Navigating Now and Next: Recent Advances and Future Horizons in Robotic Radical Prostatectomy
Abstract
:1. Introduction
2. Single Port Surgery
2.1. Transperitoneal Approach
2.2. Extraperitoneal Approach
2.3. Perineal Approach
2.4. Transvesical Approach
2.5. SP Limitations
3. Pelvic-Fascia-Sparing Techniques
3.1. Retzius Sparing
3.2. Hood Sparing
4. Preserving Erectile Function
5. Lymph Node Dissection
6. Artificial Intelligence in Radical Prostatectomy
7. Novel Robotic Platforms
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BR | Biochemical recurrence |
IIEF-5 | International Index of Erectile Function—5 |
PSM | Positive surgical margins |
RARP | Robotic-assisted radical prostatectomy |
SHIM | Sexual Health Inventory for Men |
SP | Single Port |
References
- Young, H.H., VIII. Conservative Perineal Prostatectomy: The Results of Two Years’ Experience and Report of Seventy-Five Cases. Ann. Surg. 1905, 41, 549–557. [Google Scholar] [PubMed]
- Millin, T. Retropubic prostatectomy. J. Urol. 1948, 59, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Hudson, M.A.; Bahnson, R.R.; Catalona, W.J. Clinical use of prostate specific antigen in patients with prostate cancer. J. Urol. 1989, 142, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Ragde, H.; Aldape, H.C.; Bagley, C.M., Jr. Ultrasound-guided prostate biopsy. Biopty gun superior to aspiration. Urology 1988, 32, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Ballantyne, G.H.; Moll, F. The da Vinci telerobotic surgical system: The virtual operative field and telepresence surgery. Surg. Clin. N. Am. 2003, 83, 1293–1304. [Google Scholar] [CrossRef] [PubMed]
- Menon, M.; Tewari, A.; Peabody, J.; Shrivastava, A.; Kaul, S.; Bhandari, A.; Hemal, A. Vattikuti Institute prostatectomy, a technique of robotic radical prostatectomy for management of localized carcinoma of the prostate: Experience of over 1100 cases. Urol. Clin. N. Am. 2004, 31, 701–717. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.R.; Sivaraman, A.; Coelho, R.F.; Chauhan, S.; Palmer, K.J.; Orvieto, M.A.; Camacho, I.; Coughlin, G.; Rocco, B. Pentafecta: A new concept for reporting outcomes of robot-assisted laparoscopic radical prostatectomy. Eur. Urol. 2011, 59, 702–707. [Google Scholar] [CrossRef]
- Kaye, D.R.; Mullins, J.K.; Carter, H.B.; Bivalacqua, T.J. Robotic surgery in urological oncology: Patient care or market share? Nat. Rev. Urol. 2015, 12, 55–60. [Google Scholar] [CrossRef]
- Vaessen, C. Location of robotic surgical systems worldwide and in France. J. Visc. Surg. 2011, 148 (Suppl. S5), e9–e11. [Google Scholar] [CrossRef]
- Anceschi, U.; Morelli, M.; Flammia, R.S.; Brassetti, A.; Dell’Oglio, P.; Galfano, A.; Tappero, S.; Vecchio, E.; Martiriggiano, M.; Luciani, L.G.; et al. Predictors of trainees’ proficiency during the learning curve of robot-assisted radical prostatectomy at high—volume institutions: Results from a multicentric series. Cent. Eur. J. Urol. 2023, 76, 38–43. [Google Scholar]
- Carlsson, S.; Jaderling, F.; Wallerstedt, A.; Nyberg, T.; Stranne, J.; Thorsteinsdottir, T.; Carlsson, S.V.; Bjartell, A.; Hugosson, J.; Haglind, E.; et al. Oncological and functional outcomes 1 year after radical prostatectomy for very-low-risk prostate cancer: Results from the prospective LAPPRO trial. BJU Int. 2016, 118, 205–212. [Google Scholar] [CrossRef]
- Vickers, A.J. Editorial comment on: Impact of surgical volume on the rate of lymph node metastases in patients undergoing radical prostatectomy and extended pelvic lymph node dissection for clinically localized prostate cancer. Eur. Urol. 2008, 54, 802–803. [Google Scholar] [CrossRef] [PubMed]
- Begg, C.B.; Riedel, E.R.; Bach, P.B.; Kattan, M.W.; Schrag, D.; Warren, J.L.; Scardino, P.T. Variations in morbidity after radical prostatectomy. N. Engl. J. Med. 2002, 346, 1138–1144. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.J.; Bianco, F.J.; Gonen, M.; Cronin, A.M.; Eastham, J.A.; Schrag, D.; Klein, E.A.; Reuther, A.M.; Kattan, M.W.; Pontes, J.E.; et al. Effects of pathologic stage on the learning curve for radical prostatectomy: Evidence that recurrence in organ-confined cancer is largely related to inadequate surgical technique. Eur. Urol. 2008, 53, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Novara, G.; Ficarra, V.; Mocellin, S.; Ahlering, T.E.; Carroll, P.R.; Graefen, M.; Guazzoni, G.; Menon, M.; Patel, V.R.; Shariat, S.F.; et al. Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. Eur. Urol. 2012, 62, 382–404. [Google Scholar] [CrossRef]
