Impact of Spa Therapy on Symptoms and Quality of Life in Post-COVID-19 Patients with Chronic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Study Design
2.2. Anti-SARS-CoV-2 Vaccination Status
2.3. Post-COVID-19 Condition
2.4. Symptom and QoL Assessment
2.5. Statistical Analysis
3. Results
3.1. Characteristics at Enrollment
3.2. Effects of Spa Therapy on Post-COVID-19 and Disease-Specific Symptoms
3.3. QoL Improvement in Post-COVID-19 Patients
3.4. Satisfaction of Spa Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahn, D.G.; Shin, H.J.; Kim, M.H.; Lee, S.; Kim, H.S.; Myoung, J.; Kim, B.T.; Kim, S.J. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J. Microbiol. Biotechnol. 2020, 30, 313–324. [Google Scholar] [CrossRef]
- Giuliano, M.; Tiple, D.; Agostoni, P.; Armocida, B.; Biardi, L.; Bonfigli, A.R.; Campana, A.; Ciardi, M.; Di Marco, F.; Floridia, M.; et al. Italian good practice recommendations on management of persons with Long-COVID. Front. Public Health 2023, 11, 1122141. [Google Scholar] [CrossRef]
- World Health Organization. Available online: https://www.who.int/europe/news-room/fact-sheets/item/post-covid-19-condition (accessed on 30 July 2024).
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef]
- Natarajan, A.; Shetty, A.; Delanerolle, G.; Zeng, Y.; Zhang, Y.; Raymont, V.; Rathod, S.; Halabi, S.; Elliot, K.; Shi, J.Q.; et al. A systematic review and meta-analysis of long COVID symptoms. Syst. Rev. 2023, 12, 88. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Williamson, E.J.; Walker, A.J.; Bhaskaran, K.; Bacon, S.; Bates, C.; Morton, C.E.; Curtis, H.J.; Mehrkar, A.; Evans, D.; Inglesby, P.; et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020, 584, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Profili, F.; Ballo, P.; Balzi, D.; Bellini, B.; Bartalocci, S.; Zuppiroli, A.; Voller, F.; Francesconi, P. Chronic diseases and risk of symptomatic COVID-19: Results of a case-population study on a sample of patients in the Local Health Unit ‘Toscana Centro’ (Tuscany Region, Central Italy. Epidemiol. Prev. 2020, 44 (Suppl. S2), 308–314. [Google Scholar] [PubMed]
- COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19; National Institute for Health and Care Excellence (NICE): London, UK, 2020. [PubMed]
- Gentilotti, E.; Górska, A.; Tami, A.; Gusinow, R.; Mirandola, M.; Rodríguez Baño, J.; Palacios Baena, Z.R.; Rossi, E.; Hasenauer, J.; Lopes-Rafegas, I.; et al. Clinical phenotypes and quality of life to define post-COVID-19 syndrome: A cluster analysis of the multinational, prospective ORCHESTRA cohort. eClinicalMedicine 2023, 62, 102107. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html (accessed on 21 February 2024).
- Accademia Nazionale dei Lincei. Available online: https://www.lincei.it/sites/default/files/documenti/Commissioni/ANL_Com-Covid_DOC_Long_Covid_20220613.pdf (accessed on 20 February 2024).
- Swarnakar, R.; Jenifa, S.; Wadhwa, S. Musculoskeletal complications in long COVID-19: A systematic review. World J. Virol. 2022, 11, 485–495. [Google Scholar] [CrossRef]
- Khoja, O.; Silva Passadouro, B.; Mulvey, M.; Delis, I.; Astill, S.; Tan, A.L.; Sivan, M. Clinical Characteristics and Mechanisms of Musculoskeletal Pain in Long COVID. J. Pain Res. 2022, 15, 1729–1748. [Google Scholar] [CrossRef] [PubMed]
