Hypotension after Induction of Anesthesia as a Predictor of Hypotension after Opening the Dura Mater during Emergency Craniotomy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hawryluk, G.; Bell, R.; Jagoda, A.; Mangat, H.; Bobrow, B.; Ghajar, J. Guidelines for Prehospital Management of Traumatic Brain Injury 3rd Edition: Executive Summary. Neurosurgery 2023, 93, e159–e169. [Google Scholar] [CrossRef]
- Taylor, C.A.; Bell, J.M.; Breiding, M.J.; Xu, L. Traumatic Brain Injury–Related Emergency Department Visits, Hospitalizations, and Deaths—United States, 2007 and 2013. MMWR Surveill Summ. 2017, 66, 1–16. [Google Scholar] [CrossRef]
- Kawaguchi, M.; Sakamoto, T.; Ohnishi, H.; Karasawa, J.; Furuya, H. Preoperative predictors of reduction in arterial blood pressure following dural opening during surgical evacuation of acute subdural hematoma. J. Neurosurg. Anesthesiol. 1996, 8, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, K.; Kushi, H.; Sakurai, A.; Utagawa, A.; Saito, T.; Moriya, T.; Hayashi, N. Risk factors for intraoperative hypotension in traumatic intracranial hematoma. Resuscitation 2004, 60, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.; Mack, C.D.; Sammer, M.; Rozet, I.; Lee, L.A.; Muangman, S.; Wang, M.; Hollingworth, W.; Lam, A.M.; Vavilala, M.S. The incidence and risk factors for hypotension during emergent decompressive craniotomy in children with traumatic brain injury. Anesth. Analg. 2006, 103, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Brown, M.J.; Curry, P.; Noda, S.; Chesnut, R.M.; Vavilala, M.S. Prevalence and risk factors for intraoperative hypotension during craniotomy for traumatic brain injury. J. Neurosurg. Anesthesiol. 2012, 24, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, T.; Node, Y.; Yamamoto, Y.; Teramoto, A. Cardiopulmonary hemodynamic changes during acute subdural hematoma evacuation. Neurol. Med. Chir. 2006, 46, 219–225. [Google Scholar] [CrossRef]
- Wan, W.H.; Ang, B.T.; Wang, E. The Cushing Response: A case for a review of its role as a physiological reflex. J. Clin. Neurosci. 2008, 15, 223–228. [Google Scholar] [CrossRef]
- Chesnut, R.M.; Gautille, T.; Blunt, B.; Klauber, M.R.; Marshall, L.F. Neurogenic hypotension in patients with severe head injuries. J. Trauma Acute Care Surg. 1998, 44, 958–964. [Google Scholar] [CrossRef]
- Carney, N.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Hawryluk, G.W.; Bell, M.J.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; et al. Guidelines for the Management of Severe Traumatic Brain Injury, Fourth Edition. Neurosurgery 2017, 80, 6–15. [Google Scholar] [CrossRef]
- Eastridge, B.J.; Salinas, J.; McManus, J.G.; Blackburn, L.; Bugler, E.M.; Cooke, W.H.; Convertino, V.A.; Wade, C.E.; Holcomb, J.B. Hypotension begins at 110 mm Hg: Redefining “hypotension” with data. J. Trauma 2007, 63, 291–297; discussion 297–299. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; He, Z.; Li, Z.; Gong, R.; Hui, J.; Weng, W.; Wu, X.; Yang, C.; Jiang, J.; Xie, L.; et al. Traumatic brain injury in elderly population: A global systematic review and meta-analysis of in-hospital mortality and risk factors among 2.22 million individuals. Ageing Res. Rev. 2024, 99, 102376. [Google Scholar] [CrossRef] [PubMed]
