | 0.006 | 0.003 | 0.18 | 2.15 | 0.033 | <0.001 | 0.01 | ||
Sex | 0.004 | 0.01 | 0.02 | 0.28 | 0.782 | −0.02 | 0.03 | ||
Group | −0.02 | 0.02 | −0.13 | 1.50 | 0.136 | −0.06 | 0.01 | ||
VE/VO2 | (Constant) | 21.32 | 2.91 | 7.34 | <0.001 | 15.59 | 27.06 | 0.06 * | |
Age | 0.36 | 0.14 | 0.21 | 2.50 | 0.013 | 0.08 | 0.64 | ||
Sex | 1.98 | 0.73 | 0.20 | 2.71 | 0.007 | 0.54 | 3.42 | ||
Group | 1.13 | 0.83 | 0.12 | 1.36 | 0.174 | −0.51 | 2.77 | ||
VE/VCO2 | (Constant) | 22.84 | 2.20 | 10.36 | <0.001 | 18.49 | 27.18 | 0.08 ** | |
Age | 0.12 | 0.11 | 0.09 | 1.09 | 0.278 | −0.10 | 0.33 | ||
Sex | 2.13 | 0.55 | 0.28 | 3.85 | <0.001 | 1.04 | 3.22 | ||
Group | 1.13 | 0.63 | 0.15 | 1.80 | 0.073 | −0.11 | 2.37 | ||
Ventilatory system responses | |||||||||
VE | (Constant) | 23.94 | 10.04 | 1.39 | 0.167 | −5.87 | 33.74 | 0.24 ** | |
Age | 3.33 | 0.49 | 0.51 | 6.74 | <0.001 | 2.36 | 4.30 | ||
Sex | 9.92 | 2.52 | 0.26 | 3.93 | <0.001 | −14.90 | −4.93 | ||
Group | −10.10 | 2.86 | −0.27 | 3.53 | <0.001 | 4.45 | 15.75 | ||
VT | (Constant) | 1.30 | 0.18 | 1.69 | 0.093 | −0.05 | 0.64 | 0.45 ** | |
Age | 0.09 | 0.01 | 0.70 | 10.90 | <0.001 | 0.08 | 0.11 | ||
Sex | −0.23 | 0.04 | −0.29 | −5.12 | <0.001 | −0.31 | −0.14 | ||
Group | −0.11 | 0.05 | −0.15 | 2.26 | 0.025 | 0.02 | 0.21 | ||
BF | (Constant) | 49.40 | 6.44 | 7.67 | <0.001 | 36.69 | 62.11 | 0.10 ** | |
Age | −0.77 | 0.32 | −0.20 | −2.44 | 0.016 | −1.40 | −0.15 | ||
Sex | −1.14 | 1.62 | −0.50 | −0.71 | 0.482 | −4.34 | 2.05 | ||
Group | −3.78 | 1.84 | −0.17 | 2.06 | 0.041 | 0.15 | 7.41 | ||
BR | (Constant) | 51.73 | 12.89 | 6.65 | <0.001 | 57.48 | 105.97 | 0.18 ** | |
Age | −1.31 | 0.61 | −0.18 | −2.17 | 0.031 | −2.51 | −0.12 | ||
Sex | 2.65 | 3.09 | 0.06 | 0.86 | 0.393 | −3.45 | 8.74 | ||
Group | −14.34 | 3.51 | −0.34 | −4.09 | <0.001 | −21.25 | −7.42 |
CRF Parameters | Cobb | Risser | Raimondi |
---|---|---|---|
r Pearson; p-Value | |||
WR | −0.16; 0.121 | 0.09; 0.378 | −0.11; 0.278 |
VO2 Peak | −0.03; 0.774 | 0.388 *; 0.047 | −0.02; 0.828 |
VO2% NOR | 0.17; 0.110 | 0.06; 0.571 | −0.10; 0.335 |
VO2/kg | 0.11; 0.276 | 0.373 *; <0.001 | −0.14; 0.182 |
VO2/HR | 0.02; 0.871 | 0.208 *; 0.047 | −0.16; 0.120 |
VE | 0.08; 0.471 | 0.220 *; 0.035 | −0.07; 0.493 |
VT | −0.08; 0.462 | 0.451 *; <0.001 | 0.00; 0.971 |
BF | 0.06; 0.555 | −0.255 *; 0.014 | −0.03; 0.767 |
BR% | −0.05; 0.643 | −0.09; 0.374 | −0.02; 0.865 |
VE/VEO2 | 0.16; 0.139 | 0.289*; 0.005 | −0.09; 0.401 |
VE/CO2 | 0.19; 0.063 | 0.281*; 0.007 | −0.13; 0.218 |
TIME | −0.314 *; 0.006 | 0.13; 0.208 | −0.01; 0.961 |
VO2 TIME VE/CO2 | −0.306 *; 0.030 | 0.13; 0.215 | 0.14; 0.182 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siwiec, A.; Domagalska-Szopa, M.; Kwiecień-Czerwieniec, I.; Dobrowolska, A.; Szopa, A. Impact of Idiopathic Scoliosis on the Cardiopulmonary Capacity of Adolescents. J. Clin. Med. 2024, 13, 4414. https://doi.org/10.3390/jcm13154414
Siwiec A, Domagalska-Szopa M, Kwiecień-Czerwieniec I, Dobrowolska A, Szopa A. Impact of Idiopathic Scoliosis on the Cardiopulmonary Capacity of Adolescents. Journal of Clinical Medicine. 2024; 13(15):4414. https://doi.org/10.3390/jcm13154414
Chicago/Turabian StyleSiwiec, Andrzej, Małgorzata Domagalska-Szopa, Ilona Kwiecień-Czerwieniec, Agata Dobrowolska, and Andrzej Szopa. 2024. "Impact of Idiopathic Scoliosis on the Cardiopulmonary Capacity of Adolescents" Journal of Clinical Medicine 13, no. 15: 4414. https://doi.org/10.3390/jcm13154414
APA StyleSiwiec, A., Domagalska-Szopa, M., Kwiecień-Czerwieniec, I., Dobrowolska, A., & Szopa, A. (2024). Impact of Idiopathic Scoliosis on the Cardiopulmonary Capacity of Adolescents. Journal of Clinical Medicine, 13(15), 4414. https://doi.org/10.3390/jcm13154414