- Spinicci, M.; Graziani, L.; Tilli, M.; Nkurunziza, J.; Vellere, I.; Borchi, B.; Mencarini, J.; Campolmi, I.; Gori, L.; Giovannoni, L.; et al. Infection with SARS-CoV-2 Variants Is Associated with Different Long COVID Phenotypes. Viruses 2022, 14, 2367. [Google Scholar] [CrossRef] [PubMed]
- González-Andrade, F. Post-COVID-19 conditions in Ecuadorian patients: An observational study. Lancet Reg. Health Am. 2022, 5, 100088. [Google Scholar] [CrossRef]
- Samartsev, I.N.; Zhivolupov, S.A.; Butakova, J.S.; Parshin, M.S. The open observational study of aceclofenac and vinpocetine effectiveness and tolerability in treatment of patients with chronic cerebrovascular disease after COVID-19 (AQUA study). Zhurnal Nevrol. Psikhiatrii Im. SS Korsakova 2021, 121, s1–s8. [Google Scholar] [CrossRef]
- Yong, S.J. Long COVID or post-COVID-19 syndrome: Putative pathophysiology, risk factors, and treatments. Infect. Dis. 2021, 53, 737–754. [Google Scholar] [CrossRef]
- Montani, D.; Savale, L.; Noel, N.; Meyrignac, O.; Colle, R.; Gasnier, M.; Corruble, E.; Beurnier, A.; Jutant, E.M.; Pham, T.; et al. Post-acute COVID-19 syndrome. Eur. Respir. Rev. 2022, 31, 210185. [Google Scholar] [CrossRef]
- Tabacof, L.; Tosto-Mancuso, J.; Wood, J.; Cortes, M.; Kontorovich, A.; McCarthy, D.; Rizk, D.; Rozanski, G.; Breyman, E.; Nasr, L.; et al. Post-acute COVID-19 Syndrome Negatively Impacts Physical Function, Cognitive Function, Health-Related Quality of Life, and Participation. Am. J. Phys. Med. Rehabil. 2022, 101, 48–52. [Google Scholar] [CrossRef] [PubMed]
- Costantino, M.; Sellitto, C.; Conti, V.; Corbi, G.; Marongiu, F.; Genovese, G.; Moccia, G.; Capunzo, M.; Borrelli, A.; Pagliano, P.; et al. Adverse Events Associated with BNT162b2 and AZD1222 Vaccines in the Real World: Surveillance Report in a Single Italian Vaccine Center. J. Clin. Med. 2022, 11, 1408. [Google Scholar] [CrossRef]
- Azzolini, E.; Levi, R.; Sarti, R.; Pozzi, C.; Mollura, M.; Mantovani, A.; Rescigno, M. Association Between BNT162b2 Vaccination and Long COVID After Infections Not Requiring Hospitalization in Health Care Workers. JAMA 2022, 328, 676–678. [Google Scholar] [CrossRef] [PubMed]
- Costantino, M. The rhinogenic deafness and SPA therapy: Clinical-experimental study. Clin. Ter. 2008, 159, 311–315. [Google Scholar] [PubMed]
- Costantino, M.; Giampaolo, C.; Filippelli, A. Effects of drinking spa therapy on oxidative stress. Clin. Ter. 2012, 163, e13–e17. [Google Scholar]
- Costantino, M.; Izzo, V.; Conti, V.; Manzo, V.; Guida, A.; Filippelli, A. Sulphate mineral waters: A medical resource in several disorders. J. Tradit. Complement. Med. 2019, 10, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Braga, P.C.; Ceci, C.; Marabini, L.; Nappi, G. The antioxidant activity of sulphurous thermal water protects against oxidative DNA damage: A comet assay investigation. Drug Res. 2013, 63, 198–202. [Google Scholar] [CrossRef]
- Benedetti, S.; Benvenuti, F.; Nappi, G.; Fortunati, N.A.; Marino, L.; Aureli, T.; De Luca, S.; Pagliarani, S.; Canestrari, F. Antioxidative effects of sulfurous mineral water: Protection against lipid and protein oxidation. Eur. J. Clin. Nutr. 2009, 63, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, S.; Canino, C.; Tonti, G.; Medda, V.; Calcaterra, P.; Nappi, G.; Salaffi, F.; Canestrari, F. Biomarkers of oxidation, inflammation and cartilage degradation in osteoarthritis patients undergoing sulfur-based spa therapies. Clin. Biochem. 2010, 43, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Forestier, R.; Erol Forestier, F.B.; Francon, A. Spa therapy and knee osteoarthritis: A systematic review. Ann. Phys. Rehabil. Med. 2016, 59, 216–226. [Google Scholar] [CrossRef]
