Leveraging 3D Atrial Geometry for the Evaluation of Atrial Fibrillation: A Comprehensive Review
Abstract
:1. Introduction
- We discuss the interplay between 3D atrial geometry, atrial cardiomyopathy, and susceptibility to AF.
- We explore the use of 3D atrial geometry in the assessment and treatment of AF, focusing on its use in stroke and rhythm management. We first discuss qualitative and simple quantitative metrics, before covering global quantitative metrics, and finally statistical shape modeling (SSM) approaches, covering measurement techniques and their clinical applications.
- We provide insights into the limitations of current technologies and latest research directions, including deep learning-based SSM and spatiotemporal SSM, in this exciting and evolving field.
2. Atrial Cardiomyopathy and Its Impact on Atrial Geometry
3. Qualitative and Basic Quantitative Approaches for Understanding Atrial Shape
4. Global Quantitative Approaches
5. Statistical Shape Modeling
5.1. An Overview of Statistical Shape Modeling
5.2. Applications of Statistical Shape Models in Atrial Fibrillation
6. Challenges and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hindricks, G.; Potpara, T.; Dagres, N.; Bax, J.J.; Boriani, G.; Dan, G.A.; Fauchier, L.; Kalman, J.M.; Lane, D.A.; Lettino, M.; et al. 2020 ESC Guidelines for the Diagnosis and Management of Atrial Fibrillation Developed in Collaboration with the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2021, 42, 373–498. [Google Scholar] [CrossRef]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2024, 83, 109–279. [Google Scholar] [CrossRef] [PubMed]
- Staerk, L.; Wang, B.; Preis, S.R.; Larson, M.G.; Lubitz, S.A.; Ellinor, P.T.; McManus, D.D.; Ko, D.; Weng, L.C.; Lunetta, K.L.; et al. Lifetime Risk of Atrial Fibrillation According to Optimal, Borderline, or Elevated Levels of Risk Factors: Cohort Study Based on Longitudinal Data from the Framingham Heart Study. BMJ 2018, 361, k1453. [Google Scholar] [CrossRef] [PubMed]
- Chugh, S.S.; Havmoeller, R.; Narayanan, K.; Singh, D.; Rienstra, M.; Benjamin, E.J.; Gillum, R.F.; Kim, Y.H.; McAnulty, J.H.; Zheng, Z.J.; et al. Worldwide Epidemiology of Atrial Fibrillation: A Global Burden of Disease 2010 Study. Circulation 2014, 129, 837–847. [Google Scholar] [CrossRef]
- Jaiswal, V.; Agrawal, V.; Khulbe, Y.; Hanif, M.; Huang, H.; Hameed, M.; Shrestha, A.B.; Perone, F.; Parikh, C.; Gomez, S.I.; et al. Cardiac Amyloidosis and Aortic Stenosis: A State-of-the-Art Review. Eur. Hear. J. Open 2023, 3, oead106. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.C.; Nunes, M.C.P.; Handschumacher, M.; Pontes-Neto, O.; Park, Y.-H.; O’Brien, C.; Piro, V.; Kim, G.-M.; Helenius, J.; Zeng, X.; et al. Left Atrial Cross-Sectional Area Is a Novel Measure of Atrial Shape Associated with Cardioembolic Strokes. Heart 2020, 106, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Henry, W.L.; Morganroth, J.; Pearlman, A.S.; Clark, C.E.; Redwood, D.R.; Itscoitz, S.B.; Epstein, S.E. Relation between Echocardiographically Determined Left Atrial Size and Atrial Fibrillation. Circulation 1976, 53, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Berruezo, A.; Tamborero, D.; Mont, L.; Benito, B.; Tolosana, J.M.; Sitges, M.; Vidal, B.; Arriagada, G.; Méndez, F.; Matiello, M.; et al. Pre-Procedural Predictors of Atrial Fibrillation Recurrence after Circumferential Pulmonary Vein Ablation. Eur. Heart J. 2007, 28, 836–841. [Google Scholar] [CrossRef]
- Tops, L.F.; Schalij, M.J.; Bax, J.J. Imaging and Atrial Fibrillation: The Role of Multimodality Imaging in Patient Evaluation and Management of Atrial Fibrillation. Eur. Heart J. 2010, 31, 542–551. [Google Scholar] [CrossRef]
- Bisbal, F.; Guiu, E.; Calvo, N.; Marin, D.; Berruezo, A.; Arbelo, E.; Ortiz-Pérez, J.; De Caralt, T.M.; Tolosana, J.M.; Borràs, R.; et al. Left Atrial Sphericity: A New Method to Assess Atrial Remodeling. Impact on the Outcome of Atrial Fibrillation Ablation. J. Cardiovasc. Electrophysiol. 2013, 24, 752–759. [Google Scholar] [CrossRef]
