Pathogenic Immunoglobulin A-Producing Cells in Immunoglobulin A Nephropathy
Abstract
:1. Introduction
2. Production and Characteristics of IgA
3. Qualities of Pathogenic IgA
4. Where Is Pathogenic IgA Produced?
5. Pathogenic IgA Production in Bone Marrow
6. Pathogenic IgA Production in the Gut-Associated Lymphoid Tissue in IgAN
7. Involvement of Nasal-Associated Lymphoid Tissue (NALT)
8. The Role of APRIL and BAFF in IgAN
9. Clues from Genetic Studies in IgAN
10. The Role of IgA-Producing Cells at Extramucosal Sites
11. IgA-Producing Cells in the Kidney
12. Factors Fostering Migration of IgA-Producing Cells
13. Conclusions
Funding
Conflicts of Interest
References
- D’Amico, G. Natural History of Idiopathic IgA Nephropathy and Factors Predictive of Disease Outcome. Semin. Nephrol. 2004, 24, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Schena, F.P.; Nistor, I. Epidemiology of IgA Nephropathy: A Global Perspective. Semin. Nephrol. 2018, 38, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.D.; Zhao, M.H.; Zou, W.Z.; Liu, G.; Wang, H. The Changing Spectrum of Primary Glomerular Diseases within 15 Years: A Survey of 3331 Patients in a Single Chinese Centre. Nephrol. Dial. Transpl. 2009, 24, 870–876. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.; Walker, P.D. Is IgA Nephropathy the Commonest Primary Glomerulopathy among Young Adults in the USA? Kidney Int. 2006, 69, 1455–1458. [Google Scholar] [CrossRef]
- Kiryluk, K.; Li, Y.; Sanna-Cherchi, S.; Rohanizadegan, M.; Suzuki, H.; Eitner, F.; Snyder, H.J.; Choi, M.; Hou, P.; Scolari, F.; et al. Geographic Differences in Genetic Susceptibility to IgA Nephropathy: GWAS Replication Study and Geospatial Risk Analysis. PLoS Genet. 2012, 8, e1002765. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Kiryluk, K.; Novak, J.; Moldoveanu, Z.; Herr, A.B.; Renfrow, M.B.; Wyatt, R.J.; Scolari, F.; Mestecky, J.; Gharavi, A.G.; et al. The Pathophysiology of IgA Nephropathy. J. Am. Soc. Nephrol. 2011, 22, 1795–1803. [Google Scholar] [CrossRef]
- Hiki, Y.; Odani, H.; Takahashi, M.; Yasuda, Y.; Nishimoto, A.; Iwase, H.; Shinzato, T.; Kobayashi, Y.; Maeda, K. Mass Spectrometry Proves Under-O-Glycosylation of Glomerular IgA1 in IgA Nephropathy. Kidney Int. 2001, 59, 1077–1085. [Google Scholar] [CrossRef]
- Allen, A.C.; Bailey, E.M.; Brenchley, P.E.; Buck, K.S.; Barratt, J.; Feehally, J. Mesangial IgA1 in IgA Nephropathy Exhibits Aberrant O-Glycosylation: Observations in Three Patients. Kidney Int. 2001, 60, 969–973. [Google Scholar] [CrossRef]
- Tomana, M.; Novak, J.; Julian, B.A.; Matousovic, K.; Konecny, K.; Mestecky, J. Circulating Immune Complexes in IgA Nephropathy Consist of IgA1 with Galactose-Deficient Hinge Region and Antiglycan Antibodies. J. Clin. Investig. 1999, 104, 73–81. [Google Scholar] [CrossRef]
- Woof, J.M.; Russell, M.W. Structure and Function Relationships in IgA. Mucosal Immunol. 2011, 4, 590–597. [Google Scholar] [CrossRef]