- Costantino, M.; Conti, V.; Corbi, G.; Filippelli, A. Hydropinotherapy with Sulphurous Mineral Water as Complementary Treatment to Improve Glucose Metabolism, Oxidative Status, and Quality of Life. Antioxidants 2021, 10, 1773. [Google Scholar] [CrossRef]
- Constant, F.; Collin, J.F.; Guillemin, F.; Boulangé, M. Efficacy of spa therapy and rehabilitation for the treatment of chronic low back pain: A randomized controlled trial. J. Rheumatol. 2016, 55, 829–837. [Google Scholar]
- Karagülle, Z.; Karagülle, M. Effectiveness of balneotherapy and spa therapy for the treatment of chronic low back pain: A review on latest evidence. Clin. Rheumatol. 2015, 34, 207–214. [Google Scholar] [CrossRef]
- Matz, H.; Orion, E.; Wolf, R. Balneotherapy in dermatology. Dermatol. Ther. 2003, 16, 132–140. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long covid—Mechanisms, risk factors, and management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef]
- Angioni, M.M.; Denotti, A.; Pinna, S.; Sanna, C.; Montisci, F.; Dessole, G.; Loi, A.; Cauli, A. Spa therapy induces clinical improvement and protein changes in patients with chronic back pain. Reumatismo 2019, 71, 119–131. [Google Scholar] [CrossRef]
- Costantino, M.; Conti, V.; Corbi, G.; Marongiu, F.; Marongiu, M.B.; Filippelli, A. Sulphurous mud-bath therapy for treatment of chronic low back pain caused by lumbar spine osteoarthritis. Intern. Emerg. Med. 2019, 14, 187–190. [Google Scholar] [CrossRef]
- Antonelli, M.; Donelli, D.; Fioravanti, A. Effects of balneotherapy and spa therapy on quality of life of patients with knee osteoarthritis: A systematic review and meta-analysis. Rheumatol. Int. 2018, 38, 1807–1824. [Google Scholar] [CrossRef]
- Costantino, M.; Filippelli, A. Impact of SPA therapy with sulphureous mineral water on quality of life and psychological distress in chronic plaque psoriasis. Clin. Ter. 2014, 165, e277-84. [Google Scholar] [PubMed]
- Çetinkaya, F.N.; Koçak, F.A.; Kurt, E.E.; Güçlü, K.; Tuncay, F.; Şaş, S.; Erdem, H.R. The Effects of Balneotherapy on Oxidant/Antioxidant Status in Patients with Fibromyalgia: An Observational Study. Arch. Rheumatol. 2020, 35, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Protano, C.; Fontana, M.; De Giorgi, A.; Marotta, D.; Cocomello, N.; Crucianelli, S.; Del Cimmuto, A.; Vitali, M. Balneotherapy for osteoarthritis: A systematic review. Rheumatol. Int. 2023, 43, 1597–1610. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, T.; Knight, M.; A’court, C.; Buxton, M.; Husain, L. Management of post-acute covid-19 in primary care. BMJ 2020, 370, m3026. [Google Scholar] [CrossRef]
- Davis, H.E.; Assaf, G.S.; McCorkell, L.; Wei, H.; Low, R.J.; Re’Em, Y.; Redfield, S.; Austin, J.P.; Akrami, A. Characterizing Long COVID in an International Cohort: 7 Months of Symptoms and Their Impact. EClinicalMedicine 2021, 38, 101019. [Google Scholar] [CrossRef]
- Scott, J.; Huskisson, E.C. Vertical or horizontal visual analogue scales. Ann. Rheum. Dis. 1979, 38, 560. [Google Scholar] [CrossRef]
