Task-Specific Perceived Harmfulness Predicts Protective Movement Behaviour in Chronic Low Back Pain
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Procedures
2.3.1. Questionnaires
- Sociodemographic data: Age and sex were collected via self-report, while height and weight were measured at the lab.
- Numeric Pain Rating Scale (NPRS) [23]: Both the current LBP intensity and the average LBP intensity over the past 7 days were collected on a 0 to 10 numeric rating scale (0 = no pain, 10 = worst imaginable pain).
- LBP duration: Participants were asked to indicate the duration of their current episode of CLBP.
- Roland Morris Disability Questionnaire (RMDQ) [24]: The RMDQ assesses LBP-related disability and consists of 24 items that have to be answered with yes or no. A higher score (range 0–24) represents a higher level of LBP-related disability.
- Tampa Scale for Kinesiophobia (TSK) [25]: The TSK is a questionnaire containing 17 items to assess subjective ratings of fear of movement/re-injury due to physical activity. The total score (TSK-total) ranges between 17 and 68, with a higher score indicating a higher level of pain-related fear. For patients with CLBP, two subscales can be discerned in the TSK. The Activity Avoidance subscale (TSK-AA) specifically measures activity avoidance and fear of re-injury, whereas the Somatic Focus subscale (TSK-SF) assesses to which extent patients believe that their LBP can be attributed to a serious underlying medical problem [26]. Because it has previously been hypothesized that the TSK-AA might stronger associated with movement-related parameters than the TSK-total or TSK-SF [27], a separate score for the TSK-AA (range 8–32) and for the TSK-SF (range 5–20) was also calculated.
- The Photograph Series of Daily Activities—Short Electronic Version (PHODA-SeV) [28]: The PHODA-SeV assesses the perceived harmfulness of various daily life activities. Participants are shown pictures of persons performing daily life activities (40 in total), and they are asked to imagine themselves performing these activities as shown on the pictures. For each activity, participants need to indicate to which extent they think the activities are harmful to their back, by using a 0 to 100 scale (0 = not harmful at all, 100 = extremely harmful). A total score (0 to 100) is calculated by averaging the scores of the 40 pictures (=PHODA-Total). The score (range 0 to 100) on one specific picture of the PHODA-SeV, displaying a lifting task with a bent back (see Figure 1a), was defined a priori as a task-specific measure of perceived harmfulness (=PHODA-lift), as this task is very similar the task that participants had to perform in the current study (i.e., lifting an object of similar dimensions).
2.3.2. Movement Task
2.3.3. Kinematic Data Acquisition and Processing
2.4. Statistical Analyses
2.5. Sample Size
3. Results
3.1. Participants
3.2. Relationships between Pain-Related Psychological Measures and Movement Parameters
3.3. Comparison between Patients with Chronic Low Back Pain and Pain-Free Persons
3.3.1. Complete Chronic Low Back Pain Group vs. Pain-Free Participants
3.3.2. Chronic Low Back Pain Subgroups vs. Pain-Free Participants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef]
