Effect of Body Weight on Glycaemic Indices in People with Type 1 Diabetes Using Continuous Glucose Monitoring
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Characteristics
3.2. Measures of Adiposity
3.3. Glycaemic Indices and Achievement of Optimal Glycaemic Targets
3.4. Associations between BMI, Body Weight, Waist Circumference, and Glycaemic Indices
3.5. Effect of BMI, Body Weight, and Waist Circumference on Glycaemic Indices
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Foster, N.C.; Beck, R.W.; Miller, K.M.; Clements, M.A.; Rickels, M.R.; DiMeglio, L.A.; Maahs, D.M.; Tamborlane, W.V.; Bergenstal, R.; Smith, E.; et al. State of Type 1 Diabetes Management and Outcomes from the T1D Exchange in 2016–2018. Diabetes Technol. Ther. 2019, 21, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Maffeis, C.; Birkebaek, N.H.; Konstantinova, M.; Schwandt, A.; Vazeou, A.; Casteels, K.; Jali, S.; Limbert, C.; Pundziute-Lycka, A.; Toth-Heyn, P.; et al. Prevalence of Underweight, Overweight, and Obesity in Children and Adolescents with Type 1 Diabetes: Data from the International SWEET Registry. Pediatr. Diabetes 2018, 19, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- Conway, B.; Miller, R.G.; Costacou, T.; Fried, L.; Kelsey, S.; Evans, R.W.; Orchard, T.J. Temporal Patterns in Overweight and Obesity in Type 1 Diabetes. Diabet. Med. 2010, 27, 398–404. [Google Scholar] [CrossRef]
- Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) Research Group; Nathan, D.M.; Zinman, B.; Cleary, P.A.; Backlund, J.-Y.C.; Genuth, S.; Miller, R.; Orchard, T.J. Modern-Day Clinical Course of Type 1 Diabetes Mellitus after 30 Years’ Duration: The Diabetes Control and Complications Trial/epidemiology of Diabetes Interventions and Complications and Pittsburgh Epidemiology of Diabetes Complications Experience (1983–2005). Arch. Intern. Med. 2009, 169, 1307–1316. [Google Scholar]
- Van der Schueren, B.; Ellis, D.; Faradji, R.N.; Al-Ozairi, E.; Rosen, J.; Mathieu, C. Obesity in People Living with Type 1 Diabetes. Lancet Diabetes Endocrinol. 2021, 9, 776–785. [Google Scholar] [CrossRef]
- Karamanakos, G.; Kokkinos, A.; Dalamaga, M.; Liatis, S. Highlighting the Role of Obesity and Insulin Resistance in Type 1 Diabetes and Its Associated Cardiometabolic Complications. Curr. Obes. Rep. 2022, 11, 180–202. [Google Scholar] [CrossRef] [PubMed]
- Wilkin, T.J. The Accelerator Hypothesis: Weight Gain as the Missing Link between Type I and Type II Diabetes. Diabetologia 2001, 44, 914–922. [Google Scholar] [CrossRef]
- Kietsiriroje, N.; Pearson, S.; Campbell, M.; Ariëns, R.A.S.; Ajjan, R.A. Double Diabetes: A Distinct High-Risk Group? Diabetes Obes. Metab. 2019, 21, 2609–2618. [Google Scholar] [CrossRef]