- Cozma, D.; Popescu, B.A.; Lighezan, D.; Lucian, P.; Mornos, C.; Ginghina, C.; Dragulescu, S.-I. Left Atrial Remodeling: Assessment of Size and Shape to Detect Vulnerability to Atrial Fibrillation. Pacing Clin. Electrophysiol. 2007, 30 (Suppl. S1), S147–S150. [Google Scholar] [CrossRef] [PubMed]
- Firouznia, M.; Feeny, A.K.; Labarbera, M.A.; Mchale, M.; Cantlay, C.; Kalfas, N.; Schoenhagen, P.; Saliba, W.; Tchou, P.; Barnard, J.; et al. Machine Learning—Derived Fractal Features Pulmonary Veins from Cardiac Computed Tomography Scans Are Associated With Risk of Recurrence of Atrial Fibrillation Postablation. Circ. Arrhythm. Electrophysiol. 2021, 14, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Wijffels, M.C.E.F.; Kirchhof, C.J.H.J.; Boersma, L.V.A.; Dorland, R.; Allessie, M.A. Atrial Fibrillation Begets Atrial Fibrillation. New Trends Arrhythm. 1993, 9, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Fareh, S.; Ki Leung, T.; Nattel, S. Promotion of Atrial Fibrillation by Heart Failure in Dogs Atrial Remodeling of a Different Sort. Circulation 1999, 100, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Morillo, C.A.; Klein, G.J.; Jones, D.L.; Guiraudon, C.M. Chronic Rapid Atrial Pacing. Circulation 1995, 91, 1588–1595. [Google Scholar] [CrossRef]
- Silva Garcia, E.; Lobo-Torres, I.; Fernández-Armenta, J.; Penela, D.; Fernandez-Garcia, M.; Gomez-Lopez, A.; Soto-Iglesias, D.; Fernández-Rivero, R.; Vazquez-Garcia, R.; Acosta, J.; et al. Functional Mapping to Reveal Slow Conduction and Substrate Progression in Atrial Fibrillation. Europace 2023, 25, euad246. [Google Scholar] [CrossRef] [PubMed]
- Roney, C.H.; Wit, A.L.; Peters, N.S. Challenges Associated with Interpreting Mechanisms of AF. Arrhythm. Electrophysiol. Rev. 2019, 8, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Goette, A.; Kalman, J.M.; Aguinaga, L.; Akar, J.; Cabrera, J.A.; Chen, S.A.; Chugh, S.S.; Corradi, D.; D’Avila, A.; Dobrev, D.; et al. EHRA/HRS/APHRS/SOLAECE Expert Consensus on Atrial Cardiomyopathies: Definition, Characterization, and Clinical Implication. Heart Rhythm 2017, 14, e3–e40. [Google Scholar] [CrossRef]
- Sanfilippo, A.J.; Abascal, V.M.; Sheehan, M.; Oertel, L.B.; Harrigan, P.; Hughes, R.A.; Weyman, A.E. Atrial Enlargement as a Consequence of Atrial Fibrillation A Prospective Echocardiographic Study. Circulation 1990, 82, 792–797. [Google Scholar] [CrossRef]
- Moe, G.K.; Rheinboldt, W.C.; Abildskov, J.A. A Computer Model of Atrial Fibrillation. Am. Heart J. 1964, 67, 200–220. [Google Scholar] [CrossRef]
- Moe, G.K.; Abildskov, J.A. Atrial Fibrillation as a Self-Sustaining Arrhythmia Independent of Focal Discharge. Am. Heart J. 1959, 58, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Datino, T.; Macle, L.; Nattel, S. Atrial Fibrillation Ablation: Translating Basic Mechanistic Insights to the Patient. J. Am. Coll. Cardiol. 2014, 64, 823–831. [Google Scholar] [CrossRef] [PubMed]
- Dukkipati, S.R.; Reddy, V.Y. Catheter Ablation of “Rotors” for the Treatment of AF: Should We Drink the Kool-Aid? J. Am. Coll. Cardiol. 2017, 69, 1270–1274. [Google Scholar] [CrossRef] [PubMed]
- Williams, S.E.; Linton, N.; O’Neill, L.; Harrison, J.; Whitaker, J.; Mukherjee, R.; Rinaldi, C.A.; Gill, J.; Niederer, S.; Wright, M.; et al. The Effect of Activation Rate on Left Atrial Bipolar Voltage in Patients with Paroxysmal Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2017, 28, 1028–1036. [Google Scholar] [CrossRef] [PubMed]
- van Staveren, L.N.; de Groot, N.M.S. Exploring Refractoriness as an Adjunctive Electrical Biomarker for Staging of Atrial Fibrillation. J. Am. Heart Assoc. 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Garrey, W. The Nature of Fibrillary Contraction of the Heart—Its Relation to Tissue Mass and Form. Am. J. Physiol. 1914, 33, 397–414. [Google Scholar] [CrossRef]
- Pandit, S.V.; Jalife, J. Rotors and the Dynamics of Cardiac Fibrillation. Circ. Res. 2013, 112, 849–862. [Google Scholar] [CrossRef]