- Fantus, R.J.; Cohen, A.; Riedinger, C.B.; Kuchta, K.; Wang, C.H.; Yao, K.; Park, S. Facility-level analysis of robot utilization across disciplines in the National Cancer Database. J. Robot. Surg. 2019, 13, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, G.D.; Yaxley, J.W.; Chabers, S.K.; Occhipinti, S.; Samaratunga, H.; Zajdlewicz, L.; Teloken, P.; Dunglison, N.; Williams, S.; Lavin, M.F.; et al. Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol. 2018, 19, 1051–1060. [Google Scholar] [CrossRef]
- Freire, M.P.; Choi, W.W.; Lei, Y.; Carvas, F.; Hu, J.C. Overcoming the learning curve for robotic-assisted laparo-scopic radical prostatectomy. Urol. Clin. N. Am. 2010, 37, 37–47. [Google Scholar] [CrossRef]
- White, M.A.; Haber, G.P.; Autorino, R.; Khanna, R.; Forest, S.; Yang, B.; Altunrende, F.; Stein, R.J.; Kaouk, J.H. Robotic laparoendoscopic single-site radical prostatectomy: Technique and early outcomes. Eur. Urol. 2010, 58, 544–550. [Google Scholar] [CrossRef]
- Kaouk, J.H.; Haber, G.P.; Autorino, R.; Crouzet, S.; Ouzzane, A.; Flamand, V.; Villers, A. A novel robotic system for single-port urologic surgery: First clinical investigation. Eur. Urol. 2014, 66, 1033–1043. [Google Scholar] [CrossRef]
- Dobbs, R.W.; Halgrimson, W.R.; Madueke, I.; Vigneswaran, H.T.; Wilson, J.O.; Crivellaro, S. Single-port robot-assisted laparoscopic radical prostatectomy: Initial experience and technique with the da Vinci®SP platform. BJU Int. 2019, 124, 1022–1027. [Google Scholar] [CrossRef]
- Kaouk, J.; Bertolo, R.; Eltemamy, M.; Garisto, J. Single-Port Robot-Assisted Radical Prostatectomy: First Clinical Experience Using the SP Surgical System. Urology 2019, 124, 309. [Google Scholar] [CrossRef] [PubMed]
- Kaouk, J.; Aminsharifi, A.; Wilson, C.A.; Sawczyn, G.; Garisto, J.; Francavilla, S.; Abern, M.; Crivellaro, S. Extraperitoneal versus Transperitoneal Single Port Robotic Radical Prostatectomy: A Comparative Analysis of Perioperative Outcomes. J. Urol. 2020, 203, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Abou Zeinab, M.; Beksac, A.T.; Ferguson, E.; Kaviani, A.; Moschovas, M.C.; Joseph, J.; Kim, M.; Crivellaro, S.; Nix, J.; Patel, V.; et al. Single-port Extraperitoneal and Transperitoneal Radical Prostatectomy: A Multi-Institutional Propensity-Score Matched Study. Urology 2023, 171, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Vigneswaran, H.T.; Schwarzman, L.S.; Francavilla, S.; Abern, M.R.; Crivellaro, S. A Comparison of Perioperative Outcomes Between Single-port and Multiport Robot-assisted Laparoscopic Prostatectomy. Eur. Urol. 2020, 77, 671–674. [Google Scholar] [CrossRef] [PubMed]
- Moschovas, M.C.; Bhat, S.; Sandri, M.; Rogers, T.; Onol, F.; Mazzone, E.; Roof, S.; Mottrie, A.; Patel, V. Comparing the Approach to Radical Prostatectomy Using the Multiport da Vinci Xi and da Vinci SP Robots: A Propensity Score Analysis of Perioperative Outcomes. Eur. Urol. 2021, 79, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Noh, T.I.; Tae, J.H.; Shim, J.S.; Kang, S.H.; Cheon, J.; Lee, J.G.; Kang, S.G. Initial experience of single-port robot-assisted radical prostatectomy: A single surgeon’s experience with technique description. Prostate Int. 2022, 10, 85–91. [Google Scholar] [CrossRef]
- Semerjian, A.; Pavlovich, C.P. Extraperitoneal Robot-Assisted Radical Prostatectomy: Indications, Technique and Outcomes. Curr. Urol. Rep. 2017, 18, 42. [Google Scholar] [CrossRef]
- Akand, M.; Erdogru, T.; Avci, E.; Ates, M. Transperitoneal versus extraperitoneal robot-assisted laparoscopic radical prostatectomy: A prospective single surgeon randomized comparative study. Int. J. Urol. 2015, 22, 916–921. [Google Scholar] [CrossRef]
- Khalil, M.I.; Joseph, J.V. Extraperitoneal Single-Port Robot-Assisted Radical Prostatectomy. J. Endourol. 2021, 35 (Suppl. S2), S100–S105. [Google Scholar] [CrossRef]
- Kim, J.E.; Kaldany, A.; Lichtbroun, B.; Singer, E.A.; Jang, T.L.; Ghodoussipour, S.; Kim, M.M.; Kim, I.Y. Single-Port Robotic Radical Prostatectomy: Short-Term Outcomes and Learning Curve. J. Endourol. 2022, 36, 1285–1289. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.A.; Aminsharifi, A.; Sawczyn, G.; Garisto, J.D.; Yau, R.; Eltemamy, M.; Kim, S.; Lenfant, L.; Kaouk, J. Outpatient Extraperitoneal Single-Port Robotic Radical Prostatectomy. Urology 2020, 144, 142–146. [Google Scholar] [CrossRef] [PubMed]