- Spaite, D.W.; Hu, C.; Bobrow, B.J.; Chikani, V.; Sherrill, D.; Barnhart, B.; Gaither, J.B.; Denninghoff, K.R.; Viscusi, C.; Mullins, T.; et al. Mortality and Prehospital Blood Pressure in Patients with Major Traumatic Brain Injury: Implications for the Hypotension Threshold. JAMA Surg. 2017, 152, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Barton, C.W.; Hemphill, J.C.; Morabito, D.; Manley, G. A novel method of evaluating the impact of secondary brain insults on functional outcomes in traumatic brain-injured patients. Acad. Emerg. Med. 2005, 12, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Manley, G.; Knudson, M.M.; Morabito, D.; Damron, S.; Erickson, V.; Pitts, L. Hypotension, hypoxia, and head injury: Frequency, duration, and consequences. Arch. Surg. 2001, 136, 1118–1123. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, V.; Vavilala, M.S.; Mills, B.; Rowhani-Rahbar, A. Demographic and clinical risk factors associated with hospital mortality after isolated severe traumatic brain injury: A cohort study. J. Intensive Care 2015, 3, 46. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lim, H.B.; Smith, M. Systemic complications after head injury: A clinical review. Anaesthesia 2007, 62, 474–482. [Google Scholar] [CrossRef]
- Shiozaki, T. Hypertension and head injury. Curr. Hypertens. Rep. 2005, 7, 450–453. [Google Scholar] [CrossRef]
- Latson, T.W.; Ashmore, T.H.; Reinhart, D.J.; Klein, K.; Giesecke, A.H. Autonomic reflex dysfunction in patients presenting for elective surgery is associated with hypotension after anesthesia induction. Anesthesiology 1994, 80, 326–337. [Google Scholar] [CrossRef]
- Abdelhamid, B.M.; Yassin, A.; Ahmed, A.; Amin, S.M.; Abougabal, A. Perfusion index-derived parameters as predictors of hypotension after induction of general anaesthesia: A prospective cohort study. Anaesthesiol. Intensive Ther. 2022, 54, 34–41. [Google Scholar] [CrossRef]
- Czajka, S.; Putowski, Z.; Krzych, Ł.J. Post-induction hypotension and intraoperative hypotension as potential separate risk factors for the adverse outcome: A cohort study. J. Anesth. 2023, 37, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, S.A.; Dogan, L.; Sarikaya, Z.T.; Ulugol, H.; Gucyetmez, B.; Toraman, F. Hypotension after Anesthesia Induction: Target-Controlled Infusion Versus Manual Anesthesia Induction of Propofol. J. Clin. Med. 2023, 12, 5280. [Google Scholar] [CrossRef] [PubMed]
- Bullock, R.; Chesnut, R.M.; Clifton, G.; Ghajar, J.; Marion, D.W.; Narayan, R.K.; Newell, D.W.; Pitts, L.H.; Rosner, M.J.; Wilberger, J.W.; et al. Guidelines for the management of severe head injury. Eur. J. Emerg. Med. 1996, 3, 109–127. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Kushi, H.; Makino, K.; Hayashi, N. The risk factors for the occurrence of acute brain swelling in acute subdural hematoma. Acta Neurochir. Suppl. 2003, 86, 351–354. [Google Scholar] [CrossRef]
- Saengrung, S.; Kaewborisutsakul, A.; Tunthanathip, T.; Phuenpathom, N.; Taweesomboonyat, C. Risk Factors for Intraoperative Hypotension During Decompressive Craniectomy in traumatic Brain Injury Patients. World Neurosurg. 2022, 162, e652–e658. [Google Scholar] [CrossRef] [PubMed]