- Vaquero, M.; Calvo, D.; Jalife, J. Cardiac Fibrillation: From Ion Channels to Rotors in the Human Heart. Heart Rhythm 2008, 5, 872–879. [Google Scholar] [CrossRef] [PubMed]
- Jansen, H.J.; Bohne, L.J.; Gillis, A.M.; Rose, R.A. Atrial Remodeling and Atrial Fibrillation in Acquired Forms of Cardiovascular Disease. Heart Rhythm O2 2020, 1, 147–159. [Google Scholar] [CrossRef]
- Marrouche, N.F.; Wazni, O.; McGann, C.; Greene, T.; Dean, J.M.; Dagher, L.; Kholmovski, E.; Mansour, M.; Marchlinski, F.; Wilber, D.; et al. Effect of MRI-Guided Fibrosis Ablation vs Conventional Catheter Ablation on Atrial Arrhythmia Recurrence in Patients with Persistent Atrial Fibrillation: The DECAAF II Randomized Clinical Trial. JAMA 2022, 327, 2296–2305. [Google Scholar] [CrossRef]
- Marrouche, N.F.; Wilber, D.; Hindricks, G.; Jais, P.; Akoum, N.; Marchlinski, F.; Kholmovski, E.; Burgon, N.; Hu, N.; Mont, L.; et al. Association of Atrial Tissue Fibrosis Identified by Delayed Enhancement MRI and Atrial Fibrillation Catheter Ablation: The DECAAF Study. JAMA J. Am. Med. Assoc. 2014, 311, 498–506. [Google Scholar] [CrossRef] [PubMed]
- Ohguchi, S.; Inden, Y.; Yanagisawa, S.; Fujita, R.; Yasuda, K.; Katagiri, K.; Oguri, M.; Murohara, T. Regional Left Atrial Conduction Velocity in the Anterior Wall Is Associated with Clinical Recurrence of Atrial Fibrillation after Catheter Ablation: Efficacy in Combination with the Ipsilateral Low Voltage Area. BMC Cardiovasc. Disord. 2022, 22, 457. [Google Scholar] [CrossRef] [PubMed]
- Nairn, D.; Eichenlaub, M.; Müller-Edenborn, B.; Huang, T.; Lehrmann, H.; Nagel, C.; Azzolin, L.; Luongo, G.; Figueras Ventura, R.M.; Rubio Forcada, B.; et al. Differences in Atrial Substrate Localization Using LGE-MRI, Electrogram Voltage and Conduction Velocity—A Cohort Study Using a Consistent Anatomical Reference Frame in Patients with Persistent Atrial Fibrillation. Europace 2023, 25, euad278. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.; Tsuchiya, T.; Narita, S.; Yamaguchi, T.; Nagamoto, Y.; Ando, S.I.; Hayashida, K.; Tanioka, Y.; Takahashi, N. Bipolar Electrogram Amplitudes in the Left Atrium Are Related to Local Conduction Velocity in Patients with Atrial Fibrillation. Europace 2009, 11, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Gaspar, T.; Schönbauer, R.; Wójcik, M.; Fiedler, L.; Roithinger, F.X.; Martinek, M.; Pürerfellner, H.; Kirstein, B.; Richter, U.; et al. Low-Voltage Myocardium-Guided Ablation Trial of Persistent Atrial Fibrillation. NEJM Evid. 2022, 1, EVIDoa2200141. [Google Scholar] [CrossRef] [PubMed]
- Masuda, M.; Fujita, M.; Iida, O.; Okamoto, S.; Ishihara, T.; Nanto, K.; Kanda, T.; Tsujimura, T.; Matsuda, Y.; Okuno, S.; et al. Left Atrial Low-Voltage Areas Predict Atrial Fibrillation Recurrence after Catheter Ablation in Patients with Paroxysmal Atrial Fibrillation. Int. J. Cardiol. 2018, 257, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.; Angel, N.; Zhu, M.; Vesin, J.M.; Scharf, C. Correlation between Conduction Velocity and Frequency Analysis in Patients with Atrial Fibrillation Using High-Density Charge Mapping. Med. Biol. Eng. Comput. 2022, 60, 3081–3090. [Google Scholar] [CrossRef] [PubMed]
- Kishima, H.; Mine, T.; Fukuhara, E.; Takahashi, S.; Ishihara, M. Is the Abnormal Conduction Zone of the Left Atrium a Precursor to a Low Voltage Area in Patients with Atrial Fibrillation? J. Cardiovasc. Electrophysiol. 2020, 31, 2874–2882. [Google Scholar] [CrossRef] [PubMed]
- Okubo, Y.; Oguri, N.; Sakai, T.; Uotani, Y.; Furutani, M.; Miyamoto, S.; Miyauchi, S.; Okamura, S.; Tokuyama, T.; Nakano, Y. Conduction Velocity Mapping in Atrial Fibrillation Using Omnipolar Technology. PACE—Pacing Clin. Electrophysiol. 2024, 47, 19–27. [Google Scholar] [CrossRef]
- Betts, T.R.; Good, W.W.; Melki, L.; Metzner, A.; Grace, A.; Verma, A.; Murray, S.; James, S.; Wong, T.; Boersma, L.V.A.; et al. Treatment of Pathophysiologic Propagation Outside of the Pulmonary Veins in Retreatment of Atrial Fibrillation Patients: RECOVER AF Study. Europace 2023, 25, euad097. [Google Scholar] [CrossRef]