- Mahler, D.A.; Wells, C.K. Evaluation of clinical methods for rating dyspnea. Chest 1988, 93, 580–586. [Google Scholar] [CrossRef]
- Apolone, G.; Mosconi, P. The Italian SF-36 Health Survey: Translation, validation and norming. J. Clin. Epidemiol. 1998, 51, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Steward, A.L.; Hays, R.D.; Ware, J.E., Jr. The MOS Short Form general Health Survey: Reliability and Validity in a Patient Population. Med. Care 1988, 26, 724–735. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E., Jr.; Sherbourne, C.D. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Piccinni, A.; Maser, J.D.; Bazzichi, L.; Rucci, P.; Vivarelli, L.; Del Debbio, A.; Catena, M.; Bombardieri, S.; Dell’Osso, L. Clinical significance of lifetime mood and panic-agoraphobic spectrum symptoms on quality of life of patients with rheumatoid arthritis. Compr. Psychiatry 2006, 47, 201–208. [Google Scholar] [CrossRef]
- Flanagan, S.; Damery, S.; Combes, G. The effectiveness of integrated care interventions in improving patient quality of life (QoL) for patients with chronic conditions. An overview of the systematic review evidence. Health Qual. Life Outcomes 2017, 15, 188. [Google Scholar] [CrossRef]
- Breivik, H.; Borchgrevink, P.C.; Allen, S.M.; Rosseland, L.A.; Romundstad, L.; Hals, E.K.; Kvarstein, G.; Stubhaug, A. Assessment of pain. Br. J. Anaesth. 2008, 101, 17–24. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Costantino, M.; Conti, V.; Corbi, G.; Giudice, V.; Caro, F.; Filippelli, A. Marked Reduction of Oxidant Species after Sulfureous Crenotherapy in Females with Joint Diseases and Psoriasis: A Retrospective Real-Life Study. J. Clin. Med. 2023, 12, 5731. [Google Scholar] [CrossRef]
- Passali, D.; Salerni, L.; D’Aco, L.; Gaudini, E.; Passali, F.M. The effects of bicarbonate sulphate-alkaline- carbonic waters (“Santissima water” of Chianciano Thermae) in catarrhal diseases of upper respiratory ways. Riv. Ital. Otorinolaringol. Audiol. Foniatr. 2003, 23, 39–49. [Google Scholar]
- Ricevuti, G.; De Bernardi, M.; Re, A.; Pedrinazzi, G.M.; Zanasi, A.; Barni, S. Effects of inhalation crenotherapy on the respiratory tract of rats exposed to cigarette smoke Acts and Memories Academy. Hist. Health Art. 1988, 68, 48–50. [Google Scholar]
- Cantone, E.; Marino, A.; Ferranti, I.; Castagna, G.; Maione, N.; Di Rubbo, V.; Iengo, M. Nasal cytological assessment after crenotherapy in the treatment of chronic rhinosinusitis in the elderly. Int. J. Immunopathol. Pharmacol. 2014, 27, 683–687. [Google Scholar] [CrossRef]
- Khaltaev, N.; Solimene, U.; Vitale, F.; Zanasi, A. Balneotherapy and hydrotherapy in chronic respiratory disease. J. Thorac. Dis. 2020, 12, 4459–4468. [Google Scholar] [CrossRef]
- Maccarone, M.C.; Masiero, S. Spa therapy interventions for post respiratory rehabilitation in COVID-19 subjects: Does the review of recent evidence suggest a role? Environ. Sci. Pollut. Res. Int. 2021, 28, 46063–46066. [Google Scholar] [CrossRef] [PubMed]
- Corradi, M.; Folesani, G.; Gergelova, P.; Goldoni, M.; Pinelli, S.; Gainotti, G.; de Palma, G.; Mutti, A. Effect of salt-bromide-iodine spa water inhalation on functional and biochemical lung parameters. ISRN Pulmonol. 2012, 2012, 534290. [Google Scholar] [CrossRef]
