Could the Suboccipital Release Technique Result in a Generalized Relaxation and Self-Perceived Improvement? A Repeated Measure Study Design
Abstract
:1. Introduction
2. Material and Methods
2.1. Subjects
Inclusion Criteria
2.2. Study Protocol
2.2.1. Automated Measures
2.2.2. Suboccipital Release
2.2.3. Procedure
3. Results
- Left frontal lobe: the AF3 electrode for all five bands (p < 0.01), the F7 electrode for all five bands (p < 0.03), the F3 for all five bands (p < 0.35), and the FC5 for all five bands (p < 0.01);
- Left temporal lobe: the T7 electrode for the Theta, Beta L, Beta H, and Gamma bands (p < 0.02);
- Left parietal lobe: the P7 electrode for all five bands (p < 0.04);
- Left occipital lobe: the O1 electrode for all five bands (p < 0.01);
- Right occipital lobe: the O2 electrode for the Theta band (p < 0.01);
- Right parietal lobe: the P8 electrode for all five bands (p < 0.04);
- Right temporal lobe: the T8 electrode for all five bands (p < 0.02);
- Right frontal lobe: the FC6 electrode for the Theta, Alpha, Beta L, and Beta H bands (p < 0.02), the F4 electrode for all five bands (p < 0.01), the F8 electrode for all five bands (p < 0.01), and the AF4 electrode for all five bands (p < 0.01).
- Left temporal lobe: the T7 electrode for the Alpha and Beta H bands;
- Right occipital lobe: the O2 electrode for the Beta L, Beta H, and Gamma bands;
- Right parietal lobe: the P8 electrode for the Alpha band;
- Right temporal lobe: the T8 electrode for the Theta band;
- Right frontal lobe: the FC6 electrode for the Gamma band, the F4, F8 and AF4 electrodes for all bands.
F8 Wave | R1–R2 | R1–R3 | R1–R4 | R2–R3 | R2–R4 | R3–R4 |
Theta | 0.145 | <0.001 | 0.294 | 0.005 | 0.572 | 0.002 |
Alpha | 0.592 | <0.001 | 0.024 | <0.001 | 0.167 | 0.009 |
Beta L | 0.033 | <0.001 | 0.105 | <0.001 | 0.946 | 0.003 |
Beta H | 0.483 | <0.001 | 0.294 | 0.003 | 0.678 | 0.007 |
Gamma | 0.780 | 0.002 | 0.769 | 0.008 | 0.839 | <0.001 |
FC5 Wave | R1–R2 | R1–R3 | R1–R4 | R2–R3 | R2–R4 | R3–R4 |
Theta | 0.084 | 0.012 | 0.294 | 0.001 | 0.455 | 0.023 |
Alpha | 0.502 | 0.005 | 0.288 | <0.001 | 0.049 | 0.049 |
Beta L | 0.369 | 0.035 | 0.377 | <0.001 | 0.158 | 0.053 |
Beta H | 0.678 | 0.029 | 0.645 | <0.001 | 0.420 | 0.051 |
Gamma | 0.561 | 0.099 | 0.635 | 0.678 | 0.015 | <0.001 |
FC6 Wave | R1–R2 | R1–R3 | R1–R4 | R2–R3 | R2–R4 | R3–R4 |
Theta | 0.065 | <0.001 | 0.236 | 0.016 | 0.346 | 0.019 |
Alpha | 0.261 | <0.001 | 0.087 | 0.001 | 0.108 | 0.041 |
Beta L | 0.018 | <0.001 | 0.316 | 0.005 | 0.561 | 0.002 |
Beta H | 0.158 | <0.001 | 0.492 | 0.017 | 0.394 | 0.051 |
Gamma | N/A | N/A | N/A | N/A | N/A | N/A |
O1 Wave | R1–R2 | R1–R3 | R1–R4 | R2–R3 | R2–R4 | R3–R4 |
Theta | 0.521 | 0.041 | 0.862 | 0.039 | 0.274 | 0.001 |
Alpha | 0.187 | 0.010 | 0.757 | 0.062 | 0.455 | <0.001 |
Beta L | 0.225 | 0.027 | 0.492 | 0.022 | 0.230 | <0.001 |
Beta H | 0.502 | 0.020 | 0.386 | 0.087 | 0.236 | 0.001 |
Gamma | 0.464 | 0.009 | 0.512 | 0.099 | 0.281 | <0.001 |
O2 Wave | R1–R2 | R1–R3 | R1–R4 | R2–R3 | R2–R4 | R3–R4 |
Theta | 0.049 | 0.035 | 0.862 | 0.133 | 0.242 | 0.006 |
Alpha | 0.862 | 0.354 | 0.624 | 0.338 | 0.338 | 0.079 |
Beta L | N/A | N/A | N/A | N/A | N/A | N/A |