- Pope, M.T.B.; Kuklik, P.; Briosa e Gala, A.; Leo, M.; Mahmoudi, M.; Paisey, J.; Betts, T.R. Spatial and Temporal Variability of Rotational, Focal, and Irregular Activity: Practical Implications for Mapping of Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2021, 32, 2393–2403. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.S.; Nelson, T.A.; Clayton, R.H.; Kelland, N.F. Characterization of Persistent Atrial Fibrillation with Non-Contact Charge Density Mapping and Relationship to Voltage. J. Arrhythm. 2022, 38, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Stegmann, M.B.; Delgado Gomez, D. A Brief Introduction to Statistical Shape Analysis; Informatics and Mathematical Modelling, Technical University of Denmark: Kongens Lyngby, Denmark, 2002. [Google Scholar]
- Adams, D.C.; Rohlf, F.J.; Slice, D.E. Geometric Morphometrics: Ten Years of Progress Following the ‘Revolution’. Ital. J. Zool. 2004, 71, 5–16. [Google Scholar] [CrossRef]
- Wang, Y.; Di Biase, L.; Horton, R.P.; Nguyen, T.; Morhanty, P.; Natale, A. Left Atrial Appendage Studied by Computed Tomography to Help Planning for Appendage Closure Device Placement. J. Cardiovasc. Electrophysiol. 2010, 21, 973–982. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Kim, J.B.; Uhm, J.S.; Pak, H.N.; Lee, M.H.; Joung, B. Additional Value of Left Atrial Appendage Geometry and Hemodynamics When Considering Anticoagulation Strategy in Patients with Atrial Fibrillation with Low CHA2DS2-VASc Scores. Heart Rhythm 2017, 14, 1297–1301. [Google Scholar] [CrossRef]
- Di Biase, L.; Santangeli, P.; Anselmino, M.; Mohanty, P.; Salvetti, I.; Gili, S.; Horton, R.; Sanchez, J.E.; Bai, R.; Mohanty, S.; et al. Does the Left Atrial Appendage Morphology Correlate with the Risk of Stroke in Patients with Atrial Fibrillation? Results from a Multicenter Study. J. Am. Coll. Cardiol. 2012, 60, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.; Smit, J.M.; El Mahdiui, M.; Száraz, L.; van Rosendael, A.R.; Zsarnóczay, E.; Nagy, A.I.; Gellér, L.; van der Geest, R.J.; Bax, J.J.; et al. Association of Left Atrial Appendage Morphology and Function with Stroke and Transient Ischemic Attack in Atrial Fibrillation Patients. Am. J. Cardiol. 2024, 221, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Takatsuki, S.; Inagawa, K.; Katsumata, Y.; Nishiyama, T.; Nishiyama, N.; Fukumoto, K.; Aizawa, Y.; Tanimoto, Y.; Tanimoto, K.; et al. Anatomical Characteristics of the Left Atrial Appendage in Cardiogenic Stroke with Low CHADS2 Scores. Heart Rhythm 2013, 10, 921–925. [Google Scholar] [CrossRef]
- Dudzińska-Szczerba, K.; Michałowska, I.; Piotrowski, R.; Sikorska, A.; Paszkowska, A.; Stachnio, U.; Kowalik, I.; Kułakowski, P.; Baran, J. Assessment of the Left Atrial Appendage Morphology in Patients after Ischemic Stroke—The ASSAM Study. Int. J. Cardiol. 2021, 330, 65–72. [Google Scholar] [CrossRef]
- Shin, S.Y.; Park, J.W. Is the Left Atrial Appendage (LAA) Anatomical Shape Really Meaningless Measure for Stroke Risk Assessment? Int. J. Cardiol. 2021, 330, 80–81. [Google Scholar] [CrossRef]
- Bieging, E.T.; Morris, A.; Chang, L.; Dagher, L.; Marrouche, N.F.; Cates, J. Statistical Shape Analysis of the Left Atrial Appendage Predicts Stroke in Atrial Fibrillation. Int. J. Cardiovasc. Imaging 2021, 37, 2521–2527. [Google Scholar] [CrossRef] [PubMed]