- Haniuda, K.; Gommerman, J.L.; Reich, H.N. The Microbiome and IgA Nephropathy. Semin. Immunopathol. 2021, 43, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Kaetzel, C.S. Cooperativity among Secretory IgA, the Polymeric Immunoglobulin Receptor, and the Gut Microbiota Promotes Host–Microbial Mutualism. Immunol. Lett. 2014, 162, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Steffen, U.; Koeleman, C.A.; Sokolova, M.V.; Bang, H.; Kleyer, A.; Rech, J.; Unterweger, H.; Schicht, M.; Garreis, F.; Hahn, J.; et al. IgA Subclasses Have Different Effector Functions Associated with Distinct Glycosylation Profiles. Nat. Commun. 2020, 11, 120. [Google Scholar] [CrossRef]
- Halpern, M.S.; Koshland, M.E. Noval Subunit in Secretory IgA. Nature 1970, 228, 1276–1278. [Google Scholar] [CrossRef]
- Mestecky, J.; Zikan, J.; Butler, W.T. Immunoglobulin M and Secretory Immunoglobulin A: Presence of a Common Polypeptide Chain Different from Light Chains. Science 1971, 171, 1163–1165. [Google Scholar] [CrossRef] [PubMed]
- Brandtzaeg, P.; Prydz, H. Direct Evidence for an Integrated Function of J Chain and Secretory Component in Epithelial Transport of Immunoglobulins. Nature 1984, 311, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Isho, B.; Florescu, A.; Wang, A.A.; Gommerman, J.L. Fantastic IgA Plasma Cells and Where to Find Them. Immunol. Rev. 2021, 303, 119–137. [Google Scholar] [CrossRef]
- Hase, K.; Kawano, K.; Nochi, T.; Pontes, G.S.; Fukuda, S.; Ebisawa, M.; Kadokura, K.; Tobe, T.; Fujimura, Y.; Kawano, S.; et al. Uptake through Glycoprotein 2 of FimH+ Bacteria by M Cells Initiates Mucosal Immune Response. Nature 2009, 462, 226–230. [Google Scholar] [CrossRef]
- Iwasaki, A.; Kelsall, B.L. Localization of Distinct Peyer’s Patch Dendritic Cell Subsets and Their Recruitment by Chemokines Macrophage Inflammatory Protein (Mip)-3α, Mip-3β, and Secondary Lymphoid Organ Chemokine. J. Exp. Med. 2000, 191, 1381–1394. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Uhr, T. Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria. Science 2004, 303, 1662–1665. [Google Scholar] [CrossRef]
- Cerutti, A. The Regulation of IgA Class Switching. Nat. Rev. Immunol. 2008, 8, 421–434. [Google Scholar] [CrossRef]
- Macpherson, A.J.; Gatto, D.; Sainsbury, E.; Harriman, G.R.; Hengartner, H.; Zinkernagel, R.M. A Primitive T Cell-Independent Mechanism of Intestinal Mucosal IgA Responses to Commensal Bacteria. Science 2000, 288, 2222–2226. [Google Scholar] [CrossRef] [PubMed]
- Landsverk, O.J.B.; Snir, O.; Casado, R.B.; Richter, L.; Mold, J.E.; Réu, P.; Horneland, R.; Paulsen, V.; Yaqub, S.; Aandahl, E.M.; et al. Antibody-Secreting Plasma Cells Persist for Decades in Human Intestine. J. Exp. Med. 2017, 214, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Rojas, O.L.; Pröbstel, A.-K.; Porfilio, E.A.; Wang, A.A.; Charabati, M.; Sun, T.; Lee, D.S.W.; Galicia, G.; Ramaglia, V.; Ward, L.A.; et al. Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10. Cell 2019, 176, 610–624.e18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xu, L.; Zhang, Y.; Zhao, M. Binding Capacity of in Vitro Deglycosylated IgA1 to Human Mesangial Cells. Clin. Immunol. 2006, 119, 103–109. [Google Scholar] [CrossRef]