- Wallwork, S.B.; Braithwaite, F.A.; O’Keeffe, M.; Travers, M.J.; Summers, S.J.; Lange, B.; Hince, D.A.; Costa, L.O.P.; Menezes Costa, L.D.C.; Chiera, B.; et al. The clinical course of acute, subacute and persistent low back pain: A systematic review and meta-analysis. CMAJ 2024, 196, E29–E46. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Hübscher, M.; Moseley, G.L.; Kamper, S.J.; Traeger, A.C.; Mansell, G.; McAuley, J.H. How does pain lead to disability? A systematic review and meta-analysis of mediation studies in people with back and neck pain. Pain 2015, 156, 988–997. [Google Scholar] [CrossRef] [PubMed]
- Hodges, P.W.; Smeets, R.J. Interaction between pain, movement, and physical activity: Short-term benefits, long-term consequences, and targets for treatment. Clin. J. Pain 2015, 31, 97–107. [Google Scholar] [CrossRef]
- Crombez, G.; Eccleston, C.; Van Damme, S.; Vlaeyen, J.W.; Karoly, P. Fear-avoidance model of chronic pain: The next generation. Clin. J. Pain 2012, 28, 475–483. [Google Scholar] [CrossRef]
- Maher, C.; Underwood, M.; Buchbinder, R. Non-specific low back pain. Lancet 2017, 389, 736–747. [Google Scholar] [CrossRef]
- Meulders, A. Fear in the context of pain: Lessons learned from 100 years of fear conditioning research. Behav. Res. Ther. 2020, 131, 103635. [Google Scholar] [CrossRef]
- Beckers, T.; Hermans, D.; Lange, I.; Luyten, L.; Scheveneels, S.; Vervliet, B. Understanding clinical fear and anxiety through the lens of human fear conditioning. Nat. Rev. Psychol. 2023, 2, 233–245. [Google Scholar] [CrossRef]
- Vlaeyen, J.W.; Crombez, G.; Linton, S.J. The fear-avoidance model of pain. Pain 2016, 157, 1588–1589. [Google Scholar] [CrossRef]
- Mowrer, O.H. Learning Theory and Behavior; John Wiley & Sons Inc.: New York, NY, USA, 1960. [Google Scholar]
- Matheve, T.; Janssens, L.; Goossens, N.; Danneels, L.; Willems, T.; Van Oosterwijck, J.; De Baets, L. The Relationship between Pain-Related Psychological Factors and Maximal Physical Performance in Low Back Pain: A Systematic Review and Meta-Analysis. J. Pain. Off. J. Am. Pain Soc. 2022, 23, 2036–2051. [Google Scholar] [CrossRef]
- Christe, G.; Crombez, G.; Edd, S.; Opsommer, E.; Jolles, B.M.; Favre, J. Relationship between psychological factors and spinal motor behaviour in low back pain: A systematic review and meta-analysis. Pain 2021, 162, 672–686. [Google Scholar] [CrossRef] [PubMed]
- Ippersiel, P.; Teoli, A.; Wideman, T.H.; Preuss, R.A.; Robbins, S.M. The Relationship between Pain-Related Threat and Motor Behavior in Nonspecific Low Back Pain: A Systematic Review and Meta-Analysis. Phys. Ther. 2022, 102, pzab274. [Google Scholar] [CrossRef] [PubMed]
- Van Wesemael, S.; Bogaerts, K.; De Baets, L.; Goossens, N.; Vlemincx, E.; Amerijckx, C.; Sohail, S.; Matheve, T.; Janssens, L. The association between pain-related psychological variables and postural control in low back pain: A systematic review and meta-analysis. Gait Posture 2024, 107, 253–268. [Google Scholar] [CrossRef] [PubMed]
- De Baets, L.; Meulders, A.; Van Damme, S.; Caneiro, J.P.; Matheve, T. Understanding discrepancies in a person’s fear of movement and avoidance behaviour: A guide for musculoskeletal rehabilitation clinicians who support people with chronic musculoskeletal pain. J. Orthop. Sports Phys. Ther. 2023, 53, 307–316. [Google Scholar] [CrossRef]