- Kaouk, J.; Valero, R.; Sawczyn, G.; Garisto, J. Extraperitoneal single-port robot-assisted radical prostatectomy: Initial experience and description of technique. BJU Int. 2020, 125, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Kaouk, J.H.; Akca, O.; Zargar, H.; Caputo, P.; Ramirez, D.; Andrade, H.; Albayrak, S.; Laydner, H.; Angermeier, K. Descriptive Technique and Initial Results for Robotic Radical Perineal Prostatectomy. Urology 2016, 94, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Lenfant, L.; Garisto, J.; Sawczyn, G.; Wilson, C.A.; Aminsharifi, A.; Kim, S.; Schwen, Z.; Bertolo, R.; Kaouk, J. Robot-assisted Radical Prostatectomy Using Single-port Perine-al Approach: Technique and Single-surgeon Matched-paired Comparative Outcomes. Eur. Urol. 2021, 79, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Xu, L.; Ye, L.; Zheng, Q.; Hu, H.; Ni, K.; Zhou, C.; Xue, D.; Cheng, S.; Wang, H.; et al. Single-port robot-assisted perineal radical prostatectomy with the da Vinci XI system: Initial experience and learning curve using the cumulative sum method. World J. Surg. Oncol. 2023, 21, 46. [Google Scholar] [CrossRef] [PubMed]
- Guilherme Sawczyn, A.A.; Garisto, J.; Valero, R.; Kaouk, J. Single-port transvesical robotic simple prostatectomy using the novel SP® surgical system: Technical aspects. Urol. Video J. 2020, 5, 100022. [Google Scholar] [CrossRef]
- Abou Zeinab, M.; Beksac, A.T.; Ferguson, E.; Kaviani, A.; Kaouk, J. Transvesical versus extraperitoneal single-port robotic radical prostatectomy: A matched-pair analysis. World J. Urol. 2022, 40, 2001–2008. [Google Scholar] [CrossRef]
- Ramos-Carpinteyro, R.; Ferguson, E.L.; Chavali, J.S.; Geskin, A.; Soputro, N.; Kaouk, J. Single-port Transvesical Robot-assisted Radical Prostatectomy: The Surgical Learning Curve of the First 100 Cases. Urology 2023, 178, 76–82. [Google Scholar] [CrossRef]
- Deng, W.; Jiang, H.; Liu, X.; Chen, L.; Liu, W.; Zhang, C.; Zhou, X.; Fu, B.; Wang, G. Transvesical Retzius-Sparing Versus Standard Robot-Assisted Radical Prostatectomy: A Retrospective Propensity Score-Adjusted Analysis. Front. Oncol. 2021, 11, 687010. [Google Scholar] [CrossRef]
- Zhou, X.; Deng, W.; Li, Z.; Zhang, C.; Liu, W.; Guo, J.; Chen, L.; Huang, W.; Lei, E.; Zhang, X.; et al. Initial experience and short-term outcomes of single-port extraperitoneal transvesical robot-assisted radical prostatectomy: A two-center study. Transl. Androl. Urol. 2023, 12, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Holt, J.D.; Gerayli, F. Prostate Cancer Screening. Prim. Care 2019, 46, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Patel, V.R.; Coelho, R.F.; Palmer, K.J.; Rocco, B. Periurethral suspension stitch during robot-assisted laparoscopic radical prostatectomy: Description of the technique and continence outcomes. Eur. Urol. 2009, 56, 472–478. [Google Scholar] [CrossRef]
- Ma, X.; Tang, K.; Yang, C.; Wu, G.; Xu, N.; Wang, M.; Zeng, X.; Hu, Z.; Song, R.; Yuh, B.; et al. Bladder neck preservation improves time to continence after radical prostatectomy: A systematic review and meta-analysis. Oncotarget 2016, 7, 67463–67475. [Google Scholar] [CrossRef] [PubMed]
- Kojima, Y.; Takahashi, N.; Haga, N.; Nomiya, M.; Yanagida, T.; Ishibashi, K.; Aikawa, K.; Lee, D.I. Urinary incontinence after robot-assisted radical prostatectomy: Pathophysiology and intraoperative techniques to improve surgical outcome. Int. J. Urol. 2013, 20, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- Vora, A.A.; Dajani, D.; Lynch, J.H.; Kowalczyk, K.J. Anatomic and technical considerations for optimizing recovery of urinary function during robotic-assisted radical prostatectomy. Curr. Opin. Urol. 2013, 23, 78–87. [Google Scholar] [CrossRef]
- Lee, D.I.; Wedmid, A.; Mendoza, P.; Sharma, S.; Walicki, M.; Hastings, R.; Monahan, K.; Eun, D. Bladder neck plication stitch: A novel technique during robot-assisted radical prostatectomy to improve recovery of urinary continence. J. Endourol. 2011, 25, 1873–1877. [Google Scholar] [CrossRef]
- von Bodman, C.; Matsushita, K.; Savage, C.; Matikainen, M.P.; Eastham, J.A.; Scardino, P.T.; Rabbani, F.; Akin, O.; Sandhu, J.S. Recovery of urinary function after radical prostatectomy: Predictors of urinary function on preoperative prostate magnetic resonance imaging. J. Urol. 2012, 187, 945–950. [Google Scholar] [CrossRef]
- Noguchi, M.; Kakuma, T.; Suekane, S.; Nakashima, O.; Mohamed, E.R.; Matsuoka, K. A randomized clinical trial of suspension technique for improving early recovery of urinary continence after radical retropubic prostatectomy. BJU Int. 2008, 102, 958–963. [Google Scholar] [CrossRef]
- Sugimura, Y.; Hioki, T.; Yamada, Y.; Fumino, M.; Inoue, T. An anterior urethral stitch improves urinary incontinence following radical prostatectomy. Int. J. Urol. 2001, 8, 153–157. [Google Scholar] [CrossRef]