- Zhao, N.; Hou, P.; Lv, J.; Moldoveanu, Z.; Li, Y.; Kiryluk, K.; Gharavi, A.G.; Novak, J.; Zhang, H. The Level of Galactose-Deficient IgA1 in the Sera of Patients with IgA Nephropathy Is Associated with Disease Progression. Kidney Int. 2012, 82, 790–796. [Google Scholar] [CrossRef]
- Moldoveanu, Z.; Wyatt, R.J.; Lee, J.Y.; Tomana, M.; Julian, B.A.; Mestecky, J.; Huang, W.-Q.; Anreddy, S.R.; Hall, S.; Hastings, M.C.; et al. Patients with IgA Nephropathy Have Increased Serum Galactose-Deficient IgA1 Levels. Kidney Int. 2007, 71, 1148–1154. [Google Scholar] [CrossRef]
- Gharavi, A.G.; Moldoveanu, Z.; Wyatt, R.J.; Barker, C.V.; Woodford, S.Y.; Lifton, R.P.; Mestecky, J.; Novak, J.; Julian, B.A. Aberrant IgA1 Glycosylation Is Inherited in Familial and Sporadic IgA Nephropathy. J. Am. Soc. Nephrol. 2008, 19, 1008–1014. [Google Scholar] [CrossRef]
- Oortwijn, B.D.; Eijgenraam, J.W.; Rastaldi, M.P.; Roos, A.; Daha, M.R.; van Kooten, C. The Role of Secretory IgA and Complement in IgA Nephropathy. Semin. Nephrol. 2008, 28, 58–65. [Google Scholar] [CrossRef]
- Tomino, Y.; Sakai, H.; Miura, M.; Endoh, M.; Nomoto, Y. Detection of Polymeric IgA in Glomeruli from Patients with IgA Nephropathy. Clin. Exp. Immunol. 1982, 49, 419–425. [Google Scholar]
- Schmitt, R.; Stahl, A.L.; Olin, A.I.; Kristoffersson, A.C.; Rebetz, J.; Novak, J.; Lindahl, G.; Karpman, D. The Combined Role of Galactose-Deficient IgA1 and Streptococcal IgA-Binding M Protein in Inducing IL-6 and C3 Secretion from Human Mesangial Cells: Implications for IgA Nephropathy. J. Immunol. 2014, 193, 317–326. [Google Scholar] [CrossRef] [PubMed]
- Caravaca-Fontán, F.; Gutiérrez, E.; Sevillano, Á.M.; Praga, M. Targeting Complement in IgA Nephropathy. Clin. Kidney J. 2023, 16, ii28–ii39. [Google Scholar] [CrossRef] [PubMed]
- Layward, L.; Allen, A.C.; Harper, S.J.; Hattersley, J.M.; Feehahly, J. Increased and Prolonged Production of Specific Polymeric IgA after Systemic Immunization with Tetanus Toxoid in IgA Nephropathy. Clin. Exp. Immunol. 1992, 88, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Pasternack, A.; Mustonen, J.; Leinikki, P. Humoral Immune Response in Patients with IgA and IgM Glomerulonephritis. Clin. Exp. Immunol. 1986, 63, 228–233. [Google Scholar]
- Leinikki, P.O.; Mustonen, J.; Pasternack, A. Immune Response to Oral Polio Vaccine in Patients with IgA Glomerulonephritis. Clin. Exp. Immunol. 1987, 68, 33–38. [Google Scholar]
- van den Wall Bake, A.W.; Daha, M.R.; Evers-Schouten, J.; van Es, L.A. Serum IgA and the Production of IgA by Peripheral Blood and Bone Marrow Lymphocytes in Patients with Primary IgA Nephropathy: Evidence for the Bone Marrow as the Source of Mesangial IgA. Am. J. Kidney Dis. 1988, 12, 410–414. [Google Scholar] [CrossRef]