- Vaamonde-García, C.; Vela-Anero, Á.; Hermida-Gómez, T.; Fernández-Burguera, E.; Filgueira-Fernández, P.; Goyanes, N.; Blanco, F.J.; Meijide-Faílde, R. Effect of balneotherapy in sulfurous water on an in vivo murine model of osteoarthritis. Int. J. Biometeorol. 2020, 64, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Song, X.; Ma, Y.; Hu, H.; Bai, H.; Li, Y.; Gao, L. The effect of thermal mineral waters on pain relief, physical function and quality of life in patients with osteoarthritis: A systematic review and meta-analysis. Medicine 2021, 100, e24488. [Google Scholar] [CrossRef] [PubMed]
- Bender, T.; Bálint, G.; Prohászka, Z.; Géher, P.; Tefner, I.K. Evidence-based hydro- and balneotherapy in Hungary—A systematic review and meta-analysis. Int. J. Biometeorol. 2014, 58, 311–323. [Google Scholar] [CrossRef]
- Ortega, E.; Gálvez, I.; Hinchado, M.D.; Guerrero, J.; Martín-Cordero, L.; Torres-Piles, S. Anti-inflammatory effect as a mechanism of effectiveness underlying the clinical benefits of pelotherapy in osteoarthritis patients: Regulation of the altered inflammatory and stress feedback response. Int. J. Biometeorol. 2017, 61, 1777–1785. [Google Scholar] [CrossRef]
- Cheleschi, S.; Tenti, S.; Seccafico, I.; Gálvez, I.; Fioravanti, A.; Ortega, E. Balneotherapy year in review 2021: Focus on the mechanisms of action of balneotherapy in rheumatic diseases. Environ. Sci. Pollut. Res. Int. 2022, 29, 8054–8073. [Google Scholar] [CrossRef]
- Carfì, A.; Bernabei, R.; Landi, F. Gemelli Against COVID-19 Post-Acute Care Study Group. Persistent Symptoms in Patients After Acute COVID-19. JAMA 2020, 324, 603–605. [Google Scholar] [CrossRef]
- Ciaffi, J.; Vanni, E.; Mancarella, L.; Brusi, V.; Lisi, L.; Pignatti, F.; Naldi, S.; Assirelli, E.; Neri, S.; Reta, M.; et al. Post-Acute COVID-19 Joint Pain and New Onset of Rheumatic Musculoskeletal Diseases: A Systematic Review. Diagnostics 2023, 13, 1850. [Google Scholar] [CrossRef]
- Romeyke, T. A Multimodal Approach in the Treatment of Persistent Post-COVID. Diseases 2022, 10, 97. [Google Scholar] [CrossRef]
- Tower, J.; Pomatto, L.C.D.; Davies, K.J.A. Sex differences in the response to oxidative and proteolytic stress. Redox Biol. 2020, 31, 101488. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vina, J.; Gambini, J.; Lopez-Grueso, R.; Abdelaziz, K.M.; Jove, M.; Borras, C. Females live longer than males: Role of oxidative stress. Curr. Pharm. Des. 2011, 17, 3959–3965. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ji, L.L.; Liu, T.Y.; Wang, Z.T. Evaluation of gender-related differences in various oxidative stress enzymes in mice. Chin. J. Physiol. 2011, 54, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.; Tomasoni, D.; Falcinella, C.; Barbanotti, D.; Castoldi, R.; Mulè, G.; Augello, M.; Mondatore, D.; Allegrini, M.; Cona, A.; et al. Female gender is associated with long COVID syndrome: A prospective cohort study. Clin. Microbiol. Infect. 2022, 28, 611.e9–611.e16. [Google Scholar] [CrossRef]
- Giudice, V.; Iannaccone, T.; Faiella, F.; Ferrara, F.; Aversano, G.; Coppola, S.; De Chiara, E.; Romano, M.G.; Conti, V.; Filippelli, A. Gender Differences in the Impact of COVID-19 Pandemic on Mental Health of Italian Academic Workers. J. Pers. Med. 2022, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- Blomberg, B.; Mohn, K.G.; Brokstad, K.A.; Zhou, F.; Linchausen, D.W.; Hansen, B.A.; Lartey, S.; Onyango, T.B.; Kuwelker, K.; Sævik, M.; et al. Long COVID in a prospective cohort of home-isolated patients. Nat. Med. 2021, 27, 1607–1613. [Google Scholar] [CrossRef] [PubMed]