- Coelho, R.F.; Chauhan, S.; Orvieto, M.A.; Sivaraman, A.; Palmer, K.J.; Coughlin, G.; Patel, V.R. Influence of modified posterior reconstruction of the rhabdosphincter on early recovery of continence and anastomotic leakage rates after robot-assisted radical prostatectomy. Eur. Urol. 2011, 59, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Brien, J.C.; Barone, B.; Fabrizio, M.; Given, R. Posterior reconstruction before vesicourethral anastomosis in patients undergoing robot-assisted laparoscopic prostatectomy leads to earlier return to baseline continence. J. Endourol. 2011, 25, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Krane, L.S.; Wambi, C.; Bhandari, A.; Stricker, H.J. Posterior support for urethrovesical anastomosis in robotic radical prostatectomy: Single surgeon analysis. Can. J. Urol. 2009, 16, 4836–4840. [Google Scholar] [PubMed]
- Kim, I.Y.; Hwang, E.A.; Mmeje, C.; Ercolani, M.; Lee, D.H. Impact of posterior urethral plate repair on continence following robot-assisted laparoscopic radical prostatectomy. Yonsei Med. J. 2010, 51, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Menon, M.; Muhletaler, F.; Campos, M.; Peabody, J.O. Assessment of early continence after reconstruction of the periprostatic tissues in patients undergoing computer assisted (robotic) prostatectomy: Results of a 2 group parallel randomized controlled trial. J. Urol. 2008, 180, 1018–1023. [Google Scholar] [CrossRef]
- Tan, G.; Srivastava, A.; Grover, S.; Peters, D.; Dorsey, P., Jr.; Scott, A.; Jhaveri, J.; Tilki, D.; Te, A.; Tewari, A. Optimizing vesicourethral anastomosis healing after robot-assisted laparoscopic radical prostatectomy: Lessons learned from three techniques in 1900 patients. J. Endourol. 2010, 24, 1975–1983. [Google Scholar] [CrossRef] [PubMed]
- Sammon, J.D.; Muhletaler, F.; Peabody, J.O.; Diaz-Insua, M.; Satyanaryana, R.; Menon, M. Long-term functional urinary outcomes comparing single- vs double-layer urethrovesical anastomosis: Two-year follow-up of a two-group parallel randomized controlled trial. Urology 2010, 76, 1102–1107. [Google Scholar] [CrossRef]
- Kalisvaart, J.F.; Osann, K.E.; Finley, D.S.; Ornstein, D.K. Posterior reconstruction and anterior suspension with single anastomotic suture in robot-assisted laparoscopic radical prostatectomy: A simple method to improve early return of continence. J. Robot. Surg. 2009, 3, 149–153. [Google Scholar] [CrossRef]
- Galfano, A.; Ascione, A.; Grimaldi, S.; Petralia, G.; Strada, E.; Bocciardi, A.M. A new anatomic approach for robot-assisted laparoscopic prostatectomy: A feasibility study for completely intrafascial surgery. Eur. Urol. 2010, 58, 457–461. [Google Scholar] [CrossRef]
- Davis, M.; Egan, J.; Marhamati, S.; Galfano, A.; Kowalczyk, K.J. Retzius-Sparing Robot-Assisted Robotic Prostatectomy: Past, Present, and Future. Urol. Clin. N. Am. 2021, 48, 11–23. [Google Scholar] [CrossRef]
- Umari, P.; Eden, C.; Cahill, D.; Rizzo, M.; Eden, D.; Sooriakumaran, P. Retzius-Sparing versus Standard Robot-Assisted Radical Prostatectomy: A Comparative Prospective Study of Nearly 500 Patients. J. Urol. 2021, 205, 780–790. [Google Scholar] [CrossRef] [PubMed]
- Egan, J.; Marhamati, S.; Carvalho, F.L.F.; Davis, M.; O’Neill, J.; Lee, H.; Lynch, J.H.; Hankins, R.A.; Hu, J.C.; Kowalczyk, K.J. Retzius-sparing Robot-assisted Radical Prostatectomy Leads to Durable Improvement in Urinary Function and Quality of Life Versus Standard Robot-assisted Radical Prostatectomy Without Compromise on Oncologic Efficacy: Single-surgeon Series and Step-by-step Guide. Eur. Urol. 2021, 79, 839–857. [Google Scholar] [PubMed]
- Menon, M.; Dalela, D.; Jamil, M.; Diaz, M.; Tallman, C.; Abdollah, F.; Sood, A.; Lehtola, L.; Miller, D.; Jeong, W. Functional Recovery, Oncologic Outcomes and Postoperative Complications after Robot-Assisted Radical Prostatectomy: An Evidence-Based Analysis Comparing the Retzius Sparing and Standard Approaches. J. Urol. 2018, 199, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Abdel Raheem, A.; Hagras, A.; Ghaith, A.; Alenzi, M.J.; Elghiaty, A.; Gameel, T.; Alowidah, I.; Ham, W.S.; Choi, Y.D.; El-Bahnasy, A.H.; et al. Retzius-sparing robot-assisted radical prostatectomy versus open retropubic radical prostatectomy: A prospective comparative study with 19-month follow-up. Minerva Urol. Nefrol. 