Beta H | N/A | N/A | N/A | N/A | N/A | N/A |
Gamma | N/A | N/A | N/A | N/A | N/A | N/A |
P7 Wave | R1–R2 | R1–R3 | R1–R4 | R2–R3 | R2–R4 | R3–R4 |
Theta | 0.081 | 0.004 | 0.898 | 0.030 | 0.512 | 0.007 |
Alpha | 0.108 | 0.002 | 0.323 | 0.005 | 0.958 | 0.027 |
Beta L | 0.090 | 0.004 | 0.734 | 0.019 | 0.624 | 0.015 |
Beta H | 0.163 | 0.004 | 0.827 | 0.015 | 0.464 | 0.046 |
Gamma | 0.242 | 0.006 | 0.958 | 0.013 | 0.678 | 0.012 |
P8 Wave | R1–R2 | R1–R3 | R1–R4 | R2–R3 | R2–R4 | R3–R4 |
Theta | 0.309 | 0.004 | 0.582 | 0.012 | 0.958 | 0.004 |
Alpha | N/A | N/A | N/A | N/A | N/A | N/A |
Beta L | 0.474 | 0.013 | 0.369 | 0.006 | 0.982 | 0.003 |
Beta H | 0.346 | 0.005 | 0.242 | 0.006 | 0.734 | 0.004 |
Gamma | 0.323 | 0.007 | 0.248 | 0.004 | 0.592 | 0.003 |
T7 Wave | R1–R2 | R1–R3 | R1–R4 | R2–R3 | R2–R4 | R3–R4 |
Theta | 0.010 | 0.037 | 0.015 | 0.150 | 0.827 | 0.464 |
Alpha | N/A | N/A | N/A | N/A | N/A | N/A |
Beta L | 0.062 | 0.613 | 0.071 | 0.002 | 0.667 | 0.017 |
Beta H | N/A | N/A | N/A | N/A | N/A | N/A |
Gamma | 0.757 | 0.027 | 0.827 | 0.013 | 0.803 | <0.001 |
T8 Wave | R1–R2 | R1–R3 | R1–R4 | R2–R3 | R2–R4 | R3–R4 |
Theta | N/A | N/A | N/A | N/A | N/A | N/A |
Alpha | 0.122 | 0.009 | 0.013 | 0.069 | 0.108 | 0.301 |
Beta L | 0.850 | 0.167 | 0.093 | 0.105 | 0.994 | 0.994 |
Beta H | 0.723 | 0.172 | 0.361 | 0.038 | 0.316 | 0.592 |
Gamma | 0.323 | 0.007 | 0.248 | 0.004 | 0.592 | 0.003 |
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, L.; Louw, Q.; Crous, L.; Grimmer-Somers, K. Prevalence of neck pain and headaches: Impact of computer use and other associative factors. Cephalalgia 2009, 29, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Sillevis, R.; Hansen, A. Upper cervical spine syndrome: A new perspective. Arch. Prev. Med. 2024, 9, 018–021. [Google Scholar]
- Bogduk, N. Innervation and Pain patterns of the Cervical Spine. In Clinics in Physical Therapy: Physical Therapy of the Cervical and Thoracic Spine; Churchill Livingstone: London, UK, 1994; pp. 65–76. [Google Scholar]
- Krauss, J.; Creighton, D.; Ely, J.; Podlewska-Ely, J. The Immediate Effects of Upper Thoracic Translatoric Spinal Manipulation on Cervical Pain and Range of Motion: A Randomized Clinical Trial. J. Man. Manip. Ther. 2008, 16, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, P.; Perera, Y.S.; Lamabadusuriya, D.A.; Kulatunga, S.; Jayawardana, N.; Rajapakse, S. Work related complaints of neck, shoulder and arm among computer office workers: A cross-sectional evaluation of prevalence and risk factors in a developing country. Environ. Health 2011, 10, 70. [Google Scholar] [CrossRef]
- Ayanniyi, O.; Ukpai, B.; Adeniyi, A.F. Differences in prevalence of self-reported musculoskeletal symptoms among computer and non-computer users in a Nigerian population: A cross-sectional study. BMC Musculoskelet. Disord. 2010, 11, 177. [Google Scholar] [CrossRef]
- Strine, T.; Hootman, J. US National Prevelance and Correlations of Low Back and Neck Pain among Adults. Arthritis Rheum. (Arhtritis Care Res.) 2007, 57, 656–665. [Google Scholar] [CrossRef]
- Taylor, H.; Murphy, B. Altered Sensorimotor Integration With Cervical Spine Manipulation. J. Manip. Physiol. Ther. 2008, 31, 116–125. [Google Scholar] [CrossRef]