- Flacco, M.E.; Acuti Martellucci, C.; Baccolini, V.; De Vito, C.; Renzi, E.; Villari, P.; Manzoli, L. COVID-19 vaccines reduce the risk of SARS-CoV-2 reinfection and hospitalization: Meta-analysis. Front. Med. 2022, 9, 1023507. [Google Scholar] [CrossRef]
- Quattrocchi, A.; Tsioutis, C.; Demetriou, A.; Kyprianou, T.; Athanasiadou, M.; Silvestros, V.; Mamais, I.; Demetriou, C.A.; Theophanous, F.; Soteriou, S.; et al. Effect of vaccination on SARS-CoV-2 reinfection risk: A case-control study in the Republic of Cyprus. Public Health 2022, 204, 84–86. [Google Scholar] [CrossRef]
- Brumboiu, M.I.; Iuga, E.; Ivanciuc, A.; Mutaffof, S.; Tudosa, A.S.; Gherasimovici, C.; Iaru, I. Effectiveness and Protection Duration of Anti-COVID-19 Vaccinations among Healthcare Personnel in Cluj-Napoca, Romania. Vaccines 2023, 11, 521. [Google Scholar] [CrossRef]
Symptoms (N, %) | Total N = 78 N (%) | Females N = 56 N (%) | Males N = 22 N (%) | p Value | VAS Score | p Value | Δ% | |
---|---|---|---|---|---|---|---|---|
Before | After | |||||||
Chronic fatigue | 52 (67) | 39 (70) | 13 (59) | 0.374 | 3.2 ± 0.8 | 1.7 ± 1.1 | 0.001 | −47% |
Muscle pain | 37 (47) | 29 (52) | 8 (36) | 0.220 | 3.1 ± 0.9 | 1.6 ± 1.1 | 0.001 | −48% |
Joint pain | 32 (41) | 23 (41) | 9 (41) | 0.990 | 2.0 ± 0.8 | 1.6 ± 1.0 | 0.001 | −20% |
Brain fog | 28 (36) | 22 (39) | 6 (27) | 0.320 | 2.9 ± 1.0 | 1.7 ± 1.0 | 0.001 | −41% |
Persistent cough | 24 (31) | 16 (29) | 8 (36) | 0.502 | 2.8 ± 1.2 | 0.9 ± 1.1 | 0.001 | −68% |
Headache | 23 (29) | 17 (30) | 6 (27) | 0.788 | 2.8 ± 1.0 | 1.1 ± 1.0 | 0.001 | −61% |
Chest pain | 14 (18) | 8 (14) | 6 (27) | 0.179 | 2.3 ± 0.9 | 0.7 ± 0.9 | 0.001 | −70% |
Dyspnea | 13 (17) | 9 (16) | 4 (18) | 0.822 | 2.3 ± 1.3 | 0.8 ± 0.8 | 0.003 | −65% |
Taste disorders | 13 (17) | 9 (16) | 4 (18) | 0.822 | 2.8 ± 0.9 | 1.2 ± 1.3 | 0.001 | −57% |
Pseudo freezing hands and feet | 13 (17) | 8 (14) | 5 (23) | 0.368 | 2.4 ± 1.3 | 1.0 ± 1.1 | 0.001 | −58% |
Tinnitus | 13 (17) | 8 (14) | 5 (23) | 0.368 | 2.9 ± 1.0 | 1.8 ± 1.0 | 0.01 | −38% |
Gastroesophageal reflux | 11 (14) | 8 (14) | 3 (14) | 0.941 | 2.8 ± 0.9 | 1.0 ± 0.8 | 0.001 | −64% |
Sore throat | 10 (13) | 7 (13) | 3 (14) | 0.893 | 2.8 ± 1.1 | 0.3 ± 0.7 | 0.001 | −89% |
Persistent loss of smell | 10 (13) | 7 (13) | 3 (14) | 0.893 | 3.3 ± 1.1 | 1.0 ± 1.3 | 0.001 | −70% |
Burning sensation of the skin | 9 (12) | 7 (13) | 2 (9) | 0.672 | 2.9 ± 0.6 | 1.0 ± 1.1 | 0.001 | −66% |
Hair loss | 9 (12) | 9 (16) | 0 (0) | 0.046 | 2.4 ± 1.2 | 1.1 ± 0.6 | 0.01 | −54% |
Dysphony | 8 (10) | 6 (11) | 2 (9) | 0.832 | 1.8 ± 1.0 | 0.1 ± 0.4 | 0.01 | −94% |
Nausea | 7 (9) | 5(9) | 2 (9) | 0.982 | 3.0 ± 0.6 | 0.4 ± 0.5 | 0.001 | −87% |
Itching | 7 (9) | 4 (7) | 3 (14) | 0.367 | 2.9 ± 1.3 | 0.9 ± 0.9 | 0.001 | −69% |
Earache | 6 (8) | 6 (11) | 0 (0) | 0.110 | 2.8 ± 0.4 | 1.5 ± 1.0 | 0.03 | −46% |
Dysphagia | 4 (5) | 2 (3.6) | 2 (9) | 0.320 | 2.3 ± 1.0 | 0.3 ± 0.5 | 0.04 | −87% |
Vomiting | 3 (4) | 2 (3.6) | 1 (4.5) | 0.840 | 3.3 ± 0.6 | 0.3 ± 0.6 | 0.04 | −91% |
Nasal congestion | 2 (3) | 1 (1.8) | 1 (4.5) | 0.488 | 2.5 ± 0.7 | 0.5 ± 0.7 | 0.3 | −80% |