- Harper, S.J.; Pringle, J.H.; Wicks, A.C.; Hattersley, J.; Layward, L.; Allen, A.; Gillies, A.; Lauder, I.; Feehally, J. Expression of J Chain mRNA in Duodenal IgA Plasma Cells in IgA Nephropathy. Kidney Int. 1994, 45, 836–844. [Google Scholar] [CrossRef]
- Harper, S.J.; Allen, A.C.; Pringle, J.H.; Feehally, J. Increased Dimeric IgA Producing B Cells in the Bone Marrow in IgA Nephropathy Determined by in Situ Hybridisation for J Chain mRNA. J. Clin. Pathol. 1996, 49, 38–42. [Google Scholar] [CrossRef]
- Barratt, J.; Feehally, J. IgA Nephropathy. J. Am. Soc. Nephrol. 2005, 16, 2088–2097. [Google Scholar] [CrossRef]
- Emancipator, S.N.; Gallo, G.R.; Lamm, M.E. Experimental IgA Nephropathy Induced by Oral Immunization. J. Exp. Med. 1983, 157, 572–582. [Google Scholar] [CrossRef]
- Coppo, R.; Mazzucco, G.; Martina, G.; Roccatello, D.; Amore, A.; Novara, R.; Bargoni, A.; Piccoli, G.; Sena, L.M. Gluten-Induced Experimental IgA Glomerulopathy. Lab. Investig. 1989, 60, 499–506. [Google Scholar]
- Papista, C.; Lechner, S.; Mkaddem, S.B.; LeStang, M.-B.; Abbad, L.; Bex-Coudrat, J.; Pillebout, E.; Chemouny, J.M.; Jablonski, M.; Flamant, M.; et al. Gluten Exacerbates IgA Nephropathy in Humanized Mice through Gliadin–CD89 Interaction. Kidney Int. 2015, 88, 276–285. [Google Scholar] [CrossRef]
- Wehbi, B.; Pascal, V.; Zawil, L.; Cogné, M.; Aldigier, J.-C. History of IgA Nephropathy Mouse Models. J. Clin. Med. 2021, 10, 3142. [Google Scholar] [CrossRef]
- Moeller, S.; Canetta, P.A.; Taylor, A.K.; Arguelles-Grande, C.; Snyder, H.; Green, P.H.; Kiryluk, K.; Alaedini, A. Lack of Serologic Evidence to Link IgA Nephropathy with Celiac Disease or Immune Reactivity to Gluten. PLoS ONE 2014, 9, e94677. [Google Scholar] [CrossRef]
- Coppo, R.; Roccatello, D.; Amore, A.; Quattrocchio, G.; Molino, A.; Gianoglio, B.; Amoroso, A.; Bajardi, P.; Piccoli, G. Effects of a Gluten-Free Diet in Primary IgA Nephropathy. Clin. Nephrol. 1990, 33, 72–86. [Google Scholar] [PubMed]
- Wang, J.; Anders, R.A.; Wu, Q.; Peng, D.; Cho, J.H.; Sun, Y.; Karaliukas, R.; Kang, H.-S.; Turner, J.R.; Fu, Y.-X. Dysregulated LIGHT Expression on T Cells Mediates Intestinal Inflammation and Contributes to IgA Nephropathy. J. Clin. Investig. 2004, 113, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Seikrit, C.; Schimpf, J.I.; Wied, S.; Stamellou, E.; Izcue, A.; Pabst, O.; Rauen, T.; Lenaerts, K.; Floege, J. Intestinal Permeability in Patients with IgA Nephropathy and Other Glomerular Diseases: An Observational Study. J. Nephrol. 2023, 36, 463–474. [Google Scholar] [CrossRef]
- Lafayette, R.; Kristensen, J.; Stone, A.; Floege, J.; Tesař, V.; Trimarchi, H.; Zhang, H.; Eren, N.; Paliege, A.; Reich, H.N.; et al. Efficacy and Safety of a Targeted-Release Formulation of Budesonide in Patients with Primary IgA Nephropathy (NefIgArd): 2-Year Results from a Randomised Phase 3 Trial. Lancet 2023, 402, 859–870. [Google Scholar] [CrossRef]