2020, 72, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Li, Y.; Chen, M.; Xu, L.; Guo, S.; Marra, G.; Rosenberg, J.E.; Ma, H.; Li, X.; Guo, H. Retzius-sparing robot-assisted radical prostatectomy improves early recovery of urinary continence: A randomized, controlled, single-blind trial with a 1-year follow-up. BJU Int. 2020, 126, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Asimakopoulos, A.D.; Topazio, L.; De Angelis, M.; Finazzi Agrò, E.; Pastore, A.L.; Fuschi, A.; Annino, F. Retzius-sparing versus standard robot-assisted radical prostatectomy: A prospective randomized comparison on immediate continence rates. Surg. Endosc. 2019, 33, 2187–2196. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.W.; Hung, S.C.; Hu, J.C.; Chiu, K.Y. Retzius-sparing Robotic-assisted Radical Prostatectomy Associated with Less Bladder Neck Descent and Better Early Continence Outcome. Anti-Cancer Res. 2018, 38, 345–351. [Google Scholar]
- Sayyid, R.K.; Simpson, W.G.; Lu, C.; Terris, M.K.; Klaassen, Z.; Madi, R. Retzius-Sparing Robotic-Assisted Laparoscopic Radical Prostatectomy: A Safe Surgical Technique with Superior Continence Outcomes. J. Endourol. 2017, 31, 1244–1250. [Google Scholar] [CrossRef]
- Dalela, D.; Jeong, W.; Prasad, M.-A.; Sood, A.; Abdollah, F.; Diaz, M.; Karabon, P.; Sammon, J.; Jamil, M.; Baize, B.; et al. A Pragmatic Randomized Controlled Trial Examining the Impact of the Retzius-sparing Approach on Early Urinary Continence Recovery After Robot-assisted Radical Prostatectomy. Eur. Urol. 2017, 72, 677–685. [Google Scholar] [CrossRef]
- Barakat, B.; Othman, H.; Gauger, U.; Wolff, I.; Hadaschik, B.; Rehme, C. Retzius Sparing Radical Prostatectomy Versus Robot-assisted Radical Prostatectomy: Which Technique Is More Beneficial for Prostate Cancer Patients (MASTER Study)? A Systematic Review and Meta-analysis. Eur. Urol. Focus 2022, 8, 1060–1071. [Google Scholar] [CrossRef]
- Wagaskar, V.G.; Mittal, A.; Sobotka, S.; Ratnani, P.; Lantz, A.; Falagario, U.G.; Martini, A.; Dovey, Z.; Treacy, P.-J.; Pathak, P.; et al. Hood Technique for Robotic Radical Prostatecto-my-Preserving Periurethral Anatomical Structures in the Space of Retzius and Sparing the Pouch of Douglas, Enabling Early Return of Continence Without Compromising Surgical Margin Rates. Eur. Urol. 2021, 80, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Shimmura, H.; Banno, T.; Nakamura, K.; Murayama, A.; Shigeta, H.; Sawano, T.; Kouchi, Y.; Ozaki, A.; Yamabe, F.; Iizuka, J.; et al. A single-center retrospective comparative analysis of urinary continence in robotic prostatectomy with a combination of umbilical ligament preservation and Hood technique. Int. J. Urol. 2023, 30, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ning, Z.; Jia, G.; Zhang, G.; Wang, J.; Liu, H.; Tao, B.; Wang, C. Modified hood technique for single-port robot-assisted radical prostatectomy contributes to early recovery of continence. Front. Surg. 2023, 10, 1132303. [Google Scholar] [CrossRef] [PubMed]
- Galfano, A.; Secco, S.; Dell’Oglio, P.; Rha, K.; Eden, C.; Fransis, K.; Sooriakumaran, P.; Sanchez De La Muela, P.; Kowalczyk, K.; Miyagawa, T.; et al. Retzius-sparing robot-assisted radical prostatectomy: Early learning curve experience in three continents. BJU Int. 2021, 127, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Walsh, P.C.; Donker, P.J. Impotence following radical prostatectomy: Insight into etiology and prevention. J. Urol. 1982, 128, 492–497. [Google Scholar] [CrossRef]
- Fetterolf, D.E.; Snyder, R.J. Scientific and clinical support for the use of dehydrated amniotic membrane in wound management. Wounds 2012, 24, 299–307. [Google Scholar] [PubMed]
- Koob, T.J.; Rennert, R.; Zabek, N.; Massee, M.; Lim, J.J.; Temenoff, J.S.; Li, W.W.; Gurtner, G. Biological properties of dehydrated human amnion/chorion composite graft: Implications for chronic wound healing. Int. Wound J. 2013, 10, 493–500. [Google Scholar] [CrossRef]
- Ogaya-Pinies, G.; Palayapalam-Ganapathi, H.; Rogers, T.; Hernandez-Cardona, E.; Rocco, B.; Coelho, R.F.; Jenson, C.; Patel, V.R. Can dehydrated human amnion/chorion membrane accelerate the return to potency after a nerve-sparing robotic-assisted radical prostatectomy? Propensity score-matched analysis. J. Robot. Surg. 2018, 12, 235–243. [Google Scholar] [CrossRef]
- Patel, V.R.; Samavedi, S.; Bates, A.S.; Kumar, A.; Coelho, R.; Rocco, B.; Palmer, K. Dehydrated Human Amnion/Chorion Membrane Allograft Nerve Wrap Around the Prostatic Neurovascular Bundle Accelerates Early Return to Continence and Potency Following Robot-assisted Radical Prostatectomy: Propensity Score-matched Analysis. Eur. Urol. 2015, 67, 977–980. [Google Scholar] [CrossRef]