Irritability | 2 (3) | 1 (1.8) | 1 (4.5) | 0.488 | 2.5 ± 0.7 | 1.5 ± 0.7 | 0.707 | −40% |
Symptoms | Females with Post-COVID-19 N = 56 | Males with Post-COVID-19 N = 22 | ||||||
---|---|---|---|---|---|---|---|---|
Before | After | Δ% | p Value | Before | After | Δ% | p Value | |
Chronic fatigue | 3.2 ± 0.8 | 1.7 ± 1.1 | −47% | 0.001 | 3.0 ± 0.8 | 1.5 ± 1.3 | −53% | 0.001 |
Muscle pain | 3.1 ± 0.9 | 1.7 ± 1.1 | −45% | 0.001 | 3.1 ± 0.8 | 1.4 ± 1.1 | −55% | 0.006 |
Joint pain | 2.9 ± 0.9 | 1.6 ± 1.1 | −45% | 0.001 | 3.2 ± 0.7 | 1.7 ± 0.9 | −47% | 0.002 |
Brain fog | 2.9 ± 1.0 | 1.7 ± 0.9 | −41% | 0.001 | 2.7 ± 1.4 | 1.5 ± 1.4 | −44% | 0.03 |
Persistent cough | 2.8 ± 1.2 | 0.8 ± 1.1 | −71% | 0.001 | 3.0 ± 1.2 | 1.1 ± 1.2 | −66% | 0.01 |
Headache | 2.9 ± 1.0 | 1.4 ± 1.0 | −52% | 0.001 | 2.5 ± 1.0 | 0.5 ± 0.8 | −80% | 0.001 |
Taste disorders | 2.6 ± 1.0 | 1.1 ± 1.3 | −58% | 0.003 | 3.3 ± 0.5 | 1.3 ± 1.5 | −67% | 0.12 |
Pseudo freezing hands and feet | 2.1 ± 1.2 | 0.8 ± 0.9 | −62% | 0.004 | 2.8 ± 1.3 | 1.4 ± 1.5 | −50% | 0.11 |
Tinnitus | 3.0 ± 1.1 | 1.8 ± 1.0 | −40% | 0.03 | 2.8 ± 0.8 | 2.0 ± 1.0 | −29% | 0.1 |
Sore throat | 2.6 ± 1.1 | 0.4 ± 0.8 | −85% | 0.003 | 3.3 ± 1.2 | 0.0 ± 0.0 | −100% | 0.04 |
Chest pain | 2.5 ± 0.9 | 1.0 ± 0.9 | −60% | 0.01 | 2.0 ± 0.9 | 0.3 ± 0.8 | −85% | 0.02 |
Persistent loss of smell | 3.1 ± 1.2 | 1.6 ± 1.1 | −48% | 0.01 | 3.7 ± 0.6 | 1.0 ± 1.7 | −73% | 0.09 |
Dysphony | 1.7 ± 1.0 | 0.2 ± 0.4 | −88% | 0.03 | 2.0 ± 1.4 | 0.0 ± 0.0 | −100% | 0.3 |
Gastroesophageal reflux | 2.8 ± 1.0 | 1.0 ± 0.8 | −64% | 0.001 | 3.0 ± 0.0 | 1.0 ± 1.0 | −67% | 0.07 |
Nausea | 2.8 ± 0.4 | 0.6 ± 0.5 | −79% | 0.001 | 3.5 ± 0.7 | 0.0 ± 0.0 | −100% | 0.09 |
Itching | 2.3 ± 1.5 | 0.8 ± 1.0 | −65% | 0.01 | 3.7 ± 0.6 | 1.0 ± 1.0 | −73% | 0.02 |
Hair loss | 2.4 ± 1.2 | 1.1 ± 0.6 | −54% | 0.01 | - | - | - | - |
Burning sensation of the skin | 3.0 ± 0.6 | 1.0 ± 1.2 | −67% | 0.01 | 2.5 ± 0.7 | 1.0 ± 1.4 | −60% | 0.2 |
Nasal congestion | 3 | 0 | −100% | - | 2 | 1 | −50% | - |
Dysphagia | 2.0 ± 1.4 | 0.0 ± 0.0 | −100% | 0.3 | 2.5 ± 0.7 | 0.5 ± 0.7 | −80% | 0.3 |
Earache | 2.8 ± 0.4 | 1.5 ± 1.0 | −46% | 0.03 | - | - | - | - |
Irritability | 2 | 1 | −50% | - | 3 | 2 | −33% | - |
Vomiting | 3.0 ± 0.0 | 0.5 ± 0.7 | −83% | 0.1 | 4 | 0 | −100% | - |
Dyspnea | 2.4 ± 1.3 | 0.8 ± 0.7 | −67% | 0.02 | 2.0 ± 1.4 | 0.8 ± 1.0 | −60% | 0.08 |
Symptoms (N, %) | Total N = 43 N (%) | VAS Score | p Value | Females N = 32 | Males N = 11 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Before | After | p Value | Before | After | p Value | |||
Spontaneous pain | 23 (53) | 2.8 ± 1.0 | 1.5 ± 1.4 | 0.01 | 2.7 ± 0.9 | 1.5 ± 1.3 | 0.01 | 3.0 ± 0.8 | 1.3 ± 1.9 | 0.07 |
Functional pain | 28 (65) | 3.3 ± 0.5 | 2.4 ± 0.9 | 0.01 | 3.4 ± 0.5 | 2.5 ± 0.7 | 0.01 | 3.2 ± 0.4 | 1.8 ± 1.3 | 0.03 |
Morning stiffness | 22 (51) | 3.1 ± 0.9 | 2.0 ± 1.4 | 0.01 | 3.1 ± 0.9 | 1.9 ± 1.3 | 0.01 | 3.5 ± 0.7 | 3.0 ± 1.4 | 0.5 |
Paresthesia | 18 (462) | 2.7 ± 0.8 | 1.1 ± 1.2 | 0.01 | 2.4 ± 0.8 | 1.1 ± 1.2 | 0.01 | 2.7 ± 0.6 | 1.0 ± 1.7 | 0.2 |
Nasal obstruction | 6 (14) | 3.3 ± 0.5 | 2.5 ± 0.5 | 0.01 | 3.5 ± 0.6 | 2.5 ± 0.6 | 0.01 | 3.0 ± 0.0 | 2.5 ± 0.7 | 0.5 |
Sneezing | 6 (14) | 2.2 ± 1.0 | 1.2 ± 1.0 | 0.01 | 2.3 ± 1.2 | 1.3 ± 1.2 | 0.01 | 2.0 ± 1.0 | 1.0 ± 1.0 | 0.23 |
Nasal itching | 3 (7) | 2.7 ± 0.6 | 1.7 ± 1.2 | 0.2 | 3 | 3 | - | 2.5 ± 0.7 | 1.0 ± 0.0 | 0.2 |