- Matheve, T.; de Baets, L.; Bogaerts, K.; Timmermans, A. Lumbar range of motion in chronic low back pain is predicted by task-specific, but not by general measures of pain-related fear. Eur. J. Pain 2019, 23, 1171–1184. [Google Scholar] [CrossRef]
- Imai, R.; Imaoka, M.; Nakao, H.; Hida, M.; Fujii, R.; Shiba, T.; Nishigami, T. Task-specific fear rather than general kinesiophobia assessment is associated with kinematic differences in chronic low back pain during lumbar flexion: A preliminary investigation. Pain Rep. 2022, 7, 1025. [Google Scholar] [CrossRef]
- Wildenbeest, M.H.; Kiers, H.; Tuijt, M.; van Dieën, J.H. Associations of low-back pain and pain-related cognitions with lumbar movement patterns during repetitive seated reaching. Gait Posture 2021, 91, 216–222. [Google Scholar] [CrossRef]
- Knechtle, D.; Schmid, S.; Suter, M.; Riner, F.; Moschini, G.; Senteler, M.; Schweinhardt, P.; Meier, M.L. Fear-avoidance beliefs are associated with reduced lumbar spine flexion during object lifting in pain-free adults. Pain 2021, 162, 1621–1631. [Google Scholar] [CrossRef]
- Liechti, M.; von Arx, M.; Eichelberger, P.; Bangerter, C.; Meier, M.L.; Schmid, S. Spatial distribution of erector spinae activity is related to task-specific pain-related fear during a repetitive object lifting task. J. Electromyogr. Kinesiol. 2022, 65, 102678. [Google Scholar] [CrossRef]
- Chang, R.; Smith, A.; Kent, P.; O’Sullivan, P.; Hancock, M.; Campbell, A. How Movement Is Assessed Matters. Changes in Forward Bending during Cognitive Functional Therapy Treatment for People with Chronic Low Back Pain. J. Orthop. Sports Phys. Ther. 2024, 54, 209–221. [Google Scholar] [CrossRef]
- Wernli, K.; O’Sullivan, P.; Smith, A.; Campbell, A.; Kent, P. Movement, posture and low back pain. How do they relate? A replicated single-case design in 12 people with persistent, disabling low back pain. Eur. J. Pain 2020, 24, 1831–1849. [Google Scholar] [CrossRef] [PubMed]
- Wernli, K.; Tan, J.; O’Sullivan, P.; Smith, A.; Campbell, A.; Kent, P. The Relationship Between Changes in Movement and Changes in Low Back Pain: A Systematic Review of Single-Case Designs. JOSPT Cases 2021, 1, 199–219. [Google Scholar] [CrossRef]
- Matheve, T.; Brumagne, S.; Demoulin, C.; Timmermans, A. Sensor-based postural feedback is more effective than conventional feedback to improve lumbopelvic movement control in patients with chronic low back pain: A randomised controlled trial. J. Neuroeng. Rehabil. 2018, 15, 85. [Google Scholar] [CrossRef]
- WHO. Low Back Pain—Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/low-back-pain (accessed on 20 August 2024).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum: Hillsdale, MI, USA, 1988. [Google Scholar]
- Vaisy, M.; Gizzi, L.; Petzke, F.; Consmuller, T.; Pfingsten, M.; Falla, D. Measurement of Lumbar Spine Functional Movement in Low Back Pain. Clin. J. Pain 2015, 31, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Intolo, P.; Milosavljevic, S.; Baxter, D.G.; Carman, A.B.; Pal, P.; Munn, J. The effect of age on lumbar range of motion: A systematic review. Man. Ther. 2009, 14, 596–604. [Google Scholar] [CrossRef]
- Laird, R.A.; Gilbert, J.; Kent, P.; Keating, J.L. Comparing lumbo-pelvic kinematics in people with and without back pain: A systematic review and meta-analysis. BMC Musculoskelet. Disord. 2014, 15, 229. [Google Scholar] [CrossRef]