- Kamiutsuri, K.; Tominaga, N.; Kobayashi, S. Preoperative elevated FDP may predict severe intraoperative hypotension after dural opening during decompressive craniectomy of traumatic brain injury. JA Clin. Rep. 2018, 4, 8. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mayer, S.A.; Kurtz, P.; Wyman, A.; Sung, G.Y.; Multz, A.S.; Varon, J.; Granger, C.B.; Kleinschmidt, K.; Lapointe, M.; Peacock, W.F.; et al. Clinical practices, complications, and mortality in neurological patients with acute severe hypertension: The Studying the Treatment of Acute hyperTension registry. Crit. Care Med. 2011, 39, 2330–2336. [Google Scholar] [CrossRef]
- Seo, W. Paroxysmal Sympathetic Hyperactivity After Acquired Brain Injury: An Integrative Literature Review. Crit. Care Nurse. 2023, 43, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Shutter, L.A.; Narayan, R.K. Blood pressure management in traumatic brain injury. Ann. Emerg. Med. 2008, 51 (Suppl. S3), S37–S38. [Google Scholar] [CrossRef]
- Simard, J.M.; Bellefleur, M. Systemic arterial hypertension in head trauma. Am. J. Cardiol. 1989, 63, 32C–35C. [Google Scholar] [CrossRef]
- Meng, L.; Sun, Y.; Zhao, X.; Rasmussen, M.; Al-Tarshan, Y.; Meng, D.M.; Liu, Z.; Adams, D.C.; McDonagh, D.L. Noradrenaline-induced changes in cerebral blood flow in health, traumatic brain injury and critical illness: A systematic review with meta-analysis. Anaesthesia 2024, 79, 978–991. [Google Scholar] [CrossRef] [PubMed]
- Bijker, J.B.; Persoon, S.; Peelen, L.M.; Moons, K.G.; Kalkman, C.J.; Kappelle, L.J.; Van Klei, W.A. Intraoperative hypotension and perioperative ischemic stroke after general surgery: A nested case-control study. Anesthesiology 2012, 116, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Archer, D.P.; Freymond, D.; Ravussin, P. Use of mannitol in neuroanesthesia and neurointensive care. Ann. Fr. Anesth. Reanim. 1995, 14, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Servadei, F.; Nasi, M.T.; Giuliani, G.; Cremonini, A.M.; Cenni, P.; Zappi, D.; Taylor, G.S. CT prognostic factors in acute subdural haematomas: The value of the ‘worst’ CT scan. Br. J. Neurosurg. 2000, 14, 110–116. [Google Scholar] [CrossRef] [PubMed]
HBP (n = 89) | NBP (n = 76) | p-Value | |
---|---|---|---|
Sex (M/F) | 75/14 | 56/20 | 0.0692 |
Age (yr) | 57.8 ± 13.7 | 56.8 ± 14.3 | 0.6541 |
GCS (range) | 7.4 ± 4.1 (3–15) | 8.7 ± 4.2 (3–15) | 0.0764 |
Haematocrit (%) | 40.2 ± 5.1 | 37.9 ± 4.8 | 0.0075 * |
Surgery time (min) | 108.5 ± 34.8 | 106.4 ± 35.1 | 0.6944 |
HR on arrival to the OR (beat/min) | 100.7 ± 23.7 | 91.7 ± 22.8 | 0.0143 * |
Total infusion (mL)—crystalloids | 1951.1 ± 902.6 | 2011.1 ± 810.6 | 0.6559 |
Vasopressor use (n %)—norepinephrine | 12 (13.4%) | 11 (14.4%) | 0.5151 |
Blood transfusion (n %) | 8 (8.9%) | 6 (7.8%) | 0.5139 |
Total urine volume (ml) | 290.8 ± 366.5 | 494.4 ± 475.9 | 0.0022 * |
Intraoperative brain oedema (n %) | 17 (19.1%) | 12 (15.7%) | 0.3638 |
BP 1 | BP 2 | BP 3 | BP 4 | |||||
---|---|---|---|---|---|---|---|---|
HBP | NBP | HBP | NBP | HBP | NBP | HBP | NBP | |
