Resting Energy Expenditure in Patients with Extreme Obesity: Comparison of the Harris–Benedict Equation with Indirect Calorimetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Body Composition and Indirect Calorimetry Measurement
- Refrain from eating for 12 h before the measurements, with the last meal being light;
- Drink only water after the last meal, avoiding alcohol, coffee, black and green tea;
- Avoid smoking or using any nicotine products before the measurements;
- Avoid strenuous physical activity 24 h before the measurements;
- Arrive well in advance and sit quietly for at least 10 min (physical and mental rest affect measurement quality);
- Avoid medications that may affect the measurements (e.g., beta-blockers, antidepressants, anti-obesity drugs, and others). If possible, take these medications after the measurements;
- The patient should remain completely still during the 20–30-min measurement period but should not fall asleep;
- Ensure an optimal temperature around 23 °C, ventilate if the temperature is higher, and minimize airflow during the measurements;
- Contraindications include pregnancy and the presence of a defibrillator (for bioimpedance);
- Women should not be measured several days before and during menstruation;
- All devices and objects in direct contact with the patient are disinfected after each measurement;
- Patients are informed about all conditions well in advance and briefed on the measurement procedure by healthcare personnel and sign the informed consent.
2.4. Data Analysis
3. Results
3.1. Achievement of the Main Objective
- Below 85% of predicted value (group 1).
- 85–94% of predicted value (group 2).
- 95–104% of predicted value (group 3).
- 105–115% of predicted value (group 4).
- Above 115% of predicted value (group 5).
3.2. Correlation of Body Composition and REE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lobstein, T.; Cooper, K. Obesity: A Ghost at the Feast of the Sustainable Development Goals. Curr. Obes. Rep. 2020, 9, 470–478. [Google Scholar] [CrossRef]
- Haththotuwa, R.N.; Wijeyaratne, C.N.; Senarath, U. Worldwide epidemic of obesity. In Obesity and Obstetrics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–8. [Google Scholar] [CrossRef]
- Bischoff, S.C.; Schweinlin, A. Obesity therapy. Clin. Nutr. ESPEN 2020, 38, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Kushner, R.F. Weight loss strategies for treatment of obesity. Prog. Cardiovasc. Dis. 2014, 56, 465–472. [Google Scholar] [CrossRef]
- Westerterp, K.R. Control of energy expenditure in humans. Eur. J. Clin. Nutr. 2017, 71, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Soares, M.J.; Müller, M.J. Resting energy expenditure and body composition: Critical aspects for clinical nutrition. Eur. J. Clin. Nutr. 2018, 72, 1208–1214. [Google Scholar] [CrossRef]