- McKeage, K.; Goa, K.L. Budesonide (Entocort EC Capsules): A Review of Its Therapeutic Use in the Management of Active Crohn’s Disease in Adults. Drugs 2002, 62, 2263–2282. [Google Scholar] [CrossRef] [PubMed]
- Edsbäcker, S.; Andersson, P.; Lindberg, C.; Paulson, J.; Ryrfeldt, A.; Thalén, A. Liver Metabolism of Budesonide in Rat, Mouse, and Man. Comparative Aspects. Drug Metab. Dispos. 1987, 15, 403–411. [Google Scholar]
- Wimbury, D.; Muto, M.; Bhachu, J.S.; Scionti, K.; Brown, J.; Molyneux, K.; Seikrit, C.; Maixnerová, D.; Pérez-Alós, L.; Garred, P.; et al. Targeted-Release Budesonide Modifies Key Pathogenic Biomarkers in Immunoglobulin A Nephropathy: Insights from the NEFIGAN Trial. Kidney Int. 2024, 105, 381–388. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, H.; Wong, M.G.; Jardine, M.J.; Hladunewich, M.; Jha, V.; Monaghan, H.; Zhao, M.; Barbour, S.; Reich, H.; et al. Effect of Oral Methylprednisolone on Clinical Outcomes in Patients with IgA Nephropathy: The TESTING Randomized Clinical Trial. JAMA 2017, 318, 432–442. [Google Scholar] [CrossRef]
- Lv, J.; Wong, M.G.; Hladunewich, M.A.; Jha, V.; Hooi, L.S.; Monaghan, H.; Zhao, M.; Barbour, S.; Jardine, M.J.; Reich, H.N.; et al. Effect of Oral Methylprednisolone on Decline in Kidney Function or Kidney Failure in Patients with IgA Nephropathy: The TESTING Randomized Clinical Trial. JAMA 2022, 327, 1888–1898. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, W.J. To B or Not to B? Glucocorticoid Impact on B Lymphocyte Fate and Function. Endocrinology 2014, 155, 339–342. [Google Scholar] [CrossRef]
- Barratt, J.; Lafayette, R.A.; Rovin, B.H.; Fellström, B. Budesonide Delayed-Release Capsules to Reduce Proteinuria in Adults with Primary Immunoglobulin A Nephropathy. Expert Rev. Clin. Immunol. 2023, 19, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, H.; Fujimoto, S.; Hara, S.; Sato, Y.; Yamada, K.; Kitamura, K. Effect of Tonsillectomy Plus Steroid Pulse Therapy on Clinical Remission of IgA Nephropathy: A Controlled Study. Clin. J. Am. Soc. Nephrol. 2008, 3, 1301–1307. [Google Scholar] [CrossRef]
- Hotta, O.; Miyazaki, M.; Furuta, T.; Tomioka, S.; Chiba, S.; Horigome, I.; Abe, K.; Taguma, Y. Tonsillectomy and Steroid Pulse Therapy Significantly Impact on Clinical Remission in Patients with IgA Nephropathy. Am. J. Kidney Dis. 2001, 38, 736–743. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K.; Matsuzaki, K.; Yasuda, T.; Nishikawa, M.; Yasuda, Y.; Koike, K.; Maruyama, S.; Yokoo, T.; Matsuo, S.; Kawamura, T.; et al. Association between Tonsillectomy and Outcomes in Patients with Immunoglobulin A Nephropathy. JAMA Netw. Open 2019, 2, e194772. [Google Scholar] [CrossRef] [PubMed]
- Kawabe, M.; Yamamoto, I.; Yamakawa, T.; Katsumata, H.; Isaka, N.; Katsuma, A.; Nakada, Y.; Kobayashi, A.; Koike, K.; Ueda, H.; et al. Association between Galactose-Deficient IgA1 Derived from the Tonsils and Recurrence of IgA Nephropathy in Patients Who Underwent Kidney Transplantation. Front. Immunol. 2020, 11, 2068. [Google Scholar] [CrossRef]