Age (year) | r = 0.0266 | r = −0.1349 | r = −0.2670 | r = −0.1091 | r = −0.3830 | r = −0.1738 | r = 0.0160 | r = −0.1115 |
p = 0.8170 | p = 0.2480 | p = 0.0180 * | p = 0.3510 | p = 0.0010 * | p = 0.1360 | p = 0.8900 | p = 0.3410 | |
Glasgow Coma Scale | r = −0.2287 | r = 0.1997 | r = −0.1822 | r = −0.1106 | r = 0.2918 | r = 0.2369 | r = 0.2635 | r = 0.3193 |
p = 0.0520 | p = 0.1080 | p = 0.1230 | p = 0.3770 | p = 0.0120 | p = 0.0550 | p = 0.0240 * | p = 0.0090 * | |
HR (beap/min) | r = 0.2155 | r = −0.0981 | r = 0.1455 | r = 0.0967 | r = 0.0900 | r = −0.0778 | r = −0.0584 | r = −0.2915 |
p = 0.0430 * | p = 0.3990 | p = 0.1740 | p = 0.4060 | p = 0.4010 | p = 0.5040 | p = 0.5870 | p = 0.0110 * | |
Ht (%) | r = 0.2527 | r = 0.0445 | r = −0.1648 | r = 0.2006 | r = 0.0813 | r = 0.1824 | r = 0.1273 | r = −0.0336 |
p = 0.0270 * | p = 0.7250 | p = 0.1520 | p = 0.1090 | p = 0.4820 | p = 0.1460 | p = 0.2700 | p = 0.7900 | |
Intravenous fluids (mL) | r = 0.0916 | r = −0.3273 | r = −0.1296 | r = −0.2084 | r = 0.0012 | r = −0.0694 | r = 0.0674 | r = −0.0534 |
p = 0.3930 | p = 0.0040 * | p = 0.2260 | p = 0.0710 | p = 0.9910 | p = 0.5510 | p = 0.5300 | p = 0.6470 | |
Urine output (mL) | r = −0.0304 | r = 0.0035 | r = 0.0510 | r = 0.2558 | r = 0.0613 | r = −0.0132 | r = −0.0282 | r = −0.0735 |
p = 0.7770 | p = 0.9760 | p = 0.6350 | p = 0.0260 * | p = 0.5680 | p = 0.9100 | p = 0.7930 | p = 0.5280 | |
Glasgow Outcome Scale | r = −0.3222 | r = 0.2566 | r = −0.2493 | r = 0.0265 | r = 0.2770 | r = 0.5196 | r = 0.2091 | r = 0.3369 |
p = 0.0050 * | p = 0.0440 * | p = 0.0330 * | p = 0.8380 | p = 0.0180 * | p< 0.0001 * | p = 0.0760 | p = 0.0070 * |
HBP (n = 89) | NBP (n = 76) | p-Value | |
---|---|---|---|
Glasgow Outcome Scale | 2.26 ± 1.2 | 2.72 ± 1.2 | 0.0290 * |
Deceased | 39 (43%) | 17 (22%) | 0.0276 * |
Length of stay (range) | 12.2 ± 10.5 (1–60) days | 11.8 ± 8.8 (1–37) days | 0.8333 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duda, I.; Hofman, M.; Dymek, M.; Liberski, P.; Wojtacha, M.; Szczepańska, A. Hypotension after Induction of Anesthesia as a Predictor of Hypotension after Opening the Dura Mater during Emergency Craniotomy. J. Clin. Med. 2024, 13, 6021. https://doi.org/10.3390/jcm13196021
Duda I, Hofman M, Dymek M, Liberski P, Wojtacha M, Szczepańska A. Hypotension after Induction of Anesthesia as a Predictor of Hypotension after Opening the Dura Mater during Emergency Craniotomy. Journal of Clinical Medicine. 2024; 13(19):6021. https://doi.org/10.3390/jcm13196021
Chicago/Turabian StyleDuda, Izabela, Mariusz Hofman, Mikołaj Dymek, Piotr Liberski, Maciej Wojtacha, and Anna Szczepańska. 2024. "Hypotension after Induction of Anesthesia as a Predictor of Hypotension after Opening the Dura Mater during Emergency Craniotomy" Journal of Clinical Medicine 13, no. 19: 6021. https://doi.org/10.3390/jcm13196021
APA StyleDuda, I., Hofman, M., Dymek, M., Liberski, P., Wojtacha, M., & Szczepańska, A. (2024). Hypotension after Induction of Anesthesia as a Predictor of Hypotension after Opening the Dura Mater during Emergency Craniotomy. Journal of Clinical Medicine, 13(19), 6021. https://doi.org/10.3390/jcm13196021