- Marich, A.V.; Hwang, C.T.; Salsich, G.B.; Lang, C.E.; Van Dillen, L.R. Consistency of a lumbar movement pattern across functional activities in people with low back pain. Clin. Biomech. 2017, 44, 45–51. [Google Scholar] [CrossRef]
- Karayannis, N.V.; Jull, G.A.; Nicholas, M.K.; Hodges, P.W. Psychological Features and Their Relationship to Movement-Based Subgroups in People Living with Low Back Pain. Arch. Phys. Med. Rehabil. 2018, 99, 121–128. [Google Scholar] [CrossRef]
- Laird, R.A.; Keating, J.L.; Kent, P. Subgroups of lumbo-pelvic flexion kinematics are present in people with and without persistent low back pain. BMC Musculoskelet. Disord. 2018, 19, 309. [Google Scholar] [CrossRef]
- Matheve, T.; Hodges, P.; Danneels, L. The Role of Back Muscle Dysfunctions in Chronic Low Back Pain: State-of-the-Art and Clinical Implications. J. Clin. Med. 2023, 12, 5510. [Google Scholar] [CrossRef]
- Falla, D.; Gallina, A. New insights into pain-related changes in muscle activation revealed by high-density surface electromyography. J. Electromyogr. Kinesiol. 2020, 52, 102422. [Google Scholar] [CrossRef]
- Slade, S.C.; Patel, S.; Underwood, M.; Keating, J.L. What are patient beliefs and perceptions about exercise for nonspecific chronic low back pain? A systematic review of qualitative studies. Clin. J. Pain 2014, 30, 995–1005. [Google Scholar] [CrossRef] [PubMed]
- Vlaeyen, J.; Morley, J.S.; Linton, S.J.; Boersma, K.; de Jong, J. Pain-Related Fear: Exposure-Based Treatment of Chronic Pain; IASP Press: Washington, DC, USA, 2012. [Google Scholar]
- den Hollander, M.; Smeets, R.; van Meulenbroek, T.; van Laake-Geelen, C.C.M.; Baadjou, V.A.; Timmers, I. Exposure in Vivo as a Treatment Approach to Target Pain-Related Fear: Theory and New Insights from Research and Clinical Practice. Phys. Ther. 2022, 102, pzab270. [Google Scholar] [CrossRef]
- Caneiro, J.P.; Smith, A.; Bunzli, S.; Linton, S.; Moseley, G.L.; O’Sullivan, P. From Fear to Safety: A Roadmap to Recovery from Musculoskeletal Pain. Phys. Ther. 2022, 102, pzab271. [Google Scholar] [CrossRef]
- Craske, M.G.; Treanor, M.; Conway, C.C.; Zbozinek, T.; Vervliet, B. Maximizing exposure therapy: An inhibitory learning approach. Behav. Res. Ther. 2014, 58, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Sleijser-Koehorst, M.L.S.; Bijker, L.; Cuijpers, P.; Scholten-Peeters, G.G.M.; Coppieters, M.W. Preferred self-administered questionnaires to assess fear of movement, coping, self-efficacy, and catastrophizing in patients with musculoskeletal pain—A modified Delphi study. Pain 2019, 160, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Farshad, M.; Aichmair, A.; Götschi, T.; Senteler, M.; Urbanschitz, L. How is spinal range of motion affected by disc- and facet degeneration and spinopelvic anatomy? N. Am. Spine Soc. J. 2021, 7, 100076. [Google Scholar] [CrossRef]
Pain-Free Persons (n = 54) | Patients with CLBP (n = 55) | p | ||
---|---|---|---|---|
Sociodemographic data | ||||
Age (years) | 36.9 (13.1) | 41.1 (13.6) | 0.11 | |
Sex (n, %) | 34 (62%) | 26 (47%) | 0.10 | |
BMI (kg/m2) | 23.2 (3.5) | 24.2 (3.4) | 0.13 | |
LBP questionnaires | Mean (SD) | Median (IQR) | ||
LBP duration (years) a | 7.2 (7.3) | 5 (2 to 11) | ||
NPRS now (0 to 10) | 3.3 (2.1) | 3 (2 to 5) | ||