- Kurotobi, T.; Iwakura, K.; Inoue, K.; Kimura, R.; Toyoshima, Y.; Ito, N.; Mizuno, H.; Shimada, Y.; Fujii, K.; Nanto, S.; et al. The Significance of the Shape of the Left Atrial Roof as a Novel Index for Determining the Electrophysiological and Structural Characteristics in Patients with Atrial Fibrillation. Europace 2011, 13, 803–808. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.T.; Chang, S.L.; Lin, Y.J.; Lo, L.W.; Hu, Y.F.; Chao, T.F.; Chung, F.P.; Liao, J.N.; Huang, Y.C.; Hsieh, M.H.; et al. The Impact of Anatomical Remodeling of the Left Atrium and Pulmonary Vein on the Recurrence of Paroxysmal Atrial Fibrillation after Catheter Ablation. Int. J. Cardiol. 2014, 176, 1173–1175. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, Y.R.; Nam, G.B.; Choi, K.J.; Kim, Y.H. The Shape of the Left Lateral Ridge as a Predictor of Long-Term Outcome of Catheter Ablation for Atrial Fibrillation Based on Clinical and Experimental Data. Int. J. Cardiol. 2021, 329, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Sorgente, A.; Chierchia, G.B.; De Asmundis, C.; Sarkozy, A.; Namdar, M.; Capulzini, L.; Yazaki, Y.; Mller-Burri, S.A.; Bayrak, F.; Brugada, P. Pulmonary Vein Ostium Shape and Orientation as Possible Predictors of Occlusion in Patients with Drug-Refractory Paroxysmal Atrial Fibrillation Undergoing Cryoballoon Ablation. Europace 2011, 13, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Nedios, S.; Tang, M.; Roser, M.; Solowjowa, N.; Gerds-Li, J.H.; Fleck, E.; Kriatselis, C. Characteristic Changes of Volume and Three-Dimensional Structure of the Left Atrium in Different Forms of Atrial Fibrillation: Predictive Value after Ablative Treatment. J. Interv. Card. Electrophysiol. 2011, 32, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Nedios, S.; Koutalas, E.; Sommer, P.; Arya, A.; Rolf, S.; Husser, D.; Bollmann, A.; Hindricks, G.; Breithardt, O. Asymmetrical Left Atrial Remodelling in Atrial Fibrillation: Relation with Diastolic Dysfunction and Long-Term Ablation Outcomes. Europace 2017, 19, 1463–1469. [Google Scholar] [CrossRef]
- Nedios, S.; Löbe, S.; Knopp, H.; Seewöster, T.; Heijman, J.; Crijns, H.J.G.M.; Arya, A.; Bollmann, A.; Hindricks, G.; Dinov, B. Left Atrial Activation and Asymmetric Anatomical Remodeling in Patients with Atrial Fibrillation: The Relation between Anatomy and Function. Clin. Cardiol. 2021, 44, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Li, C.; Yang, L.; Chen, C.; Chen, Y.; Ni, J.; Fu, R.; Jiao, Y.; Meng, Y. Impact of Left Atrial Geometric Remodeling on Late Atrial Fibrillation Recurrence after Catheter Ablation. J. Cardiovasc. Med. 2021, 22, 909–916. [Google Scholar] [CrossRef]
- Bieging, E.T.; McGann, C.J.; Morris, A.; Rassa, A.; Cates, J. Left Atrial Spherical Shape Change in Atrial Fibrillation. J. Cardiovasc. Magn. Reson. 2014, 16, O41. [Google Scholar] [CrossRef]
- Bisbal, F.; Gomez-Pulido, F.; Cabanas-Grandio, P.; Akoum, N.; Calvo, M.; Andreu, D.; Prat-Gonzalez, S.; Perea, R.J.; Villuendas, R.; Berruezo, A.; et al. Left Atrial Geometry Improves Risk Prediction of Thromboembolic Events in Patients with Atrial Fibrillation. J. Cardiovasc. Electrophysiol. 2016, 27, 804–810. [Google Scholar] [CrossRef] [PubMed]
- Osmanagic, A.; Möller, S.; Osmanagic, A.; Sheta, H.M.; Vinther, K.H.; Egstrup, K. Left Atrial Sphericity Index Predicts Early Recurrence of Atrial Fibrillation After Direct-Current Cardioversion: An Echocardiographic Study. Clin. Cardiol. 2016, 39, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Nakamori, S.; Ngo, L.H.; Tugal, D.; Manning, W.J.; Nezafat, R. Incremental Value of Left Atrial Geometric Remodeling in Predicting Late Atrial Fibrillation Recurrence after Pulmonary Vein Isolation: A Cardiovascular Magnetic Resonance Study. J. Am. Heart Assoc. 2018, 7, e009793. [Google Scholar] [CrossRef] [PubMed]
- Bisbal, F.; Alarcón, F.; Ferrero-De-Loma-Osorio, A.; González-Ferrer, J.J.; Alonso, C.; Pachón, M.; Tizón, H.; Cabanas-Grandío, P.; Sanchez, M.; Benito, E.; et al. Left Atrial Geometry and Outcome of Atrial Fibrillation Ablation: Results from the Multicentre LAGO-AF Study. Eur. Heart J. Cardiovasc. Imaging 2018, 19, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Bisbal, F.; Guiu, E.; Cabanas, P.; Calvo, N.; Berruezo, A.; Tolosana, J.M.; Arbelo, E.; Vidal, B.; De Caralt, T.M.; Sitges, M.; et al. Reversal of Spherical Remodelling of the Left Atrium after Pulmonary Vein Isolation: Incidence and Predictors. Europace 2014, 16, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Mulder, M.J.; Kemme, M.J.B.; Visser, C.L.; Hopman, L.H.G.A.; van Diemen, P.A.; van de Ven, P.M.; Götte, M.J.W.; Danad, I.; Knaapen, P.; van Rossum, A.C.; et al. Left Atrial Sphericity as a Marker of Atrial Remodeling: Comparison of Atrial Fibrillation Patients and Controls. Int. J. Cardiol. 