- Currie, E.G.; Coburn, B.; Porfilio, E.A.; Lam, P.; Rojas, O.L.; Novak, J.; Yang, S.; Chowdhury, R.B.; Ward, L.A.; Wang, P.W.; et al. Immunoglobulin A Nephropathy Is Characterized by Anticommensal Humoral Immune Responses. JCI Insight 2022, 7, e141289. [Google Scholar] [CrossRef]
- Suzuki, S.; Nakatomi, Y.; Sato, H.; Tsukada, H.; Arakawa, M. Haemophilus Parainfluenzae Antigen and Antibody in Renal Biopsy Samples and Serum of Patients with IgA Nephropathy. Lancet 1994, 343, 12–16. [Google Scholar] [CrossRef]
- Watanabe, H.; Goto, S.; Mori, H.; Higashi, K.; Hosomichi, K.; Aizawa, N.; Takahashi, N.; Tsuchida, M.; Suzuki, Y.; Yamada, T.; et al. Comprehensive Microbiome Analysis of Tonsillar Crypts in IgA Nephropathy. Nephrol. Dial. Transpl. 2017, 32, 2072–2079. [Google Scholar] [CrossRef]
- Feehally, J.; Coppo, R.; Troyanov, S.; Bellur, S.S.; Cattran, D.; Cook, T.; Roberts, I.S.D.; Verhave, J.C.; Camilla, R.; Vergano, L.; et al. Tonsillectomy in a European Cohort of 1,147 Patients with IgA Nephropathy. Nephron 2016, 132, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.-Q.; Li, M.; Zhang, H.; Low, H.-Q.; Wei, X.; Wang, J.-Q.; Sun, L.-D.; Sim, K.-S.; Li, Y.; Foo, J.-N.; et al. A Genome-Wide Association Study in Han Chinese Identifies Multiple Susceptibility Loci for IgA Nephropathy. Nat. Genet. 2011, 44, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Litinskiy, M.B.; Nardelli, B.; Hilbert, D.M.; He, B.; Schaffer, A.; Casali, P.; Cerutti, A. DCs Induce CD40-Independent Immunoglobulin Class Switching through BLyS and APRIL. Nat. Immunol. 2002, 3, 822–829. [Google Scholar] [CrossRef]
- Mackay, F.; Schneider, P.; Rennert, P.; Browning, J. BAFF AND APRIL: A Tutorial on B Cell Survival. Annu. Rev. Immunol. 2003, 21, 231–264. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Bandoh, N.; Yoshizaki, T.; Nozawa, H.; Takahara, M.; Ueda, S.; Hayashi, T.; Harabuchi, Y. Increase in B-Cell-Activation Factor (BAFF) and IFN-Gamma Productions by Tonsillar Mononuclear Cells Stimulated with Deoxycytidyl-Deoxyguanosine Oligodeoxynucleotides (CpG-ODN) in Patients with IgA Nephropathy. Clin. Immunol. 2008, 126, 260–269. [Google Scholar] [CrossRef]
- Muto, M.; Manfroi, B.; Suzuki, H.; Joh, K.; Nagai, M.; Wakai, S.; Righini, C.; Maiguma, M.; Izui, S.; Tomino, Y.; et al. Toll-Like Receptor 9 Stimulation Induces Aberrant Expression of a Proliferation-Inducing Ligand by Tonsillar Germinal Center B Cells in IgA Nephropathy. J. Am. Soc. Nephrol. 2017, 28, 1227–1238. [Google Scholar] [CrossRef]
- Myette, J.R.; Kano, T.; Suzuki, H.; Sloan, S.E.; Szretter, K.J.; Ramakrishnan, B.; Adari, H.; Deotale, K.D.; Engler, F.; Shriver, Z.; et al. A Proliferation Inducing Ligand (APRIL) Targeted Antibody Is a Safe and Effective Treatment of Murine IgA Nephropathy. Kidney Int. 2019, 96, 104–116. [Google Scholar] [CrossRef]