- Lam, Y.Y.; Ravussin, E. Indirect calorimetry: An indispensable tool to understand and predict obesity. Eur. J. Clin. Nutr. 2017, 71, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Ndahimana, D.; Kim, E.-K. Measurement Methods for Physical Activity and Energy Expenditure: A Review. Clin. Nutr. Res. 2017, 6, 68–80. [Google Scholar] [CrossRef]
- Pavlidou, E.; Petridis, D.; Tolia, M.; Tsoukalas, N.; Poultsidi, A.; Fasoulas, A.; Kyrgias, G.; Giaginis, C. Estimating the agreement between the metabolic rate calculated from prediction equations and from a portable indirect calorimetry device: An effort to develop a new equation for predicting resting metabolic rate. Nutr. Metab. 2018, 15, 41. [Google Scholar] [CrossRef]
- Macena, M.L.; Pureza, I.R.O.M.; Melo, I.S.V.; Clemente, A.G.; Ferreira, H.S.; Florêncio, T.M.M.T.; Pfrimer, K.; Ferrioli, E.; Sawaya, A.L.; Bueno, N.B. Agreement between the total energy expenditure calculated with accelerometry data and the BMR yielded by predictive equations v. the total energy expenditure obtained with doubly labelled water in low-income women with excess weight. Br. J. Nutr. 2019, 122, 1398–1408. [Google Scholar] [CrossRef]
- Marra, M.; Cioffi, I.; Sammarco, R.; Montagnese, C.; Naccarato, M.; Amato, V.; Contaldo, F.; Pasanisi, F. Prediction and evaluation of resting energy expenditure in a large group of obese outpatients. Int. J. Obes. 2017, 41, 697–705. [Google Scholar] [CrossRef]
- Carneiro, I.P.; A Elliott, S.; Siervo, M.; Padwal, R.; Bertoli, S.; Battezzati, A.; Prado, C.M. Is obesity associated with altered energy expenditure? Adv. Nutr. Int. Rev. J. 2016, 7, 476–487. [Google Scholar] [CrossRef] [PubMed]
- Löffler, M.C.; Betz, M.J.; Blondin, D.P.; Augustin, R.; Sharma, A.K.; Tseng, Y.-H.; Scheele, C.; Zimdahl, H.; Mark, M.; Hennige, A.M.; et al. Challenges in tackling energy expenditure as obesity therapy: From preclinical models to clinical application. Mol. Metab. 2021, 51, 101237. [Google Scholar] [CrossRef]
- Most, J.; Tosti, V.; Redman, L.M.; Fontana, L. Calorie restriction in humans: An update. Ageing Res. Rev. 2017, 39, 36–45. [Google Scholar] [CrossRef]
- Redman, L.M.; Smith, S.R.; Burton, J.H.; Martin, C.K.; Il’yasova, D.; Ravussin, E. Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cell Metab. 2018, 27, 805–815.e4. [Google Scholar] [CrossRef] [PubMed]
- Flack, K.D.; Siders, W.A.; Johnson, L.A.; Roemmich, J.N. Cross-Validation of Resting Metabolic Rate Prediction Equations. J. Acad. Nutr. Diet. 2016, 116, 1413–1422. [Google Scholar] [CrossRef]
- Madden, A.M.; Mulrooney, H.M.; Shah, S. Estimation of energy expenditure using prediction equations in overweight and obese adults: A systematic review. J. Hum. Nutr. Diet. 2016, 29, 458–476. [Google Scholar] [CrossRef]
- Achamrah, N.; Delsoglio, M.; De Waele, E.; Berger, M.M.; Pichard, C. Indirect calorimetry: The 6 main issues. Clin. Nutr. 2021, 40, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Tatucu-Babet, O.A.; Ridley, E.J.; Tierney, A.C. Prevalence of Underprescription or Overprescription of Energy Needs in Critically Ill Mechanically Ventilated Adults as Determined by Indirect Calorimetry. J. Parenter. Enter. Nutr. 2016, 40, 212–225. [Google Scholar] [CrossRef]