- Razdan, S.; Bajpai, R.R.; Razdan, S.; Sanchez, M.A. A matched and controlled longitudinal cohort study of dehydrated human amniotic membrane allograft sheet used as a wraparound nerve bundles in robotic-assisted laparoscopic radical prostatectomy: A puissant adjunct for enhanced potency outcomes. J. Robot. Surg. 2019, 13, 475–481. [Google Scholar] [CrossRef]
- Barski, D.; Gerullis, H.; Ecke, T.; Boros, M.; Brune, J.; Beutner, U.; Tsaur, I.; Ramon, A.; Otto, T. Application of Dried Human Amnion Graft to Improve Post-Prostatectomy Incontinence and Potency: A Randomized Exploration Study Protocol. Adv. Ther. 2020, 37, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Horstmann, M.; Vollmer, C.; Schwab, C.; Kurz, M.; Padevit, C.; Horton, K.; John, H. Single-centre evaluation of the extraperitoneal and transperitoneal approach in robotic-assisted radical prostatectomy. Scand. J. Urol. Nephrol. 2012, 46, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Claps, F.; Pablos-Rodríguez, P.d.; Gómez-Ferrer, Á.; Mascarós, J.M.; Marenco, J.; Collado Serra, A.; Ramón-Borja, J.C.; Calatrava Fons, A.; Trombetta, C.; Rubio-Briones, J.; et al. Free-indocyanine green-guided pelvic lymph node dissection during radical prostatectomy. Urol. Oncol. 2022, 40, 489.e19–489.e26. [Google Scholar] [CrossRef]
- Baio, R.; Intilla, O.; Di Mauro, U.; Pane, U.; Molisso, G.; Sanseverino, R. Near-infrared fluorescence imaging with intraoperative administration of indocyanine green for laparoscopic radical prostatectomy: Is it a useful weapon for pelvic lymph node dissection? J. Surg. Case Rep. 2022, 2022, rjab614. [Google Scholar] [CrossRef] [PubMed]
- Claps, F.; Ramírez-Backhaus, M.; Mir Maresma, M.C.; Gómez-Ferrer, Á.; Mascarós, J.M.; Marenco, J.; Collado Serra, A.; Ramón-Borja, J.C.; Calatrava Fons, A.; Trombetta, C.; et al. Indocyanine green guidance improves the efficiency of extended pelvic lymph node dissection during laparoscopic radical prostatectomy. Int. J. Urol. 2021, 28, 566–572. [Google Scholar] [CrossRef]
- Hussein, A.A.; Ghani, K.R.; Peabody, J.; Sarle, R.; Abaza, R.; Eun, D.; Hu, J.; Fumo, M.; Lane, B.; Montgomery, J.S.; et al. Development and Validation of an Objective Scoring Tool for Robot-Assisted Radical Prostatectomy: Prostatectomy Assessment and Competency Evaluation. J. Urol. 2017, 197, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, M.G.; Goldenberg, L.; Grantcharov, T.P. Surgeon Performance Predicts Early Continence After Robot-Assisted Radical Prostatectomy. J. Endourol. 2017, 31, 858–863. [Google Scholar] [CrossRef] [PubMed]
- Ghani, K.R.; Miller, D.C.; Linsell, S.; Brachulis, A.; Lane, B.; Sarle, R.; Dalela, D.; Menon, M.; Comstock, B.; Lendvay, T.S.; et al. Measuring to Improve: Peer and Crowd-sourced Assessments of Technical Skill with Robot-assisted Radical Prostatectomy. Eur. Urol. 2016, 69, 547–550. [Google Scholar] [CrossRef]
- Hung, A.J.; Chen, J.; Che, Z.; Nilanon, T.; Jarc, A.; Titus, M.; Oh, P.J.; Gill, I.S.; Liu, Y. Utilizing Machine Learning and Automated Performance Met-rics to Evaluate Robot-Assisted Radical Prostatectomy Performance and Predict Outcomes. J. Endourol. 2018, 32, 438–444. [Google Scholar] [CrossRef]
- Hung, A.J.; Chen, J.; Ghodoussipour, S.; Oh, P.J.; Liu, Z.; Nguyen, J.; Purushotham, S.; Gill, I.S.; Liu, Y. A deep-learning model using automated performance metrics and clinical features to predict urinary continence recovery after robot-assisted radical prostatectomy. BJU Int. 2019, 124, 487–495. [Google Scholar] [CrossRef]
- Schuler, N.; Shepard, L.; Saxton, A.; Russo, J.; Johnston, D.; Saba, P.; Holler, T.; Smith, A.; Kulason, S.; Yee, A.; et al. Predicting Surgical Experience After Robotic Nerve-sparing Radical Prostatectomy Simulation Using a Machine Learning-based Multimodal Analysis of Objective Performance Metrics. Urol. Pract. 2023, 10, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Vasdev, R.; Khanna, A. PROSTATE CANCER Artificial Intelligence in Radical Prostatectomy. AUA News, 19 September 2023. [Google Scholar]
- Bravi, C.A.; Paciotti, M.; Sarchi, L.; Mottaran, A.; Nocera, L.; Farinha, R.; De Backer, P.; Vinckier, M.-H.; De Naeyer, G.; D’Hondt, F.; et al. Robot-assisted Radical Prostatectomy with the Novel Hugo Robotic System: Initial Experience and Optimal Surgical Set-up at a Tertiary Referral Robotic Center. Eur. Urol. 2022, 82, 233–237. [Google Scholar] [CrossRef]