- Edqvist, J.; Rawshani, A.; Adiels, M.; Björck, L.; Lind, M.; Svensson, A.-M.; Gudbjörnsdottir, S.; Sattar, N.; Rosengren, A. BMI, Mortality, and Cardiovascular Outcomes in Type 1 Diabetes: Findings Against an Obesity Paradox. Diabetes Care 2019, 42, 1297–1304. [Google Scholar] [CrossRef]
- Nansel, T.R.; Lipsky, L.M.; Iannotti, R.J. Cross-Sectional and Longitudinal Relationships of Body Mass Index with Glycemic Control in Children and Adolescents with Type 1 Diabetes Mellitus. Diabetes Res. Clin. Pract. 2013, 100, 126–132. [Google Scholar] [CrossRef]
- Williams, K.V.; Erbey, J.R.; Becker, D.; Orchard, T.J. Improved Glycemic Control Reduces the Impact of Weight Gain on Cardiovascular Risk Factors in Type 1 Diabetes. The Epidemiology of Diabetes Complications Study. Diabetes Care 1999, 22, 1084–1091. [Google Scholar] [CrossRef] [PubMed]
- Ferriss, J.B.; Webb, D.; Chaturvedi, N.; Fuller, J.H.; Idzior-Walus, B.; EURODIAB Prospective Complications Group. Weight Gain Is Associated with Improved Glycaemic Control but with Adverse Changes in Plasma Lipids and Blood Pressure Isn Type 1 Diabetes. Diabet. Med. 2006, 23, 557–564. [Google Scholar] [CrossRef]
- Lipsky, L.M.; Gee, B.; Liu, A.; Nansel, T.R. Glycemic Control and Variability in Association with Body Mass Index and Body Composition over 18months in Youth with Type 1 Diabetes. Diabetes Res. Clin. Pract. 2016, 120, 97–103. [Google Scholar] [CrossRef]
- Purnell, J.Q.; Zinman, B.; Brunzell, J.D.; DCCT/EDIC Research Group. The Effect of Excess Weight Gain with Intensive Diabetes Mellitus Treatment on Cardiovascular Disease Risk Factors and Atherosclerosis in Type 1 Diabetes Mellitus: Results from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study (DCCT/EDIC) Study. Circulation 2013, 127, 180–187. [Google Scholar]
- Flokas, M.E.; Zeymo, A.; Mete, M.; Anhalt, H.; Rother, K.I.; Gourgari, E. Overweight and Obese Children with Optimal Control in the T1D Exchange Registry: How Are They Different from Lean Children with Optimal Control? J. Diabetes Complicat. 2020, 34, 107513. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.Y.; Lee, Y.-H.; Jin, S.-M.; Yang, H.K.; Jung, C.H.; Park, C.-Y.; Cho, J.H.; Lee, W.J.; Lee, B.-W.; Kim, J.H. Differential Association of Body Mass Index on Glycemic Control in Type 1 Diabetes. Diabetes. Metab. Res. Rev. 2017, 33, e2815. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.G.M.M.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr.; et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [PubMed]
- Bergenstal, R.M.; Beck, R.W.; Close, K.L.; Grunberger, G.; Sacks, D.B.; Kowalski, A.; Brown, A.S.; Heinemann, L.; Aleppo, G.; Ryan, D.B.; et al. Glucose Management Indicator (GMI): A New Term for Estimating A1C From Continuous Glucose Monitoring. Diabetes Care 2018, 41, 2275–2280. [Google Scholar] [CrossRef]