- Oshima, T.; Berger, M.M.; De Waele, E.; Guttormsen, A.B.; Heidegger, C.-P.; Hiesmayr, M.; Singer, P.; Wernerman, J.; Pichard, C. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group. Clin. Nutr. 2017, 36, 651–662. [Google Scholar] [CrossRef]
- Most, J.; Redman, L.M. Impact of calorie restriction on energy metabolism in humans. Exp. Gerontol. 2020, 133, 110875. [Google Scholar] [CrossRef]
- Das Gupta, R.; Ramachandran, R.; Venkatesan, P.; Anoop, S.; Joseph, M.; Thomas, N. Indirect calorimetry: From bench to bedside. Indian J. Endocrinol. Metab. 2017, 21, 594–599. [Google Scholar] [CrossRef]
- Rattanachaiwong, S.; Singer, P. Indirect calorimetry as point of care testing. Clin. Nutr. 2019, 38, 2531–2544. [Google Scholar] [CrossRef] [PubMed]
- Harris, B.J.A.; Benedict, F.G. A biometric study of human basal metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef]
- Delsoglio, M.; Achamrah, N.; Berger, M.M.; Pichard, C. Indirect calorimetry in Clinical Practice. J. Clin. Med. 2019, 8, 1387. [Google Scholar] [CrossRef] [PubMed]
- Jagim, A.R.; Camic, C.L.; Kisiolek, J.; Luedke, J.; Erickson, J.; Jones, M.T.; Oliver, J.M. Accuracy of resting metabolic rate prediction equations in athletes. J. Strength Cond. Res. 2018, 32, 1875–1881. [Google Scholar] [CrossRef]
- Zusman, O.; Kagan, I.; Bendavid, I.; Theilla, M.; Cohen, J.; Singer, P. Predictive equations versus measured energy expenditure by indirect calorimetry: A retrospective validation. Clin. Nutr. 2019, 38, 1206–1210. [Google Scholar] [CrossRef]
- Barcellos, P.S.; Borges, N.; Torres, D.P.M. Resting energy expenditure in cancer patients: Agreement between predictive equations and indirect calorimetry. Clin. Nutr. ESPEN 2021, 42, 286–291. [Google Scholar] [CrossRef]
- Anderson, E.J.; Sylvia, L.G.; Lynch, M.; Sonnenberg, L.; Lee, H.; Nathan, D.M. Comparison of energy assessment methods in overweight individuals. J. Acad. Nutr. Diet. 2014, 114, 273–278. [Google Scholar] [CrossRef]
- Al-Domi, H.; Al-Shorman, A. Validation of resting metabolic rate equations in obese and non-obese young healthy adults. Clin. Nutr. ESPEN 2018, 26, 91–96. [Google Scholar] [CrossRef]
- Kruizenga, H.M.; Hofsteenge, G.H.; Weijs, P.J.M. Predicting resting energy expenditure in underweight, normal weight, overweight, and obese adult hospital patients. Nutr. Metab. 2016, 13, 85. [Google Scholar] [CrossRef]
- Macena, M.d.L.; Paula, D.T.d.C.; Júnior, A.E.d.S.; Praxedes, D.R.S.; Pureza, I.R.d.O.M.; de Melo, I.S.V.; Bueno, N.B. Estimates of resting energy expenditure and total energy expenditure using predictive equations in adults with overweight and obesity: A systematic review with meta-analysis. Nutr. Rev. 2022, 80, 2113–2135. [Google Scholar] [CrossRef] [PubMed]