- Ribeiro, D.C.; Belgrave, A.; Naden, A.; Fang, H.; Matthews, P.; Parshottam, S. The prevalence of myofascial trigger points in neck and shoulder-related disorders: A systematic review of the literature. BMC Musculoskelet. Disord. 2018, 19, 252. [Google Scholar] [CrossRef]
- Fernandez-de-Las-Penas, C.; Ge, H.Y.; Alonso-Blanco, C.; Gonzalez-Iglesias, J.; Arendt-Nielsen, L. Referred pain areas of active myofascial trigger points in head, neck, and shoulder muscles, in chronic tension type headache. J. Bodyw. Mov. Ther. 2010, 14, 391–396. [Google Scholar] [CrossRef]
- Sillevis, R. The effects of the suboccipital release technique on the autonomic nervous system in healthy subjects: A pilot study. J. Rehabil. Pract. Res. 2020, 1, 110. [Google Scholar]
- Rodriguez-Huguet, M.; Gil-Salu, J.L.; Rodriguez-Huguet, P.; Cabrera-Afonso, J.R.; Lomas-Vega, R. Effects of Myofascial Release on Pressure Pain Thresholds in Patients With Neck Pain: A Single-Blind Randomized Controlled Trial. Am. J. Phys. Med. Rehabil. 2018, 97, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Lee, J.H. Effects of sternocleidomastoid muscle and suboccipital muscle soft tissue release on muscle hardness and pressure pain of the sternocleidomastoid muscle and upper trapezius muscle in smartphone users with latent trigger points. Medicine 2018, 97, e12133. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.B.; Lee, J.H.; Jeong, H.J.; Cynn, H.S. Effects of suboccipital release with craniocervical flexion exercise on craniocervical alignment and extrinsic cervical muscle activity in subjects with forward head posture. J. Electromyogr. Kinesiol. 2016, 30, 31–37. [Google Scholar] [CrossRef]
- Cho, S.H.; Kim, S.H.; Park, D.J. The comparison of the immediate effects of application of the suboccipital muscle inhibition and self-myofascial release techniques in the suboccipital region on short hamstring. J. Phys. Ther. Sci. 2015, 27, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Metzler-Wilson, K.; Vrable, A.; Schaub, A.; Schmale, T.K.; Rodimel, B.V.; Krause, B.A.; Wilson, T.E. Effect of Suboccipital Release on Pain Perception and Autonomic Reflex Responses to Ischemic and Cold Pain. Pain Med. 2020, 21, 3024–3033. [Google Scholar] [CrossRef] [PubMed]
- Scali, F.; Marsili, E.S.; Pontell, M.E. Anatomical connection between the rectus capitis posterior major and the dura mater. Spine 2011, 36, E1612–E1614. [Google Scholar] [CrossRef] [PubMed]
- Pontell, M.E.; Scali, F.; Marshall, E.; Enix, D. The obliquus capitis inferior myodural bridge. Clin. Anat. 2013, 26, 450–454. [Google Scholar] [CrossRef]
- Sillevis, R.; Hogg, R. Anatomy and clinical relevance of sub occipital soft tissue connections with the dura mater in the upper cervical spine. PeerJ 2020, 8, e9716. [Google Scholar] [CrossRef]
- Xu, J.; Zhong, B. Review on portable EEG technology in educational research. Comput. Hum. Behav. 2018, 81, 340–349. [Google Scholar] [CrossRef]
- Crone, N.E.; Miglioretti, D.L.; Gordon, B.; Sieracki, J.M.; Wilson, M.T.; Uematsu, S.; Lesser, R.P. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain J. Neurol. 1998, 121, 2271–2299. [Google Scholar] [CrossRef]