NPRS 7 days (0 to 10) | 4.6 (1.7) | 5 (3 to 6) | ||
RMDQ (0 to 24) a | 8.0 (4.1) | 7 (5 to 11) | ||
PHODA-Total (0 to 100) | 41.0 (13.6) | 42.1 (33.8 to 49.3) | ||
PHODA-Lift (0 to 100) a | 72.9 (18.9) | 77 (60 to 89) | ||
TSK-Total (17 to 68) | 36.5 (6.9) | 34 (31 to 42) | ||
TSK-SF (5 to 20) | 10.0 (3.2) | 10 (7 to 12) | ||
TSK-AA (8 to 32) a | 17.5 (4.6) | 16 (13 to 20) |
LS (°/s) | L1 (°/s) | S1 (°/s) | Duration (s) | |
---|---|---|---|---|
TSK-total | −0.11 | 0.05 | 0.17 | 0.02 |
(0.43) | (0.71) | (0.23) | (0.86) | |
TSK-AA | −0.14 | 0.03 | 0.11 | −0.02 |
(0.30) | (0.85) | (0.41) | (0.88) | |
TSK-SF | −0.06 | −0.03 | 0.09 | 0.01 |
(0.69) | (0.84) | (0.51) | (0.92) | |
PHODA-Total | −0.13 | −0.25 | −0.18 | 0.37 |
(0.36) | (0.07) | (0.19) | (0.007) | |
PHODA-Lift | −0.57 | −0.55 | −0.20 | 0.63 |
(<0.0001) | (<0.0001) | (0.15) | (<0.0001) |
Parameter | St. Beta | SE | p | R2 adj Basic Model | R2 adj Full Model | ΔR2 adj | |
---|---|---|---|---|---|---|---|
LS velocity (°/s) | Sex | 1.82 | 0.99 | 0.07 | 0.19 | 0.17 | −0.02 |
Age | −0.08 | 0.09 | 0.41 | ||||
NPRS | −1.00 | 0.52 | 0.06 | ||||
LBP duration | −0.01 | 0.15 | 0.95 | ||||
RMDQ | −0.36 | 0.27 | 0.19 | ||||
PHODA-Total | −0.03 | 0.08 | 0.71 | ||||
L1 velocity (°/s) | Sex | 3.83 | 1.74 | 0.03 | 0.07 | 0.11 | 0.04 |
Age | 0.24 | 0.16 | 0.15 | ||||
NPRS | −1.51 | 0.92 | 0.11 | ||||
LBP duration | −0.30 | 0.19 | 0.11 | ||||
RMDQ | −0.42 | 0.46 | 0.37 | ||||
PHODA-Total | −0.23 | 0.13 | 0.09 | ||||
S1 velocity (°/s) | Sex | 1.95 | 1.24 | 0.12 | 0.04 | 0.10 | 0.06 |
Age | 0.30 | 0.12 | 0.01 | ||||
NPRS | −0.49 | 0.66 | 0.46 | ||||
LBP duration | −0.25 | 0.13 | 0.06 | ||||
RMDQ | −0.04 | 0.33 | 0.90 | ||||
PHODA-Total | −0.20 | 0.09 | 0.04 | ||||
Duration (s) | Sex | 0.044 | 0.030 | 0.15 | 0.03 | 0.11 | 0.08 |
Age | 0.001 | 0.003 | 0.67 | ||||
NPRS | −0.012 | 0.016 | 0.47 | ||||
LBP duration | 0.004 | 0.003 | 0.26 | ||||
RMDQ | 0.002 | 0.008 | 0.76 | ||||
PHODA-Total | 0.005 | 0.002 | 0.02 | ||||
Sex | 0.053 | 0.025 | 0.04 | 0.03 | 0.37 | 0.34 | |
Age | 0.002 | 0.002 | 0.45 | ||||
NPRS | −0.011 | 0.013 | 0.40 | ||||
LBP duration | 0.004 | 0.003 | 0.20 | ||||
RMDQ | −0.003 | 0.007 | 0.70 | ||||
PHODA-Total | 0.000 | 0.002 | 0.91 | ||||
PHODA-Lift | 0.007 | 0.002 | <0.0001 |
Parameter | St. Beta | SE | p | R2 adj Basic Model | R2 adj Full Model | ΔR2 adj | |
---|---|---|---|---|---|---|---|
LS velocity (°/s) | Sex | 1.74 | 0.81 | 0.04 | 0.19 | 0.43 | 0.25 |
Age | −0.10 | 0.07 | 0.20 | ||||
NPRS | −0.95 | 0.43 | 0.03 | ||||
LBP duration | 0.00 | 0.12 | 0.99 | ||||
RMDQ | −0.12 | 0.23 | 0.60 | ||||
PHODA-Lift | −0.22 | 0.05 | <0.0001 | ||||
L1 velocity (°/s) | Sex | 3.43 | 1.57 | 0.03 | 0.07 | 0.26 | 0.19 |
Age | 0.21 | 0.15 | 0.16 | ||||
NPRS | −1.53 | 0.83 | 0.07 | ||||
LBP duration | −0.30 | 0.17 | 0.08 | ||||
RMDQ | −0.19 | 0.42 | 0.65 | ||||
PHODA-Lift | −0.32 | 0.09 | 0.0006 | ||||
S1 velocity (°/s) | Sex | 1.64 | 1.26 | 0.20 | 0.04 | 0.06 | 0.02 |
Age | 0.29 | 0.12 | 0.02 | ||||
NPRS | −0.56 | 0.67 | 0.41 | ||||
LBP duration | −0.26 | 0.14 | 0.07 | ||||
RMDQ | −0.06 | 0.34 | 0.85 | ||||
PHODA-Lift | −0.11 | 0.07 | 0.13 | ||||
Duration (s) | Sex | 0.053 | 0.025 | 0.04 | 0.03 | 0.38 | 0.35 |
Age | 0.002 | 0.002 | 0.45 | ||||
NPRS | −0.011 | 0.013 | 0.40 | ||||
LBP duration | 0.004 | 0.003 | 0.19 | ||||
RMDQ | −0.003 | 0.007 | 0.71 | ||||