- Poli, V.F.S.; Sanches, R.B.; Moraes, A.d.S.; Fidalgo, J.P.N.; Nascimento, M.A.; Andrade-Silva, S.G.; Clemente, J.C.; Yi, L.C.; Caranti, D.A. Resting energy expenditure in obese women: Comparison between measured and estimated values. Br. J. Nutr. 2016, 116, 1306–1313. [Google Scholar] [CrossRef] [PubMed]
- Trexler, E.T.; Smith-Ryan, A.E.; Norton, L.E. Metabolic adaptation to weight loss: Implications for the athlete. J. Int. Soc. Sports Nutr. 2014, 11, 7. [Google Scholar] [CrossRef]
- Hirsch, K.R.; Smith-Ryan, A.E.; Blue, M.N.M.; Mock, M.G.; Trexler, E.T. Influence of segmental body composition and adiposity hormones on resting metabolic rate and substrate utilization in overweight and obese adults. J. Endocrinol. Investig. 2017, 40, 635–643. [Google Scholar] [CrossRef]
- Cancello, R.; Soranna, D.; Brunani, A.; Scacchi, M.; Tagliaferri, A.; Mai, S.; Marzullo, P.; Zambon, A.; Invitti, C. Analysis of predictive equations for estimating resting energy expenditure in a large cohort of morbidly obese patients. Front. Endocrinol. 2018, 9, 367. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.M.d.S.; Costa, A.B.P.; Campos, D.L.; Silva, M.P.S.; Cândido, A.L.; dos Santos, L.C.; Ferreira, A.V.M. Low validity of predictive equations for calculating resting energy expenditure in overweight and obese women with polycystic ovary syndrome. J. Hum. Nutr. Diet. 2018, 31, 266–275. [Google Scholar] [CrossRef]
- Swift, D.L.; Johannsen, N.M.; Lavie, C.J.; Earnest, C.P.; Church, T.S. The role of exercise and physical activity in weight loss and maintenance. Prog. Cardiovasc. Dis. 2014, 56, 441–447. [Google Scholar] [CrossRef]
- Popp, C.J.; Butler, M.; Curran, M.; Illiano, P.; Sevick, M.A.; St-Jules, D.E. Evaluating steady-state resting energy expenditure using indirect calorimetry in adults with overweight and obesity. Clin. Nutr. 2020, 39, 2220–2226. [Google Scholar] [CrossRef]
- Ocagli, H.; Lanera, C.; Azzolina, D.; Piras, G.; Soltanmohammadi, R.; Gallipoli, S.; Gafare, C.E.; Cavion, M.; Roccon, D.; Vedovelli, L.; et al. Resting energy expenditure in the elderly: Systematic review and comparison of equations in an experimental population. Nutrients 2021, 13, 458. [Google Scholar] [CrossRef]
- Anthanont, P.; Jensen, M.D. Does basal metabolic rate predict weight gain? Am. J. Clin. Nutr. 2016, 104, 959–963. [Google Scholar] [CrossRef]
Parameter | Mean | Minimum | Maximum |
---|---|---|---|
Age (years) | 53.3 ± 13.9 | 20.0 | 79.0 |
Height (cm) | 174.0 ± 12.3 | 128.0 | 205.0 |
Weight (kg) | 137.0 ± 37.5 | 71.0 | 235.7 |
BMI (kg/m2) | 45.2 ± 11.7 | 30.0 | 85.5 |
BSA (m2) | 68.5 ± 9.9 | 46.0 | 92.8 |
REE H–B (kcal/d/h) | 103.6 ± 26.5 | 65.0 | 177.0 |
REE H–B (kcal/d) | 2486 ± 635 | 1560 | 4248 |
REE measured (kcal/d) | 2509 ± 629 | 1369 | 4010 |
REE H–B–REE measured (kcal) | −23.5 ± 408 | −1010 | 1418 |
REE level compared to H–B calculation (%) | 102.2 ± 16.3 | 57.8 | 143.2 |
REE/Body Weight (kcal/d/kg) | 18.7 ± 3.3 | 10.4 | 27.4 |
REE/BSA (kcal/d/m2) | 1027 ± 173 | 601 | 1526 |