- Lin, B.; Deng, S.; Gao, H.; Yin, J. A Multi-Scale Activity Transition Network for Data Translation in EEG Signals Decoding. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 18, 1699–1709. [Google Scholar] [CrossRef] [PubMed]
- Roy, Y.; Banville, H.; Albuquerque, I.; Gramfort, A.; Falk, T.H.; Faubert, J. Deep learning-based lectroencephalography analysis: A systematic review. J. Neural Eng. 2019, 16, 051001. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.M.; Koenig, T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. Neuroimage 2018, 180 Pt B, 577–593. [Google Scholar] [CrossRef]
- Sillevis, R.; Unum, J.; Weiss, V.; Shamus, E.; Selva-Sarzo, F. The effect of a spinal thrust manipulation’s audible pop on brain wave activity: A quasi-experimental repeated measure design. PeerJ 2024, 12, e17622. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.S.; Bhuvaneswari, P. Analysis of Electroencephalography (EEG) signals and its categorization—A study. Procedia Eng. 2012, 38, 2525–2536. [Google Scholar] [CrossRef]
- Blanco, J.A.; Vanleer, A.C.; Calibo, T.K.; Firebaugh, S.L. Single-Trial Cognitive Stress Classification Using Portable Wireless Electroencephalography. Sensors 2019, 19, 499. [Google Scholar] [CrossRef] [PubMed]
- Kotowski, K.; Stapor, K.; Leski, J.; Kotas, M. Validation of Emotiv EPOC+ for extracting ERP correlates of emotional face processing. Biocybern. Biomed. Eng. 2018, 38, 773–781. [Google Scholar] [CrossRef]
- Williams, N.S.; McArthur, G.M.; de Wit, B.; Ibrahim, G.; Badcock, N.A. A validation of Emotiv EPOC Flex saline for EEG and ERP research. PeerJ 2020, 8, e9713. [Google Scholar] [CrossRef]
- Anderson, E.W.; Potter, K.C.; Matzen, L.E.; Shepherd, J.F.; Preston, G.A.; Silva, C.T. A User Study of Visualization Effectiveness Using EEG and Cognitive Load; Wiley Online Library: Hoboken, NJ, USA, 2011; pp. 791–800. [Google Scholar]
- Kamper, S.J.; Maher, C.G.; Mackay, G. Global rating of change scales: A review of strengths and weaknesses and considerations for design. J. Man. Manip. Ther. 2009, 17, 163–170. [Google Scholar] [CrossRef]
- Schmitt, J.; Di Fabio, R.P. The validity of prospective and retrospective global change criterion measures. Arch. Phys. Med. Rehabil. 2005, 86, 2270–2276. [Google Scholar] [CrossRef]
- Borghouts, J.; Koes, B.; Bouter, L. The clinical course and prognostic factors of non-specific neck pain: A systematic review. Pain 1998, 77, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fernandez de las Penas, C.; Cuadrado, M.L.; Gerwin, R.D.; Pareja, J.A. Referred pain from the trochlear region in tension-type headache: A myofascial trigger point from the superior oblique muscle. Headache 2005, 45, 731–737. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Li, Z.; Wei, N.; Chang, W.; Chen, W.; Sui, H.J. Effectiveness of physical therapy on the suboccipital area of patients with tension-type headache: A meta-analysis of randomized controlled trials. Medicine 2019, 98, e15487. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Bauer, M.; Chowanski, W.; Sui, Y.; Atkinson, D.; Baurley, S.; Fry, M.; Evans, J.; Bianchi-Berthouze, N. The brain’s response to pleasant touch: Investigation of tactile caressing. Front. Hum. Neurosci. 2014, 8, 893. [Google Scholar] [CrossRef] [PubMed]