- Battelino, T.; Danne, T.; Bergenstal, R.M.; Amiel, S.A.; Beck, R.; Biester, T.; Bosi, E.; Buckingham, B.A.; Cefalu, W.T.; Close, K.L.; et al. Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range. Diabetes Care 2019, 42, 1593–1603. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee 6. Glycemic Goals and Hypoglycemia: Standards of Care in Diabetes-2024. Diabetes Care 2024, 47, S111–S125. [Google Scholar] [CrossRef]
- Aronsson, C.A.; Tamura, R.; Vehik, K.; Uusitalo, U.; Yang, J.; Haller, M.J.; Toppari, J.; Hagopian, W.; McIndoe, R.A.; Rewers, M.J.; et al. Dietary Intake and Body Mass Index Influence the Risk of Islet Autoimmunity in Genetically At-Risk Children: A Mediation Analysis Using the TEDDY Cohort. Pediatr. Diabetes 2023, 2023. [Google Scholar] [CrossRef]
- Nucci, A.M.; Virtanen, S.M.; Cuthbertson, D.; Ludvigsson, J.; Einberg, U.; Huot, C.; Castano, L.; Aschemeier, B.; Becker, D.J.; Knip, M.; et al. Growth and Development of Islet Autoimmunity and Type 1 Diabetes in Children Genetically at Risk. Diabetologia 2021, 64, 826–835. [Google Scholar] [CrossRef] [PubMed]
- Kurpiewska, E.; Ciężki, S.; Jamiołkowska-Sztabkowska, M.; Polkowska, A.; Starosz, A.; Grubczak, K.; Moniuszko, M.; Bossowski, A.; Głowińska-Olszewska, B. Excessive BMI Is Associated with Higher C-Peptide Level at Recognition but Also with Its Greater Loss in Two Years Clinical Observation in Children with New Onset Type 1 Diabetes. Front. Immunol. 2023, 14, 1176403. [Google Scholar] [CrossRef] [PubMed]
- Kahkoska, A.R.; Nguyen, C.T.; Jiang, X.; Adair, L.A.; Agarwal, S.; Aiello, A.E.; Burger, K.S.; Buse, J.B.; Dabelea, D.; Dolan, L.M.; et al. Characterizing the Weight-Glycemia Phenotypes of Type 1 Diabetes in Youth and Young Adulthood. BMJ Open Diabetes Res Care 2020, 8, e000886. [Google Scholar] [CrossRef] [PubMed]
- Roy, M.; Rendas-Baum, R.; Skurnick, J. Mortality in African-Americans with Type 1 Diabetes: The New Jersey 725. Diabet. Med. 2006, 23, 698–706. [Google Scholar] [CrossRef]
- Conway, B.; Miller, R.G.; Costacou, T.; Fried, L.; Kelsey, S.; Evans, R.W.; Orchard, T.J. Adiposity and Mortality in Type 1 Diabetes. Int. J. Obes. 2009, 33, 796–805. [Google Scholar] [CrossRef]
- The Diabetes Control And Complications Trial Research Group. Influence of Intensive Diabetes Treatment on Body Weight and Composition of Adults with Type 1 Diabetes in the Diabetes Control and Complications Trial. Diabetes Care 2001, 24, 1711–1721. [Google Scholar] [CrossRef]
- Holl, R.W.; Swift, P.G.F.; Mortensen, H.B.; Lynggaard, H.; Hougaard, P.; Aanstoot, H.-J.; Chiarelli, F.; Daneman, D.; Danne, T.; Dorchy, H.; et al. Insulin Injection Regimens and Metabolic Control in an International Survey of Adolescents with Type 1 Diabetes over 3 Years: Results from the Hvidore Study Group. Eur. J. Pediatr. 2003, 162, 22–29. [Google Scholar] [CrossRef]