Deviations from Norm (%) | 2.4 ± 16.3 | −42.0 | 43.0 |
Quality (%) | 66.3 ± 22.1 | 13.0 | 100.0 |
RQ | 0.8 ± 0.1 | 0.7 | 1.1 |
BF (min) | 14.6 ± 4.1 | 4.0 | 24.0 |
IB-muscle (kg) | 42.7 ± 11.2 | 20.4 | 77.6 |
IB-fat (kg) | 61.6 ± 25.4 | 8.1 | 124.8 |
IB-water (kg) | 55.5 ± 13.8 | 27.8 | 97.9 |
IB-FFM (kg) | 75.2 ± 18.7 | 37.8 | 133.5 |
WHR | 1.0 ± 0.2 | 0.3 | 1.3 |
Fat Amount (%) | 44.0 ± 9.5 | 6.8 | 57.0 |
Parameter | Mean | Minimum | Maximum |
---|---|---|---|
Age (years) | 52.2 ± 14.7 | 20.0 | 79.0 |
Height (cm) | 166.9 ± 9.5 | 128.0 | 182.0 |
Weight (kg) | 131.2 ± 38.1 | 71.0 | 221.0 |
BMI (kg/m2) | 46.9 ± 12.6 | 31.9 | 85.5 |
BSA (m2) | 65.2 ± 9.4 | 46.0 | 84.4 |
REE H–B (kcal/d/h) | 91.2 ± 18.8 | 65.0 | 134.0 |
REE H–B (kcal/d) | 2188 ± 452 | 1560 | 3216 |
REE measured (kcal/d) | 2326 ± 537 | 1369 | 3535 |
REE H–B–REE measured (kcal) | −138.5 ± 345.6 | −922 | 789 |
REE level compared to H–B calculation (%) | 106.8 ± 16.3 | 64.6 | 143.2 |
REE/Body Weight (kcal/d/kg) | 18.3 ± 3.6 | 10.4 | 27.4 |
REE/BSA (kcal/d/m2) | 1003 ± 169 | 601 | 1414 |
Deviations from Norm (%) | 7.2 ± 16.0 | −35.0 | 43.0 |
Quality (%) | 71.3 ± 21.6 | 13.0 | 100.0 |
RQ | 0.8 ± 0.1 | 0.7 | 1.0 |
BF (min) | 15.3 ± 4.1 | 8.0 | 24.0 |
IB-muscle (kg) | 37.1 ± 8.9 | 20.4 | 59.9 |
IB-fat (kg) | 64.9 ± 24.5 | 32,9 | 124.8 |
IB-water (kg) | 48.6 ± 11.1 | 27.8 | 77.5 |
IB-FFM (kg) | 65.8 ± 14.6 | 37.8 | 102.6 |
WHR | 1.0 ± 0.2 | 0.4 | 1.3 |
Fat Amount (%) | 48.6 ± 5.4 | 34.7 | 57.0 |
Parameter | Mean | Minimum | Maximum |
---|---|---|---|
Age (years) | 54.7 ± 13.0 | 23.0 | 73.0 |
Height (cm) | 182.5 ± 9.7 | 168.0 | 205.0 |
Weight (kg) | 144.0 ± 36.2 | 92.0 | 235.7 |
BMI (kg/m2) | 43.2 ± 10.2 | 30.0 | 72.7 |
BSA (m2) | 72.4 ± 9.1 | 58.5 | 92.7 |
REE H–B (kcal/d/h) | 118.7 ± 26.8 | 79.0 | 177.0 |
REE H–B (kcal/d) | 2848 ± 643 | 1896 | 4248 |
REE measured (kcal/d) | 2731 ± 669 | 1942 | 4010 |
REE H–B–REE measured (kcal) | 116 ± 440 | −1010 | 1418 |
REE level compared to H–B calculation (%) | 96.6 ± 14.7 | 57.8 | 133.7 |
REE/Body Weight (kcal/d/kg) | 19.2 ± 2.9 | 11.8 | 26.2 |
REE/BSA (kcal/d/m2) | 1055 ± 177 | 730 | 1526 |
Deviations from Norm (%) | −3.5 ± 14.8 | −42.0 | 34.0 |
Quality (%) | 60.2 ± 21.4 | 23.0 | 96.0 |
RQ | 0.9 ± 0.1 | 0.8 | 1.1 |
BF (min) | 13.6 ± 4.0 | 4.0 | 22.0 |
IB-muscle (kg) | 49.6 ± 9.9 | 36.6 | 77.6 |
IB-fat (kg) | 57.6 ± 26.3 | 8.1 | 120.8 |
IB-water (kg) | 64.0 ± 12.1 | 48.5 | 97.9 |
IB-FFM (kg) | 86.8 ± 16.5 | 65.4 | 133.5 |
WHR | 1.0 ± 0.2 | 0.3 | 1.2 |
Fat Amount (%) | 38.4 ± 10.4 | 6.8 | 52.6 |
Parameter | Group 1 | Group 2 | Group 3 | Group 4 | Group 5 |
---|---|---|---|---|---|
Age (years) | 53.3 ± 14.0 | 50.3 ± 16.6 | 53.9 ± 11.9 | 55.5 ± 10.3 | 52.9 ± 18.6 |
Height (cm) | 180.3 ± 8.8 | 174.8 ± 14.1 | 177.1 ± 11.8 | 171.5 ± 7.1 | 165.7 ± 14.8 |
Weight (kg) | 142.4 ± 39.6 | 137.6 ± 42.9 | 149.6 ± 35.2 | 127.6 ± 38.2 | 121.7 ± 28.9 |
BMI (kg/m2) | 43.9 ± 12.9 | 44.6 ± 11.7 | 47.8 ± 10.7 | 43.9 ± 15.3 | 44.1 ± 7.7 |