- Kim, Y.G.; Alvarez, M.; Suzuki, H.; Hirose, S.; Izui, S.; Tomino, Y.; Huard, B.; Suzuki, Y. Pathogenic Role of a Proliferation-Inducing Ligand (APRIL) in Murine IgA Nephropathy. PLoS ONE 2015, 10, e0137044. [Google Scholar] [CrossRef]
- Cheung, C.K.; Barratt, J.; Liew, A.; Zhang, H.; Tesar, V.; Lafayette, R. The Role of BAFF and APRIL in IgA Nephropathy: Pathogenic Mechanisms and Targeted Therapies. Front. Nephrol. 2024, 3, 1346769. [Google Scholar] [CrossRef]
- Mohit, M.; Jonathan, B.; Bobby, C.; Mao, C.T.; Laura, K.; Kook-Hwan, O.; Manisha, S.; Yusuke, S.; Geot, W.M.; Jill, Y.; et al. A Phase 2 Trial of Sibeprenlimab in Patients with IgA Nephropathy. N. Engl. J. Med. 2024, 390, 20–31. [Google Scholar] [CrossRef]
- Barratt, J.; Laura Kooienga, L.; Agha, I. Abstract: One Year of Zigakibart Treatment Shows Clinically Meaningful Proteinuria Reduction and Good Tolerability in a Phase 1/2 Study of IgA Nephropathy. In Proceedings of the 61st European Renal Association Congress, Stockholm, Sweden, 23–26 May 2024. [Google Scholar]
- Wu, L.; Du, X.; Lu, X. Role of Telitacicept in the Treatment of IgA Nephropathy. Eur. J. Med. Res. 2023, 28, 369. [Google Scholar] [CrossRef] [PubMed]
- Barratt, J.; Tumlin, J.; Suzuki, Y.; Kao, A.; Aydemir, A.; Pudota, K.; Jin, H.; Gühring, H.; Appel, G.; JANUS Study Investigators. Randomized Phase II JANUS Study of Atacicept in Patients with IgA Nephropathy and Persistent Proteinuria. Kidney Int. Rep. 2022, 7, 1831–1841. [Google Scholar] [CrossRef] [PubMed]
- Kiryluk, K.; Li, Y.; Scolari, F.; Sanna-Cherchi, S.; Choi, M.; Verbitsky, M.; Fasel, D.; Lata, S.; Prakash, S.; Shapiro, S.; et al. Discovery of New Risk Loci for IgA Nephropathy Implicates Genes Involved in Immunity against Intestinal Pathogens. Nat. Genet. 2014, 46, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Feehally, J.; Farrall, M.; Boland, A.; Gale, D.P.; Gut, I.; Heath, S.; Kumar, A.; Peden, J.F.; Maxwell, P.H.; Morris, D.L.; et al. HLA Has Strongest Association with IgA Nephropathy in Genome-Wide Analysis. J. Am. Soc. Nephrol. 2010, 21, 1791–1797. [Google Scholar] [CrossRef]
- Gharavi, A.G.; Kiryluk, K.; Choi, M.; Li, Y.; Hou, P.; Xie, J.; Sanna-Cherchi, S.; Men, C.J.; Julian, B.A.; Wyatt, R.J.; et al. Genome-Wide Association Study Identifies Susceptibility Loci for IgA Nephropathy. Nat. Genet. 2011, 43, 321–327. [Google Scholar] [CrossRef]
- Pu, A.; Lee, D.S.W.; Isho, B.; Naouar, I.; Gommerman, J.L. The Impact of IgA and the Microbiota on CNS Disease. Front. Immunol. 2021, 12, 742173. [Google Scholar] [CrossRef]
- Li, H.; Limenitakis, J.P.; Greiff, V.; Yilmaz, B.; Schären, O.; Urbaniak, C.; Zünd, M.; Lawson, M.A.E.; Young, I.D.; Rupp, S.; et al. Mucosal or Systemic Microbiota Exposures Shape the B Cell Repertoire. Nature 2020, 584, 274–278. [Google Scholar] [CrossRef]
- Pröbstel, A.-K.; Zhou, X.; Baumann, R.; Wischnewski, S.; Kutza, M.; Rojas, O.L.; Sellrie, K.; Bischof, A.; Kim, K.; Ramesh, A.; et al. Gut Microbiota-Specific IgA+ B Cells Traffic to the CNS in Active Multiple Sclerosis. Sci. Immunol. 2020, 5, eabc7191. [Google Scholar] [CrossRef]