- Adverse Events and Their Association with Treatment Regimens in the Diabetes Control and Complications Trial. Diabetes Care 1995, 18, 1415–1427. [CrossRef]
- Carlson, M.G.; Campbell, P.J. Intensive Insulin Therapy and Weight Gain in IDDM. Diabetes 1993, 42, 1700–1707. [Google Scholar] [CrossRef]
- Rodin, J.; Wack, J.; Ferrannini, E.; DeFronzo, R.A. Effect of Insulin and Glucose on Feeding Behavior. Metabolism 1985, 34, 826–831. [Google Scholar] [CrossRef] [PubMed]
- Willing, A.E.; Walls, E.K.; Koopmans, H.S. Insulin Increases the Daily Food Intake of Diabetic Rats on High and Low Fat Diets. Physiol. Behav. 1994, 56, 983–991. [Google Scholar] [CrossRef]
- Duncan, R.E.; Ahmadian, M.; Jaworski, K.; Sarkadi-Nagy, E.; Sul, H.S. Regulation of Lipolysis in Adipocytes. Annu. Rev. Nutr. 2007, 27, 79–101. [Google Scholar] [CrossRef]
- Bruttomesso, D.; Pianta, A.; Crazzolara, D.; Scaldaferri, E.; Lora, L.; Guarneri, G.; Mongillo, A.; Gennaro, R.; Miola, M.; Moretti, M.; et al. Continuous Subcutaneous Insulin Infusion (CSII) in the Veneto Region: Efficacy, Acceptability and Quality of Life. Diabet. Med. 2002, 19, 628–634. [Google Scholar] [CrossRef]
- Joubert, M.; Morera, J.; Vicente, A.; Rod, A.; Parienti, J.-J.; Reznik, Y. Cross-Sectional Survey and Retrospective Analysis of a Large Cohort of Adults with Type 1 Diabetes with Long-Term Continuous Subcutaneous Insulin Infusion Treatment. J. Diabetes Sci. Technol. 2014, 8, 1005–1010. [Google Scholar] [CrossRef]
- Yeh, H.-C.; Brown, T.T.; Maruthur, N.; Ranasinghe, P.; Berger, Z.; Suh, Y.D.; Wilson, L.M.; Haberl, E.B.; Brick, J.; Bass, E.B.; et al. Comparative Effectiveness and Safety of Methods of Insulin Delivery and Glucose Monitoring for Diabetes Mellitus: A Systematic Review and Meta-Analysis. Ann. Intern. Med. 2012, 157, 336–347. [Google Scholar] [CrossRef] [PubMed]
- REPOSE Study Group. Relative Effectiveness of Insulin Pump Treatment over Multiple Daily Injections and Structured Education during Flexible Intensive Insulin Treatment for Type 1 Diabetes: Cluster Randomised Trial (REPOSE). BMJ 2017, 356, j1285. [Google Scholar]
- Mehta, S.N.; Andersen, H.U.; Abrahamson, M.J.; Wolpert, H.A.; Hommel, E.E.; McMullen, W.; Ridderstråle, M. Changes in HbA1c and Weight Following Transition to Continuous Subcutaneous Insulin Infusion Therapy in Adults With Type 1 Diabetes. J. Diabetes Sci. Technol. 2017, 11, 83–86. [Google Scholar] [CrossRef]
- Alderisio, A.; Bozzetto, L.; Franco, L.; Riccardi, G.; Rivellese, A.A.; Annuzzi, G. Long-Term Body Weight Trajectories and Metabolic Control in Type 1 Diabetes Patients on Insulin Pump or Multiple Daily Injections: A 10-Year Retrospective Controlled Study. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1110–1117. [Google Scholar] [CrossRef]