- Ravaja, N.; Harjunen, V.; Ahmed, I.; Jacucci, G.; Spape, M.M. Feeling Touched: Emotional Modulation of Somatosensory Potentials to Interpersonal Touch. Sci. Rep. 2017, 7, 40504. [Google Scholar] [CrossRef] [PubMed]
- Kisley, M.A.; Cornwell, Z.M. Gamma and beta neural activity evoked during a sensory gating paradigm: Effects of auditory, somatosensory and cross-modal stimulation. Clin. Neurophysiol. 2006, 117, 2549–2563. [Google Scholar] [CrossRef]
- Morita, I.; Sakuma, S.; Shimomura, J.; Hayashi, N.; Toda, S. Brain activity in response to the touch of a hand on the center of the back. PLoS ONE 2018, 13, e0206451. [Google Scholar] [CrossRef]
- Bishop, M.D.; Mintken, P.E.; Bialosky, J.E.; Cleland, J.A. Patient expectations of benefit from interventions for neck pain and resulting influence on outcomes. J. Orthop. Sports Phys. Ther. 2013, 43, 457–465. [Google Scholar] [CrossRef]
- Bishop, M.D.; Bialosky, J.E.; Cleland, J.A. Patient expectations of benefit from common interventions for low back pain and effects on outcome: Secondary analysis of a clinical trial of manual therapy interventions. J. Man. Manip. Ther. 2011, 19, 20–25. [Google Scholar] [CrossRef]
- Ellermeier, W.; Westphal, W. Gender differences in pain ratings and pupil reactions to painful pressure stimuli. Pain 1995, 61, 435–439. [Google Scholar] [CrossRef]
Participant Relaxation (Initial) | Placebo Head Hold (HH) | Suboccipital Release (Release) | Participant Relaxation (Post) | |
---|---|---|---|---|
Time of each measurement (s) | 15 s | 15 s | 15 s | 15 s |
Total time of EEG recording (s) | 15 s | 30 s | 45 s | 60 s |
Recording | Time | Position | Tactile Touch |
---|---|---|---|
R1 | Immediately before head hold | Supine with head on towel roll position | Absent |
R2 | Head hold | Supine with head in hands researcher | Present |
R3 | Suboccipital release | Supine with fingers in suboccipital region and head free | Present |
R4 | Following release | Supine with head on towel roll position | Absent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sillevis, R.; Hansen, A.W. Could the Suboccipital Release Technique Result in a Generalized Relaxation and Self-Perceived Improvement? A Repeated Measure Study Design. J. Clin. Med. 2024, 13, 5898. https://doi.org/10.3390/jcm13195898
Sillevis R, Hansen AW. Could the Suboccipital Release Technique Result in a Generalized Relaxation and Self-Perceived Improvement? A Repeated Measure Study Design. Journal of Clinical Medicine. 2024; 13(19):5898. https://doi.org/10.3390/jcm13195898
Chicago/Turabian StyleSillevis, Rob, and Anne Weller Hansen. 2024. "Could the Suboccipital Release Technique Result in a Generalized Relaxation and Self-Perceived Improvement? A Repeated Measure Study Design" Journal of Clinical Medicine 13, no. 19: 5898. https://doi.org/10.3390/jcm13195898
APA StyleSillevis, R., & Hansen, A. W. (2024). Could the Suboccipital Release Technique Result in a Generalized Relaxation and Self-Perceived Improvement? A Repeated Measure Study Design. Journal of Clinical Medicine, 13(19), 5898. https://doi.org/10.3390/jcm13195898