2020, 304, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Bossard, M.; Knecht, S.; Aeschbacher, S.; Buechel, R.R.; Hochgruber, T.; Zimmermann, A.J.; Kessel-Schaefer, A.; Stephan, F.P.; VÖllmin, G.; Pradella, M.; et al. Conventional versus 3-D Echocardiography to Predict Arrhythmia Recurrence after Atrial Fibrillation Ablation. J. Cardiovasc. Electrophysiol. 2017, 28, 651–658. [Google Scholar] [CrossRef]
- Lamata, P. Unleashing the Prognostic Value of Atrial Shape in Atrial Fibrillation. Heart Rhythm O2 2021, 2, 633–634. [Google Scholar] [CrossRef] [PubMed]
- Bieging, E.T.; Morris, A.; Wilson, B.D.; McGann, C.J.; Marrouche, N.F.; Cates, J. Left Atrial Shape Predicts Recurrence after Atrial Fibrillation Catheter Ablation. J. Cardiovasc. Electrophysiol. 2018, 29, 966–972. [Google Scholar] [CrossRef]
- Goparaju, A.; Csecs, I.; Morris, A.; Kholmovski, E.; Marrouche, N.; Whitaker, R.; Elhabian, S. On the Evaluation and Validation of Off-the-Shelf Statistical Shape Modeling Tools: A Clinical Application. Shape Med. Imaging 2018, 11167, 14–27. [Google Scholar] [CrossRef]
- Goparaju, A.; Iyer, K.; Bône, A.; Hu, N.; Henninger, H.B.; Anderson, A.E.; Durrleman, S.; Jacxsens, M.; Morris, A.; Csecs, I.; et al. Benchmarking Off-the-Shelf Statistical Shape Modeling Tools in Clinical Applications. Med. Image Anal. 2022, 76, 102271. [Google Scholar] [CrossRef] [PubMed]
- Ambellan, F.; Lamecker, H.; von Tycowicz, C.; Zachow, S. Statistical Shape Models: Understanding and Mastering Variation in Anatomy. In Biomedical Visualisation; Springer International Publishing: Cham, Switzerland, 2019; Volume 3, pp. 67–84. [Google Scholar]
- Nagel, C.; Schuler, S.; Dössel, O.; Loewe, A. A Bi-Atrial Statistical Shape Model for Large-Scale in Silico Studies of Human Atria: Model Development and Application to ECG Simulations. Med. Image Anal. 2021, 74, 102210. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Khan, N.; Morris, A.; Elhabian, S. Spatiotemporal Cardiac Statistical Shape Modeling: A Data-Driven Approach. Stat. Atlases Comput. Models Heart 2022, 13593, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Iyer, K.; Elhabian, S. Mesh2SSM: From Surface Meshes to Statistical Shape Models of Anatomy. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Vancouver, BC, Canada, 8–12 October 2023; Volume 29, pp. 615–625. [Google Scholar]
- Cates, J.; Bieging, E.; Morris, A.; Gardner, G.; Akoum, N.; Kholmovski, E.; Marrouche, N.; McGann, C.; Macleod, R.S. Computational Shape Models Characterize Shape Change of the Left Atrium in Atrial Fibrillation. Clin. Med. Insights Cardiol. 2015, 8, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Cootes, T.F.; Taylor, C.J.; Cooper, D.H.; Graham, J. Active Shape Models—Their Training and Application. Comput. Vis. Image Underst. 1995, 61, 38–59. [Google Scholar] [CrossRef]
- Cates, J.; Fletcher, P.T.; Styner, M.; Shenton, M.; Whitaker, R. Shape Modeling and Analysis with Entropy-Based Particle Systems. In Proceedings of the Information Processing in Medical Imaging: 20th International Conference, IPMI 2007, Kerkrade, The Netherlands, 2–6 July 2007; Volume 20, pp. 333–345. [Google Scholar]
- Greenacre, M.; Groenen, P.J.F.; Hastie, T.; D’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal Component Analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Jollife, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Camps, J.; Zacur, E.; Andrews, C.M.; Rudy, Y.; Choudhury, R.P.; Rodriguez, B.; Grau, V. A Completely Automated Pipeline for 3D Reconstruction of Human Heart from 2D Cine Magnetic Resonance Slices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2021, 379, 20200257. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Zacur, E.; Choudhury, R.P.; Grau, V. Optimised Misalignment Correction from Cine MR Slices Using Statistical Shape Model. In Proceedings of the Annual Conference on Medical Image Understanding and Analysis, Oxford, UK, 12–14 July 2021; pp. 201–209. [Google Scholar]