- Karges, B.; Schwandt, A.; Heidtmann, B.; Kordonouri, O.; Binder, E.; Schierloh, U.; Boettcher, C.; Kapellen, T.; Rosenbauer, J.; Holl, R.W. Association of Insulin Pump Therapy vs Insulin Injection Therapy With Severe Hypoglycemia, Ketoacidosis, and Glycemic Control Among Children, Adolescents, and Young Adults With Type 1 Diabetes. JAMA 2017, 318, 1358–1366. [Google Scholar] [CrossRef]
- Holl, R.W.; Grabert, M.; Sorgo, W.; Heinze, E.; Debatin, K.M. Contributions of Age, Gender and Insulin Administration to Weight Gain in Subjects with IDDM. Diabetologia 1998, 41, 542–547. [Google Scholar] [CrossRef] [PubMed]
- Beck, R.W.; Riddlesworth, T.; Ruedy, K.; Ahmann, A.; Bergenstal, R.; Haller, S.; Kollman, C.; Kruger, D.; McGill, J.B.; Polonsky, W.; et al. Effect of Continuous Glucose Monitoring on Glycemic Control in Adults With Type 1 Diabetes Using Insulin Injections: The DIAMOND Randomized Clinical Trial. JAMA 2017, 317, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Koufakis, T.; Patoulias, D.; Zografou, I.; Papanas, N.; Popovic, D.S. Drawing Lines in the Sand: The Growing Threat of Obesity in Type 1 Diabetes. World J. Diabetes 2024, 15, 823–827. [Google Scholar] [CrossRef] [PubMed]
- Kueh, M.T.W.; Chew, N.W.S.; Al-Ozairi, E.; le Roux, C.W. The Emergence of Obesity in Type 1 Diabetes. Int. J. Obes. 2024, 48, 289–301. [Google Scholar] [CrossRef]
Total Population | Normal Weight | Overweight | Obese | Overweight/ Obese | p Value 1 | p Value 2 | p Value 3 | |
---|---|---|---|---|---|---|---|---|
Number of patients | 73 | 35 | 24 | 14 | 38 | - | - | - |
Male | 43 (59%) | 17 (49%) | 17 (71%) | 9 (64%) | 26 (68%) | 0.319 | 0.089 | 0.085 |
Age (years) | 39 (18–75) | 38 (18–75) | 41 ± 13 | 45 ± 11 | 42 ± 12 | 0.147 | 0.354 | 0.252 |
Insulin delivery method | 0.357 | 0.854 | 0.732 | |||||
MDIs | 55 (75%) | 27 (77%) | 19 (79%) | 9 (64%) | 28 (74%) | |||
CSII | 18 (25%) | 8 (23%) | 5 (21%) | 5 (36%) | 10 (26%) | |||
CGM system | 0.127 | 0.914 | 0.543 | |||||
Abbott FreeStyle Libre | 52 (71%) | 27 (77%) | 18 (75%) | 7 (50%) | 25 (66%) | |||
Menarini GlucoMen® Day | 6 (8%) | 2 (6%) | 1 (4%) | 3 (21%) | 4 (11%) | |||
Medtronic GuardianTM Sensor | 15 (21%) | 6 (17%) | 5 (21%) | 4 (29%) | 9 (24%) | |||
Diabetes duration (years) | 19 ± 11 | 18 ± 12 | 18 ± 12 | 24 ± 7 | 20 ± 11 | 0.101 | 0.908 | 0.486 |
Insulin TDD/kg (U/kg) | 0.63 ± 0.19 | 0.61 ± 0.21 | 0.64 ± 0.19 | 0.65 ± 0.16 | 0.63 (0.36–0.92) | 0.493 | 0.523 | 0.426 |
Total Population | Normal Weight | Overweight | Obese | Overweight/ Obese | p Value 1 | p Value 2 | p Value 3 | |