- Bravi, C.A.; Balestrazzi, E.; De Loof, M.; Rebuffo, S.; Piramide, F.; Mottaran, A.; Paciotti, M.; Sorce, G.; Nocera, L.; Sarchi, L.; et al. Robot-assisted Radical Prostatectomy Performed with Different Robotic Platforms: First Comparative Evidence Between Da Vinci and HUGO Robot-assisted Surgery Robots. Eur. Urol. Focus 2023. [Google Scholar] [CrossRef] [PubMed]
- Alfano, C.G.; Covas Moschovas, M.; Montagne, V.; Soto, I.; Porter, J.; Patel, V.; Ureña, R.; Bodden, E. Implementation and outcomes of Hugo (TM) RAS System in robotic-assisted radical prostatectomy. Int. Braz. J. Urol. 2023, 49, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Ragavan, N.; Bharathkumar, S.; Chirravur, P.; Sankaran, S. Robot-Assisted Laparoscopic Radical Prostatectomy Utilizing Hugo RAS Platform: Initial Experience. J. Endourol. 2023, 37, 147–150. [Google Scholar] [CrossRef]
- Marques-Monteiro, M.; Teixeira, B.; Mendes, G.; Rocha, A.; Madanelo, M.; Mesquita, S.; Vital, J.; Vinagre, N.; Magalhães, M.; Oliveira, B.; et al. Extraperitoneal robot-assisted radical prostatectomy with the Hugo RAS system: Initial experience of a tertiary center with a high background in extraperitoneal laparoscopy surgery. World J. Urol. 2023, 41, 2671–2677. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.D.; Abdel Raheem, A.; Choi, Y.D.; Chung, B.H.; Rha, K.H. Retzius-sparing robot-assisted radical prostatectomy using the Revo-i robotic surgical system: Surgical technique and results of the first human trial. BJU Int. 2018, 122, 441–448. [Google Scholar] [CrossRef]
- Thomas, B.C.; Slack, M.; Hussain, M.; Barber, N.; Pradhan, A.; Dinneen, E.; Stewart, G.D. Preclinical Evaluation of the Versius Surgical System, a New Robot-assisted Surgical Device for Use in Minimal Access Renal and Prostate Surgery. Eur. Urol. Focus 2021, 7, 444–452. [Google Scholar] [CrossRef]
- Farinha, R.; Puliatti, S.; Mazzone, E.; Amato, M.; Rosiello, G.; Yadav, S.; De Groote, R.; Piazza, P.; Bravi, C.A.; Koukourikis, P.; et al. Potential Contenders for the Leadership in Robotic Surgery. J. Endourol. 2022, 36, 317–326. [Google Scholar] [CrossRef]
- Rocco, B.; Turri, F.; Sangalli, M.; Assumma, S.; Piacentini, I.; Grasso, A.; Dell’Orto, P.; Calcagnile, T.; Sarchi, L.; Bozzini, G.; et al. Robot-assisted Radical Prostatectomy with the Versius Robotic Surgical System: First Description of a Clinical Case. Eur. Urol. Open Sci. 2023, 48, 82–83. [Google Scholar] [CrossRef]
- Vasdev, N.; Charlesworth, P.; Slack, M.; Adshead, J. Preclinical evaluation of the Versius surgical system: A next-generation surgical robot for use in minimal access prostate surgery. BJUI Compass 2023, 4, 482–490. [Google Scholar] [CrossRef] [PubMed]
- De Maria, M.; Meneghetti, I.; Mosillo, L.; Collins, J.W.; Catalano, C. Versius robotic surgical system: Case series of 18 robot-assisted radical prostatectomies. BJU Int. 2023. [Google Scholar] [CrossRef] [PubMed]
Study Authors | Chang et al. [66] | Umari et al. [60] | Egan et al. [61] | Menon et al. [62] | Abdel Raheem [63] | Qiu et al. [64] |
---|---|---|---|---|---|---|
Approach | Retzius sparing | Retzius sparing | Retzius sparing | Retzius sparing | Retzius sparing | Retzius sparing |
Study design | Retrospective (n = 30) | Prospective (n = 282) | Prospective (n = 70) | Randomized Control Trial (n = 60) | Prospective (n = 125) | Randomized Control Trial (n = 55) |
Age (yr), median (IQR) | 64 +/− 7 | 63 (57–69) | 62 (55–69) | 61.0 (55–67) | 62 (56.5–67.5) | 68 (62–71) |
BMI (kg/m2), median (IQR) | na | 26 (21–31) | 28.4 (23.7–33.1) | 27.9 (26.1–30.6) | 27.9 (26.1–30.6) | 24.2 (22.3–26.4) |
PSA (ng/mL), median (IQR) | 18 +/− 19 | 6.4 (4.6–9.1) | 7.2 (4–10.4) | 5.7 (4.7–7.4) | 7.0 | 9.1 (5.6–15.1) |
Biopsy Gleason Score (%) | na | GS 6: 15.6 GS 7: 69.1 GS 8+: 13.1 | na | GS 6: 30 GS 7: 70 | GS 6: 31 GS 7: 50 GS 8+: 19 | GS 6: 43.6 GS 7: 38.1 GS 8+: 18.2 |
Clinical T stage (%) | na | T1: 37.2 T2: 42.9 T3: 19.9 | T1: 71.4 T2: 18.6 T3: 10 | T1: 67 T2: 32 T3: 1.7 | na | T1c: 12.7 T2a–T2b: 70.9 T2c: 16.4 |
Risk Category (%) | na | D’Amico Low: 11.3 Int: 51.4 High: 37.2 | na | NCCN Low: 23 Int: 77 | na | D’Amico Low/intermediate: 65.5 High: 34.5 |
IPSS (IQR) | na | na | na | 7 (3–12) | na | 1 (0–4) |
Sexual Health Inventory for Men (SHIM) (IQR) | na | na | na | 20 (14–24) | na | na |
International Index of Erectile Function—5 (IIEF) | na | Baseline: 19.4 1 mo: 7.6 6 mo: 8.1 12 mo: 8.9 | na | na | na | na |
Operative time (min), median (IQR) | 211.83 (168.86–254.8) | 150 (120–170) | na | 160 (141–180) | na | 105 (85–125) |
Console time (min), median (IQR) | na | 110 (90–138) | 130 +/− 26.1 mean +/− SD | 115 (98–130) | na | na |