- Piazzese, C.; Carminati, M.C.; Pepi, M.; Caiani, E.G. Statistical Shape Models of the Heart: Applications to Cardiac Imaging. In Statistical Shape and Deformation Analysis: Methods, Implementation and Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 445–480. ISBN 9780128104941. [Google Scholar]
- Bhalodia, R.; Subramanian, A.; Morris, A.; Cates, J.; Whitaker, R.; Kholmovski, E.; Marrouche, N.; Elhabian, S. Does Alignment in Statistical Shape Modeling of Left Atrium Appendage Impact Stroke Prediction? Comput. Cardiol. 2019, 46. [Google Scholar] [CrossRef]
- Jia, S.; Nivet, H.; Harrison, J.; Pennec, X.; Camaioni, C.; Jais, P.; Cochet, H.; Sermesant, M. Left Atrial Shape Is Independent Predictor of Arrhythmia Recurrence after Catheter Ablation for Atrial Fibrillation: A Shape Statistics Study. Heart Rhythm O2 2021, 2, 622–632. [Google Scholar] [CrossRef]
- Varela, M.; Bisbal, F.; Zacur, E.; Berruezo, A.; Aslanidi, O.V.; Mont, L.; Lamata, P. Novel Computational Analysis of Left Atrial Anatomy Improves Prediction of Atrial Fibrillation Recurrence after Ablation. Front. Physiol. 2017, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Nairn, D.; Eichenlaub, M.; Lehrmann, H.; Muller-Edenborn, B.; Chen, J.; Huang, T.; Nagel, C.; Sanchez, J.; Luongo, G.; Arentz, T.; et al. Spatial Correlation of Left Atrial Low Voltage Substrate in Sinus Rhythm versus Atrial Fibrillation: Identifying the Pathological Substrate Irrespective of the Rhythm: The Rhythm Specificity of Atrial Low Voltage Substrate. J. Cardiovasc. Electrophysiol. 2023, 34, 1613–1621. [Google Scholar] [CrossRef] [PubMed]
- Labarthe, S.; Bayer, J.; Coudière, Y.; Henry, J.; Cochet, H.; Jaïs, P.; Vigmond, E. A Bilayermodel of Human Atria:Mathematical Background, Construction, and Assessment. Europace 2014, 16, iv21–iv29. [Google Scholar] [CrossRef] [PubMed]
- Roney, C.H.; Pashaei, A.; Meo, M.; Dubois, R.; Boyle, P.M.; Trayanova, N.A.; Cochet, H.; Niederer, S.A.; Vigmond, E.J. Universal Atrial Coordinates Applied to Visualisation, Registration and Construction of Patient Specific Meshes. Med. Image Anal. 2019, 55, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Fastl, T.E.; Tobon-Gomez, C.; Crozier, A.; Whitaker, J.; Rajani, R.; McCarthy, K.P.; Sanchez-Quintana, D.; Ho, S.Y.; O’Neill, M.D.; Plank, G.; et al. Personalized Computational Modeling of Left Atrial Geometry and Transmural Myofiber Architecture. Med. Image Anal. 2018, 47, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Zolotarev, A.M.; Khan, A.; Khan, R.; Slabaugh, G.; Roney, C.H. Predicting Atrial Fibrillation Treatment Outcome with Siamese Multi-Modal Fusion and Cardiac Digital Twins. In Proceedings of the Medical Imaging with Deep Learning, Paris, France, 3–5 July 2024. [Google Scholar]
- Aronis, K.N.; Ali, R.; Trayanova, N.A. The Role of Personalized Atrial Modeling in Understanding Atrial Fibrillation Mechanisms and Improving Treatment. Int. J. Cardiol. 2019, 287, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Zacur, E.; Choudhury, R.P.; Grau, V. Automated 3D Whole-Heart Mesh Reconstruction From 2D Cine MR Slices Using Statistical Shape Model. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Glasgow, UK, 11–15 July 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022; pp. 1702–1706. [Google Scholar]
- Li, J.; Chen, K.; He, L.; Luo, F.; Wang, X.; Hu, Y.; Zhao, J.; Zhu, K.; Chen, X.; Zhang, Y.; et al. Data-driven Classification of Left Atrial Morphology and Its Predictive Impact on Atrial Fibrillation Catheter Ablation. J. Cardiovasc. Electrophysiol. 2024, 35, 811–820. [Google Scholar] [CrossRef] [PubMed]