REE H–B (kcal/d) | 2741 ± 698 | 2571 ± 740 | 2679 ± 645 | 2250 ± 474 | 2150 ± 433 |
REE measured (kcal/d) | 2116 ± 564 | 2323 ± 655 | 2676 ± 637 | 2468 ± 545 | 2781 ± 599 |
IB-muscle (kg) | 49.5 ± 10.7 | 40.9 ± 11.8 | 46.7 ± 11.7 | 40.1 ± 8.2 | 36.2 ± 9.1 |
IB-fat (kg) | 54.0 ± 33.4 | 65.5 ± 26.7 | 67.4 ± 23.8 | 57.6 ± 27.5 | 57.5 ± 17.3 |
IB-water (kg) | 64.1 ± 13.4 | 53.1 ± 14.6 | 60.2 ± 14.4 | 52.4 ± 10.1 | 47.5 ± 11.6 |
IB-FFM (kg) | 87.0 ± 18.0 | 72.1 ± 19.7 | 81.7 ± 19.5 | 70.9 ± 13.1 | 64.3 ± 15.6 |
WHR | 0.9 ± 0.3 | 1.0 ± 0.2 | 1.0 ± 0.1 | 1.0 ± 0.2 | 1.0 ± 0.1 |
Fat amount (%) | 36.3 ± 14.7 | 46.8 ± 6.8 | 44.4 ± 9.6 | 43.1 ± 8.3 | 46.8 ± 6.3 |
Parameter | Mean | Minimum | Maximum |
---|---|---|---|
Age (years) | 51.5 ± 15.4 | 20.0 | 69.0 |
Height (cm) | 177.0 ± 12.4 | 155.0 | 205.0 |
Weight (kg) | 139.5 ± 40.8 | 81.1 | 235.7 |
BMI (kg/m2) | 44.3 ± 11.9 | 32.3 | 74.7 |
BSA (m2) | 69.9 ± 10.5 | 50.8 | 92.8 |
REE H–B (kcal/d) | 2638 ± 713 | 1560 | 4248 |
REE measured (kcal/d) | 2242 ± 617 | 1369 | 3686 |
REE H–B–REE measured (kcal) | 396 ± 291 | 92.0 | 1418 |
REE level compared to H–B calculation (%) | 85.4 ± 8.7 | 57.8 | 94.2 |
IB-muscle (kg) | 44.3 ± 11.9 | 24.3 | 67.4 |
IB-fat (kg) | 61.0 ± 29.3 | 8.1 | 120.8 |
IB-water (kg) | 57.4 ± 14.9 | 32.2 | 86.7 |
IB-FFM (kg) | 77.9 ± 20.1 | 43.9 | 114.9 |
WHR | 1.0 ± 0.2 | 0.3 | 1.2 |
Fat amount (%) | 42.7 ± 11.5 | 6.8 | 57.0 |
Variable × REE Measured (kcal/d) | Correlation Value (r) |
---|---|
IB-muscle (kg) | 0.7452 (p = 0.0000) |
IB-water (kg) | 0.7381 (p = 0.0000) |
IB-FFM (kg) | 0.7306 (p = 0.0000) |
Fat amount (%) | 0.2398 (p = 0.2700) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jílková, A.; Lampová, B.; Kádě, O.; Kouřimská, L.; Chrpová, D.; Kaiserová, I.; Matoulek, M. Resting Energy Expenditure in Patients with Extreme Obesity: Comparison of the Harris–Benedict Equation with Indirect Calorimetry. J. Clin. Med. 2024, 13, 5993. https://doi.org/10.3390/jcm13195993
Jílková A, Lampová B, Kádě O, Kouřimská L, Chrpová D, Kaiserová I, Matoulek M. Resting Energy Expenditure in Patients with Extreme Obesity: Comparison of the Harris–Benedict Equation with Indirect Calorimetry. Journal of Clinical Medicine. 2024; 13(19):5993. https://doi.org/10.3390/jcm13195993
Chicago/Turabian StyleJílková, Anna, Barbora Lampová, Ondřej Kádě, Lenka Kouřimská, Diana Chrpová, Iveta Kaiserová, and Martin Matoulek. 2024. "Resting Energy Expenditure in Patients with Extreme Obesity: Comparison of the Harris–Benedict Equation with Indirect Calorimetry" Journal of Clinical Medicine 13, no. 19: 5993. https://doi.org/10.3390/jcm13195993
APA StyleJílková, A., Lampová, B., Kádě, O., Kouřimská, L., Chrpová, D., Kaiserová, I., & Matoulek, M. (2024). Resting Energy Expenditure in Patients with Extreme Obesity: Comparison of the Harris–Benedict Equation with Indirect Calorimetry. Journal of Clinical Medicine, 13(19), 5993. https://doi.org/10.3390/jcm13195993