Length of stay (day), median (IQR) | na | 2 (2–2) | 1.1 +/− 0.4 mean +/− SD | 1 (1–1) | na | na |
Blood loss (mL), median (IQR) | 150 +/− 109 | 79 (28) | 100 (75–200) | 75 (50–100) | 225 (162–288) | 200 (200–300) |
Transfusion (%) | na | 5 (1.8) | na | na | na | na |
Complications, Clavien–Dindo grade (%) | na | Clavien–Dindo 1: 3 2: 7 3: 5 4–5: 0 | na | na | na | I: 5.5 II: 0 III: 0 IV–V: 0 |
Pathologic stage (%) | pT2: 16 pT3: 14 | pT2: 70.6 pT3: 29.4 | pT2: 67.1 pT3a: 20 pT3b: 12.9 | ≤pT2: 55 pT3a: 35 pT3b: 10 | pT2: 74 pT3: 22 pT4: 4 | na |
Positive Surgical Margin (%) | 0.2 | 15.6 | 34.3 | Organic confined disease (≤pT2c): 15.2 Extra-prostatic disease (≥pT3a): 37 | 25.0 | 23.6 |
Early continence | 1 week: 73% 1 month: 91% 3 months: 94% 6 months: 98% | Immediate: 70.4% | na | Immediate: 60% 3 months: 74% 6 months: 88% | 3 months: 73% 6 months: 82% 12 months: 90% | Immediate: 69% 6 months: 88% 12 months: 93% |
Study Authors | Asimakopoulos et al. [65] | Sayyid et al. [67] | Wagaskcar et al. [70] | Shimmura et al. [71] | Zhang et al. [72] | |
Approach | Retzius sparing | Retzius sparing | Hood sparing | Hood sparing | Hood sparing | |
Study design | Randomized Control Trial (n = 39) | Prospective (n = 100) | Prospective (n = 300) | Retrospective (n = 42) | Retrospective (n = 24) | |
Age (yr), median (IQR) | 66 (61–71) | 61.0 (57.0–66.0) | 64 (58–68) | 74.0 (70.0–80.0) | 70.0 (64.5–76.5) | |
BMI (kg/m2), median (IQR) | na | 29.0 (26.0–32.0) | 27 (25–29) | 23.9 (21.9–26.7) | 24.9 (22.7–26.8) | |
PSA (ng/mL), median (IQR) | 7 (5.5–8.3) | 8.8 (6.4–12.0) | 6 (4–8) | 9.2 (5.3–14.0) | 17.0 (3.5–36.4) | |
Biopsy Gleason Score (%) | GS 6: 69.2 GS 7: 30.7 | GS 6: 19 GS 7: 62 GS 8+: 19 | GS 6: 16 GS 7: 65 GS ≥8: 19 | GS 6: 5 GS 7: 62 GS ≥8: 33 | GS 6: 13 GS 7: 54 GS ≥8: 33 | |
Clinical T stage (%) | T1c: 77 T2a–T2b: 20.5 T2c: 2.5 | ≤T2: 73 ≥T3: 27 | T1: 51 T2: 35 T3: 14 | T1: 21 T2: 76 T3: 3 | T1: 25 T2: 37 T3: 38 | |
Risk Category (%) | na | D’Amico Low: 24 Int: 49 High: 27 | CAPRA Low: 12 Int: 66 High: 22 | na | D’Amico Low: 12 Int: 50 High: 38 | |
IPSS (IQR) | na | 9.0 (5.0–13.0) | 8 (4–14) | na | 15 (13–22) | |
Sexual Health Inventory for Men (SHIM) (IQR) | na | na | na | na | na | |
International Index of Erectile Function—5 (IIEF) | na | na | 57 (35–67) | na | na | |
Operative time (min), median (IQR) | 179.8 (138.9–220.7) | na | 169 (147–195) | 151.5 (131.0–168.0) | 182.5 (141.0–208.3) | |
Console time (min), median (IQR) | na | 120.0 (105.0–142.0) | 118.5 (100–141) | 121.5 (103.0–141.0) | na | |
Length of stay (day), median (IQR) | na | 1.0 (1.0–1.0) | na | na | na | |
Blood loss (mL), median (IQR) | na | 100.0 (50.0–200.0) | 150.0 | 79.0 (50.0–135.0) | 170.0 (25.0–300.0) | |
Transfusion (%) | na | 0.0 | 0.0 | na | 0.0 | |
Complications, Clavien–Dindo grade (%) | na | na | I: 2.3 II: 5.7 III: 1.7 | na | I–II: 12.5 III–V: 0 | |
Pathologic stage (%) | pT2: 53.8 pT3a: 35.9 pT3b: 7.7 | ≤pT2: 66 ≥pT3: 34 | pT2: 81 pT3: 19 | pT2: 67 pT3: 24 | pT2: 38 pT3: 62 | |
Positive Surgical Margin (%) | 28.9 | 27.0 | 6.0 | 16.0 | 8.0 | |
Early continence | Immediate: 51% 1 month: 81% 3 months: 90.5% 6 months: 90.5% | 3 months: 59% 12 months: 97% | 1 week: 21% 1 month: 69% 3 months: 91% | 2 weeks: 36% 1 month: 69% 3 months: 91% 6 months: 100% | 1 week: 54% 1 month: 75% 3 months: 92% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mian, A.H.; Tollefson, M.K.; Shah, P.; Sharma, V.; Mian, A.; Thompson, R.H.; Boorjian, S.A.; Frank, I.; Khanna, A. Navigating Now and Next: Recent Advances and Future Horizons in Robotic Radical Prostatectomy. J. Clin. Med. 2024, 13, 359. https://doi.org/10.3390/jcm13020359
Mian AH, Tollefson MK, Shah P, Sharma V, Mian A, Thompson RH, Boorjian SA, Frank I, Khanna A. Navigating Now and Next: Recent Advances and Future Horizons in Robotic Radical Prostatectomy. Journal of Clinical Medicine. 2024; 13(2):359. https://doi.org/10.3390/jcm13020359
Chicago/Turabian StyleMian, Abrar H., Matthew K. Tollefson, Paras Shah, Vidit Sharma, Ahmed Mian, R. Houston Thompson, Stephen A. Boorjian, Igor Frank, and Abhinav Khanna. 2024. "Navigating Now and Next: Recent Advances and Future Horizons in Robotic Radical Prostatectomy" Journal of Clinical Medicine 13, no. 2: 359. https://doi.org/10.3390/jcm13020359
APA StyleMian, A. H., Tollefson, M. K., Shah, P., Sharma, V., Mian, A., Thompson, R. H., Boorjian, S. A., Frank, I., & Khanna, A. (2024). Navigating Now and Next: Recent Advances and Future Horizons in Robotic Radical Prostatectomy. Journal of Clinical Medicine, 13(2), 359. https://doi.org/10.3390/jcm13020359