- Beetz, M.; Banerjee, A.; Grau, V. Multi-Domain Variational Autoencoders for Combined Modeling of MRI-Based Biventricular Anatomy and ECG-Based Cardiac Electrophysiology. Front. Physiol. 2022, 13, 886723. [Google Scholar] [CrossRef]
- Beetz, M.; Banerjee, A.; Grau, V. Multi-Objective Point Cloud Autoencoders for Explainable Myocardial Infarction Prediction. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Vancouver, BC, Canada, 8–12 October 2023; pp. 532–542. [Google Scholar]
- Beetz, M.; Acero, J.; Banerjee, A.; Eitel, I.; Zacur, E.; Lange, T.; Stiermaier, T.; Evertz, R.; Backhaus, S.; Thiele, H.; et al. Interpretable Cardiac Anatomy Modeling Using Variational Mesh Autoencoders. Front. Cardiovasc. Med. 2022, 9, 983868. [Google Scholar] [CrossRef]
- Muffoletto, M.; Xu, H.; Burns, R.; Suinesiaputra, A.; Nasopoulou, A.; Kunze, K.P.; Neji, R.; Petersen, S.E.; Niederer, S.A.; Rueckert, D.; et al. Evaluation of Deep Learning Estimation of Whole Heart Anatomy from Automated Cardiovascular Magnetic Resonance Short- and Long-Axis Analyses in UK Biobank. Eur. Heart J. Cardiovasc. Imaging 2024, jeae123. [Google Scholar] [CrossRef]
- Beetz, M.; Banerjee, A.; Grau, V. Generating Subpopulation-Specific Biventricular Anatomy Models Using Conditional Point Cloud Variational Autoencoders. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Strasbourg, France, 27 September 2021; Springer International Publishing: Cham, Switzerland, 2021; pp. 75–83. [Google Scholar]
- Peng, J.; Beetz, M.; Banerjee, A.; Chen, M.; Grau, V. Generating Virtual Populations of 3D Cardiac Anatomies with Snowflake-Net. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Vancouver, BC, Canada, 12 October 2023; pp. 163–173. [Google Scholar]
- Adams, J.; Khan, N.; Morris, A.; Elhabian, S. Learning Spatiotemporal Statistical Shape Models for Non-Linear Dynamic Anatomies. Front. Bioeng. Biotechnol. 2023, 11, 1086234. [Google Scholar] [CrossRef] [PubMed]
- Beetz, M.; Banerjee, A.; Grau, V. Modeling 3D Cardiac Contraction and Relaxation With Point Cloud Deformation Networks. IEEE J. Biomed. Health Inform. 2024. [Google Scholar] [CrossRef] [PubMed]
- Beetz, M.; Acero, J.C.; Banerjee, A.; Eitel, I.; Zacur, E.; Lange, T.; Stiermaier, T.; Evertz, R.; Backhaus, S.J.; Thiele, H.; et al. Mesh U-Nets for 3D Cardiac Deformation Modeling. In Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart, Singapore, 18 September 2022; pp. 245–257. [Google Scholar]
- Sanatkhani, S.; Nedios, S.; Menon, P.G.; Bollmann, A.; Hindricks, G.; Shroff, S.G. Subject-Specific Calculation of Left Atrial Appendage Blood-Borne Particle Residence Time Distribution in Atrial Fibrillation. Front. Physiol. 2021, 12, 633135. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Isla, G.; Olivares, A.L.; Silva, E.; Nunez-Garcia, M.; Butakoff, C.; Sanchez-Quintana, D.; Morales, G.H.; Freixa, X.; Noailly, J.; De Potter, T.; et al. Sensitivity Analysis of Geometrical Parameters to Study Haemodynamics and Thrombus Formation in the Left Atrial Appendage. Int. J. Numer. Method. Biomed. Eng. 2018, 34, e3100. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharp, A.J.; Betts, T.R.; Banerjee, A. Leveraging 3D Atrial Geometry for the Evaluation of Atrial Fibrillation: A Comprehensive Review. J. Clin. Med. 2024, 13, 4442. https://doi.org/10.3390/jcm13154442
Sharp AJ, Betts TR, Banerjee A. Leveraging 3D Atrial Geometry for the Evaluation of Atrial Fibrillation: A Comprehensive Review. Journal of Clinical Medicine. 2024; 13(15):4442. https://doi.org/10.3390/jcm13154442
Chicago/Turabian StyleSharp, Alexander J., Timothy R. Betts, and Abhirup Banerjee. 2024. "Leveraging 3D Atrial Geometry for the Evaluation of Atrial Fibrillation: A Comprehensive Review" Journal of Clinical Medicine 13, no. 15: 4442. https://doi.org/10.3390/jcm13154442
APA StyleSharp, A. J., Betts, T. R., & Banerjee, A. (2024). Leveraging 3D Atrial Geometry for the Evaluation of Atrial Fibrillation: A Comprehensive Review. Journal of Clinical Medicine, 13(15), 4442. https://doi.org/10.3390/jcm13154442