Headache | 4 (9) | 2.3 ± 1.0 | 1.1 ± 1.2 | 0.02 | 2.7 ± 0.6 | 1.3 ± 1.2 | 0.06 | 1 | 0 | - |
Cough | 3 (7) | 2.7 ± 0.6 | 1.7 ± 1.5 | 0.4 | 3.0 ± 0.0 | 1.5 ± 2.1 | 0.5 | 2 | 2 | - |
SF-36 Items | Subjects with Post-COVID-19 N = 78 | Never-Infected Subjects N = 38 | p Value * | p Value # | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Δ% | p Value | Before | After | Δ% | p Value | |||
PF | 71 ± 23 | 84 ± 16 | +18% | <0.0001 | 82 ± 18 | 87 ± 17 | +6% | 0.0022 | 0.2052 | 0.4831 |
RLP | 46 ± 40 | 79 ± 33 | +72% | <0.0001 | 60 ± 42 | 85 ± 27 | +42% | 0.0003 | 0.3950 | 0.2664 |
P | 48± 26 | 68 ± 22 | +42% | <0.0001 | 55± 21 | 76 ± 17 | +38% | <0.0001 | 0.8427 | 0.0547 |
GH | 50 ± 20 | 60 ± 18 | +20% | <0.0001 | 52 ± 15 | 63 ± 13 | +21% | <0.0001 | 0.9889 | 0.3541 |
EF | 45 ± 22 | 63 ± 15 | +40% | <0.0001 | 60 ± 18 | 72 ± 15 | +20% | 0.0002 | 0.0215 | 0.0514 |
RLE | 50 ± 44 | 83 ± 27 | +66% | <0.0001 | 68 ± 41 | 89 ± 26 | +31% | 0.0057 | 0.0659 | 0.7487 |
SF | 58 ± 27 | 73 ± 22 | +26% | <0.0001 | 68 ± 23 | 79 ± 19 | +16% | 0.0121 | 0.4064 | 0.5917 |
EWB | 55 ± 21 | 70 ± 15 | +27% | <0.0001 | 69 ± 18 | 76 ± 19 | +10% | 0.0190 | 0.0134 | 0.2359 |
SF-36 Items | Males with Post-COVID-19 N = 22 | Females with Post-COVID-19 N = 56 | p Value * | p Value # | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Before | After | Δ% | p Value | Before | After | Δ% | p Value | |||
PF | 76 ± 21 | 87 ± 14 | +14% | 0.0074 | 64 ± 24 | 84 ± 17 | +24% | <0.0001 | 0.1540 | 0.3663 |
RLP | 50 ± 37 | 82 ± 36 | +64% | 0.0026 | 45 ± 41 | 77 ± 33 | +71% | <0.0001 | 0.5094 | 0.3594 |
P | 53± 29 | 67 ± 26 | +26% | 0.0426 | 46 ± 25 | 68 ± 21 | +48% | <0.0001 | 0.3582 | 0.9222 |
GH | 53 ± 17 | 62 ± 22 | +17% | 0.0153 | 49 ± 21 | 59 ± 17 | +20% | <0.0001 | 0.5589 | 0.6435 |
EF | 48 ± 21 | 61 ± 20 | +27% | 0.0072 | 44 ± 22 | 64 ± 13 | +45% | <0.0001 | 0.5225 | 0.9845 |
RLE | 55 ± 46 | 82 ± 29 | +49% | 0.0083 | 48 ± 44 | 83 ± 27 | +73% | <0.0001 | 0.5714 | 0.7400 |
SF | 61 ± 25 | 73 ± 25 | +20% | 0.0229 | 57 ± 28 | 73 ± 20 | +28% | <0.0001 | 0.5804 | 0.6325 |
EWB | 57 ± 19 | 67 ± 17 | +18% | 0.0639 | 55 ± 22 | 71 ± 15 | +29% | <0.0001 | 0.5938 | 0.5120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costantino, M.; Giudice, V.; Farroni, M.; Marongiu, F.; De Caro, F.; Filippelli, A. Impact of Spa Therapy on Symptoms and Quality of Life in Post-COVID-19 Patients with Chronic Conditions. J. Clin. Med. 2024, 13, 5091. https://doi.org/10.3390/jcm13175091
Costantino M, Giudice V, Farroni M, Marongiu F, De Caro F, Filippelli A. Impact of Spa Therapy on Symptoms and Quality of Life in Post-COVID-19 Patients with Chronic Conditions. Journal of Clinical Medicine. 2024; 13(17):5091. https://doi.org/10.3390/jcm13175091
Chicago/Turabian StyleCostantino, Maria, Valentina Giudice, Mario Farroni, Francesco Marongiu, Francesco De Caro, and Amelia Filippelli. 2024. "Impact of Spa Therapy on Symptoms and Quality of Life in Post-COVID-19 Patients with Chronic Conditions" Journal of Clinical Medicine 13, no. 17: 5091. https://doi.org/10.3390/jcm13175091
APA StyleCostantino, M., Giudice, V., Farroni, M., Marongiu, F., De Caro, F., & Filippelli, A. (2024). Impact of Spa Therapy on Symptoms and Quality of Life in Post-COVID-19 Patients with Chronic Conditions. Journal of Clinical Medicine, 13(17), 5091. https://doi.org/10.3390/jcm13175091