- Kappos, L.; Hartung, H.-P.; Freedman, M.S.; Boyko, A.; Radü, E.W.; Mikol, D.D.; Lamarine, M.; Hyvert, Y.; Freudensprung, U.; Plitz, T.; et al. Atacicept in Multiple Sclerosis (ATAMS): A Randomised, Placebo-Controlled, Double-Blind, Phase 2 Trial. Lancet Neurol. 2014, 13, 353–363. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, D.D.; Kujawa, J.; Wilson, C.; Papandile, A.; Poreci, U.; Porfilio, E.A.; Ward, L.; Lawson, M.A.E.; Macpherson, A.J.; McCoy, K.D.; et al. Mice Overexpressing BAFF Develop a Commensal Flora–Dependent, IgA-Associated Nephropathy. J. Clin. Investig. 2011, 121, 3991–4002. [Google Scholar] [CrossRef] [PubMed]
- Nihei, Y.; Haniuda, K.; Higashiyama, M.; Asami, S.; Iwasaki, H.; Fukao, Y.; Nakayama, M.; Suzuki, H.; Kikkawa, M.; Kazuno, S.; et al. Identification of IgA Autoantibodies Targeting Mesangial Cells Redefines the Pathogenesis of IgA Nephropathy. Sci. Adv. 2023, 9, eadd6734. [Google Scholar] [CrossRef] [PubMed]
- Mora, J.R.; von Andrian, U.H. Differentiation and Homing of IgA-Secreting Cells. Mucosal Immunol. 2008, 1, 96–109. [Google Scholar] [CrossRef]
- Brandtzaeg, P.; Farstad, I.N.; Haraldsen, G. Regional Specialization in the Mucosal Immune System: Primed Cells Do Not Always Home along the Same Track. Immunol. Today 1999, 20, 267–277. [Google Scholar] [CrossRef]
- Bourges, D.; Meurens, F.; Berri, M.; Chevaleyre, C.; Zanello, G.; Levast, B.; Melo, S.; Gerdts, V.; Salmon, H. New Insights into the Dual Recruitment of IgA+ B Cells in the Developing Mammary Gland. Mol. Immunol. 2008, 45, 3354–3362. [Google Scholar] [CrossRef]
- Zachova, K.; Jemelkova, J.; Kosztyu, P.; Ohyama, Y.; Takahashi, K.; Zadrazil, J.; Orsag, J.; Matousovic, K.; Galuszkova, D.; Petejova, N.; et al. Galactose-Deficient IgA1 B Cells in the Circulation of IgA Nephropathy Patients Carry Preferentially Lambda Light Chains and Mucosal Homing Receptors. J. Am. Soc. Nephrol. 2022, 33, 908–917. [Google Scholar] [CrossRef]
- Hartono, C.; Chung, M.; Perlman, A.S.; Chevalier, J.M.; Serur, D.; Seshan, S.V.; Muthukumar, T. Bortezomib for Reduction of Proteinuria in IgA Nephropathy. Kidney Int. Rep. 2018, 3, 861–866. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makita, Y.; Reich, H.N. Pathogenic Immunoglobulin A-Producing Cells in Immunoglobulin A Nephropathy. J. Clin. Med. 2024, 13, 5255. https://doi.org/10.3390/jcm13175255
Makita Y, Reich HN. Pathogenic Immunoglobulin A-Producing Cells in Immunoglobulin A Nephropathy. Journal of Clinical Medicine. 2024; 13(17):5255. https://doi.org/10.3390/jcm13175255
Chicago/Turabian StyleMakita, Yuko, and Heather N. Reich. 2024. "Pathogenic Immunoglobulin A-Producing Cells in Immunoglobulin A Nephropathy" Journal of Clinical Medicine 13, no. 17: 5255. https://doi.org/10.3390/jcm13175255
APA StyleMakita, Y., & Reich, H. N. (2024). Pathogenic Immunoglobulin A-Producing Cells in Immunoglobulin A Nephropathy. Journal of Clinical Medicine, 13(17), 5255. https://doi.org/10.3390/jcm13175255