PHODA-Lift | 0.007 | 0.001 | <0.0001 |
Mean Estimate (SE) | Mean Difference (SE) | ES (d) | p | ||
---|---|---|---|---|---|
LS velocity (°/s) | Pain-free | 28.1 (1.3) | |||
CLBP | 18.3 (1.3) | 9.8 (1.8) | 1.02 | <0.0001 | |
L1 velocity (°/s) | Pain-free | 51.8 (2.0) | |||
CLBP | 39.6 (1.9) | 12.2 (2.8) | 0.85 | <0.0001 | |
S1 velocity (°/s) | Pain-free | 23.2 (1.5) | |||
CLBP | 21.4 (1.4) | 1.9 (2.1) | 0.17 | 0.37 | |
Duration (s) | Pain-free | 1.20 (0.03) | |||
CLBP | 1.39 (0.03) | 0.19 (0.04) | 1.01 | <0.0001 |
Mean Estimate (SE) | Mean Difference (SE) | ES (g) | p | ||
---|---|---|---|---|---|
LS velocity (°/s) | Pain-free | 28.1 (1.2) | |||
Low | 23.6 (2.2) | 4.6 (2.5) | 0.5 | 0.2 | |
Medium | 18.8 (2.1) | 9.4 (2.4) | 1.05 | 0.0006 | |
High | 13.3 (2.0) | 14.8 (2.4) | 1.69 | <0.0001 | |
L1 velocity (°/s) | Pain-free | 51.8 (1.9) | |||
Low | 47.3 (3.4) | 4.4 (3.8) | 0.32 | 0.56 | |
Medium | 42.3 (3.1) | 9.4 (3.7) | 0.7 | 0.03 | |
High | 30.3 (3.1) | 21.4 (3.6) | 1.58 | <0.0001 | |
S1 velocity (°/s) | Pain-free | 23.2 (1.5) | |||
Low | 23.7 (2.6) | −0.53 (3.0) | −0.05 | 0.99 | |
Medium | 23.7 (2.4) | −0.53 (2.9) | −0.05 | 0.98 | |
High | 16.9 (2.4) | 6.2 (2.8) | 0.59 | 0.08 | |
Duration (s) | Pain-free | 1.20 (0.02) | |||
Low | 1.24 0.04) | 0.03 (0.05) | 0.26 | 0.85 | |
Medium | 1.37 (0.04) | 0.17 (0.05) | 1.13 | 0.001 | |
High | 1.53 (0.04) | 0.33 (0.04) | 2.12 | <0.0001 |
Mean Estimate (SE) | Mean Difference (SE) | ES (g) | p | ||
---|---|---|---|---|---|
LS velocity (°/s) | Pain-free | 28.1 (1.2) | |||
Low | 19.4 (2.2) | 8.8 (2.6) | 0.93 | 0.003 | |
Medium | 17.4 (2.2) | 10.7 (2.6) | 1.14 | 0.0002 | |
High | 18.2 (2.3) | 9.9 (2.7) | 1.03 | 0.001 | |
L1 velocity (°/s) | Pain-free | 51.8 (2.0) | |||
Low | 44.4 (3.3) | 7.5 (4.1) | 0.54 | 0.16 | |
Medium | 39.6 (3.4) | 12.3 (3.9) | 0.83 | 0.006 | |
High | 34.7 (3.5) | 17.1 (4.1) | 1.15 | 0.0002 | |
S1 velocity (°/s) | Pain-free | 23.3 (1.5) | |||
Low | 25.1 (2.5) | −1.8 (2.9) | −0.16 | 0.59 | |
Medium | 22.0 (2.5) | 1.3 (2.9) | 0.12 | 0.95 | |
High | 16.7 (2.6) | 6.5 (3.0) | 0.59 | 0.09 | |
Duration (s) | Pain-free | 1.20 (0.03) | |||
Low | 1.31 (0.04) | 0.10 (0.05) | 0.53 | 0.11 | |
Medium | 1.38 (0.04) | 0.18 (0.05) | 0.86 | 0.002 | |
High | 1.48 (0.04) | 0.28 (0.02) | 1.34 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matheve, T.; Timmermans, A.; Danneels, L.; De Baets, L. Task-Specific Perceived Harmfulness Predicts Protective Movement Behaviour in Chronic Low Back Pain. J. Clin. Med. 2024, 13, 5025. https://doi.org/10.3390/jcm13175025
Matheve T, Timmermans A, Danneels L, De Baets L. Task-Specific Perceived Harmfulness Predicts Protective Movement Behaviour in Chronic Low Back Pain. Journal of Clinical Medicine. 2024; 13(17):5025. https://doi.org/10.3390/jcm13175025
Chicago/Turabian StyleMatheve, Thomas, Annick Timmermans, Lieven Danneels, and Liesbet De Baets. 2024. "Task-Specific Perceived Harmfulness Predicts Protective Movement Behaviour in Chronic Low Back Pain" Journal of Clinical Medicine 13, no. 17: 5025. https://doi.org/10.3390/jcm13175025
APA StyleMatheve, T., Timmermans, A., Danneels, L., & De Baets, L. (2024). Task-Specific Perceived Harmfulness Predicts Protective Movement Behaviour in Chronic Low Back Pain. Journal of Clinical Medicine, 13(17), 5025. https://doi.org/10.3390/jcm13175025