---|---|---|---|---|---|---|---|---|
Body weight (kg) | 77 ± 18 | 63 ± 10 | 82 ± 8 | 101 ± 13 | 89 ± 14 | <0.001 | <0.001 | <0.001 |
BMI (kg/m2) | 25.6 (18.5–43.3) | 22.4 (18.5–24.7) | 27.1 ± 1.3 | 35.0 ± 4.3 | 28.5 (25.5–43.3) | <0.001 | <0.001 | <0.001 |
WCmale (cm) | 94 ± 14 | 82 (63–91) | 95 ± 7 | 114 ± 10 | 102 ± 12 | <0.001 | <0.001 | <0.001 |
WCmale > 102 cm | 10 (24%) | 0 (0%) | 2 (13%) | 8 (89%) | 10 (40%) | <0.001 | 0.133 | 0.003 |
WCfemale (cm) | 76 (64–128) | 70 (64–88) | 88 ± 15 | 115 ± 10 | 99 ± 19 | 0.001 | 0.014 | 0.001 |
WCfemale > 88 cm | 7 (23%) | 0 (0%) | 2 (29%) | 5 (100%) | 7 (58%) | <0.001 | 0.018 | <0.001 |
Total Population | Normal Weight | Overweight | Obese | Overweight/ Obese | p Value 1 | p Value 2 | p Value 3 | |
---|---|---|---|---|---|---|---|---|
HbA1c (%) | 7.2 (5.6–10) | 7.2 (6.1–10) | 7.4 ± 1.0 | 7.0 ± 0.6 | 7.2 (5.6–9.7) | 0.106 | 0.468 | 0.185 |
GMI (%) | 6.9 (5.7–8.9) | 6.9 (6.0–8.9) | 6.9 (6.3–8.8) | 6.7 ± 0.4 | 6.8 (5.7–8.8) | 0.072 | 0.768 | 0.261 |
CV (%) | 39.5 ± 6.4 | 39.7 ± 7.4 | 40.1 ± 5.0 | 37.8 ± 6.0 | 39.2 ± 5.4 | 0.406 | 0.839 | 0.760 |
Mean glucose (mg/dL) | 148 (101–235) | 151 (113–235) | 148 (125–228) | 142 ± 18 | 145 (101–228) | 0.063 | 0.677 | 0.220 |
TIR (%) | 66 (25–94) | 64 ± 16 | 63 (32–81) | 69 ± 10 | 65 (32–83) | 0.394 | 0.621 | 0.943 |
TBR70 (%) | 4 (0–16) | 4 ± 3 | 4 (0–16) | 4 (1–16) | 4 (0–16) | 0.305 | 0.479 | 0.309 |
TBR54 (%) | 1 (0–11) | 1 (0–8) | 0.5 (0–5) | 1 (0–11) | 1 (0–11) | 0.304 | 0.748 | 0.458 |
TAR180 (%) | 20 ± 7 | 20 ± 7 | 22 ± 7 | 19 ± 7 | 21 ± 7 | 0.518 | 0.401 | 0.788 |
TAR250 (%) | 6 (0–40) | 7 (0–40) | 7 (1–37) | 5 ± 4 | 5 (0–37) | 0.026 | 0.699 | 0.165 |
Total Population | Normal Weight | Overweight | Obese | Overweight/ Obese | p Value 1 | p Value 2 | p Value 3 | |
---|---|---|---|---|---|---|---|---|
HbA1c < 7% | 26 (36%) | 11 (31%) | 9 (38%) | 6 (43%) | 15 (39%) | 0.448 | 0.628 | 0.473 |
GMI < 7% | 41 (57%) | 18 (51%) | 13 (57%) | 10 (71%) | 23 (62%) | 0.201 | 0.704 | 0.358 |
CV ≤ 36% | 25 (34%) | 12 (34%) | 6 (25%) | 7 (50%) | 13 (34%) | 0.308 | 0.447 | 0.995 |
TIR > 70% | 22 (30%) | 12 (34%) | 5 (21%) | 5 (36%) | 10 (26%) | 0.924 | 0.262 | 0.458 |
TBR70 < 4% | 28 (38%) | 15 (43%) | 8 (33%) | 5 (36%) | 13 (34%) | 0.646 | 0.461 | 0.448 |
TBR54 < 1% | 34 (47%) | 17 (49%) | 12 (50%) | 5 (36%) | 17 (45%) | 0.414 | 0.914 | 0.743 |
TAR180 < 25% | 55 (75%) | 26 (74%) | 17 (71%) | 12 (86%) | 29 (76%) | 0.386 | 0.770 | 0.841 |
TAR250 < 5% | 26 (36%) | 9 (26%) | 10 (42%) | 7 (50%) | 17 (45%) | 0.101 | 0.198 | 0.090 |
BMI | Body Weight | Waist Circumference | ||||
---|---|---|---|---|---|---|
r | p Value | r | p Value | R | p Value | |
HbA1c | −0.185 | 0.118 | −0.148 | 0.212 | −0.169 | 0.156 |
GMI | −0.227 | 0.049 | −0.225 | 0.049 | −0.109 | 0.365 |
CV | −0.044 | 0.713 | −0.122 | 0.303 | −0.148 | 0.215 |
Mean glucose | −0.231 | 0.049 | −0.225 | 0.049 | −0.113 | 0.345 |
TIR | 0.132 | 0.264 | 0.181 | 0.126 | 0.118 | 0.324 |
TBR70 | 0.124 | 0.294 | 0.068 | 0.568 | −0.004 | 0.973 |
TBR54 | 0.069 | 0.561 | 0.032 | 0.790 | −0.011 | 0.930 |
TAR180 | −0.124 | 0.294 | −0.133 | 0.261 | −0.018 | 0.883 |
TAR250 | −0.251 | 0.033 | −0.252 | 0.032 | −0.180 | 0.131 |
BMI | Body Weight | Waist Circumference | |||||||
---|---|---|---|---|---|---|---|---|---|
β | SE | p Value | β | SE | p Value | β | SE | p Value | |
HbA1c | −0.038 | 0.021 | 0.072 | −0.009 | 0.007 | 0.197 | −0.009 | 0.007 | 0.234 |
GMI | −0.035 | 0.014 | 0.012 | −0.010 | 0.005 | 0.035 | −0.008 | 0.005 | 0.124 |
CV | −0.162 | 0.142 | 0.259 | −0.059 | 0.047 | 0.215 | −0.076 | 0.049 | 0.122 |
Mean glucose | −1.517 | 0.562 | 0.009 | −0.427 | 0.190 | 0.028 | −0.329 | 0.200 | 0.105 |
TIR | 0.636 | 0.302 | 0.039 | 0.188 | 0.101 | 0.067 | 0.151 | 0.106 | 0.159 |
TBR70 | 0.117 | 0.076 | 0.126 | 0.021 | 0.025 | 0.414 | 0.004 | 0.027 | 0.873 |
TBR54 | 0.072 | 0.045 | 0.115 | 0.018 | 0.015 | 0.248 | 0.015 | 0.016 | 0.330 |
TAR180 | −0.302 | 0.149 | 0.047 | −0.068 | 0.050 | 0.179 | −0.025 | 0.053 | 0.634 |
TAR250 | −0.516 | 0.205 | 0.014 | −0.155 | 0.069 | 0.027 | −0.142 | 0.072 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christou, M.A.; Christou, P.A.; Katsarou, D.N.; Georga, E.I.; Kyriakopoulos, C.; Markozannes, G.; Christou, G.A.; Fotiadis, D.I.; Tigas, S. Effect of Body Weight on Glycaemic Indices in People with Type 1 Diabetes Using Continuous Glucose Monitoring. J. Clin. Med. 2024, 13, 5303. https://doi.org/10.3390/jcm13175303
Christou MA, Christou PA, Katsarou DN, Georga EI, Kyriakopoulos C, Markozannes G, Christou GA, Fotiadis DI, Tigas S. Effect of Body Weight on Glycaemic Indices in People with Type 1 Diabetes Using Continuous Glucose Monitoring. Journal of Clinical Medicine. 2024; 13(17):5303. https://doi.org/10.3390/jcm13175303
Chicago/Turabian StyleChristou, Maria A., Panagiota A. Christou, Daphne N. Katsarou, Eleni I. Georga, Christos Kyriakopoulos, Georgios Markozannes, Georgios A. Christou, Dimitrios I. Fotiadis, and Stelios Tigas. 2024. "Effect of Body Weight on Glycaemic Indices in People with Type 1 Diabetes Using Continuous Glucose Monitoring" Journal of Clinical Medicine 13, no. 17: 5303. https://doi.org/10.3390/jcm13175303
APA StyleChristou, M. A., Christou, P. A., Katsarou, D. N., Georga, E. I., Kyriakopoulos, C., Markozannes, G., Christou, G. A., Fotiadis, D. I., & Tigas, S. (2024). Effect of Body Weight on Glycaemic Indices in People with Type 1 Diabetes Using Continuous Glucose Monitoring. Journal of Clinical Medicine, 13(17), 5303. https://doi.org/10.3390/jcm13175303