Diagnostic and Prognostic Value of Aminoterminal Prohormone of Brain Natriuretic Peptide in Heart Failure with Mildly Reduced Ejection Fraction Stratified by the Degree of Renal Dysfunction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Patients, Design, and Data Collection
2.2. Inclusion and Exclusion Criteria
2.3. Measurement of Creatinine, eGFR, and NT-proBNP Levels
2.4. Study Endpoints
2.5. Statistical Methods
3. Results
3.1. Study Population
3.2. Correlations of NT-proBNP with Clinical, Echocardiographic, and Laboratory Data
3.3. Diagnostic Value of NT-proBNP Levels Regarding the Presence of ADHF Stratified by eGFR
3.4. Prognostic Performance of NT-proBNP Levels in Patients with HFmrEF and ADHF
4. Discussion
- -
- NT-proBNP levels were higher in patients with ADHF as compared to patients without within the entire study cohort, as well as in patients with eGFR ≥ 30 mL/min. NT-proBNP levels did not differ in patients with ADHF vs. without ADHF and eGFR < 30 mL/min;
- -
- In line with this, NT-proBNP levels discriminated the presence of ADHF within the entire study cohort (AUC = 0.777); whereas, the diagnostic value of NT-proBNP was lower in patients with impaired renal function;
- -
- Furthermore, NT-proBNP levels predicted the risk of 30-months all-cause mortality in patients with HFmrEF and ADHF, especially in patients with preserved renal function and eGFR ≥ 60 mL/min. The prognostic impact of NT-proBNP was confirmed, even after multivariable adjustment.
5. Study Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziaeian, B.; Fonarow, G.C. Epidemiology and aetiology of heart failure. Nat. Rev. Cardiol. 2016, 13, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef]
- Conrad, N.; Judge, A.; Tran, J.; Mohseni, H.; Hedgecott, D.; Crespillo, A.P.; Allison, M.; Hemingway, H.; Cleland, J.G.; McMurray, J.J.V.; et al. Temporal trends and patterns in heart failure incidence: A population-based study of 4 million individuals. Lancet 2018, 391, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Chioncel, O.; Benson, L.; Crespo-Leiro, M.G.; Anker, S.D.; Coats, A.J.S.; Filippatos, G.; McDonagh, T.; Margineanu, C.; Mebazaa, A.; Metra, M.; et al. Comprehensive Characterization of Non-Cardiac Comorbidities in Acute Heart Failure- an analysis of ESC-HFA EORP Heart Failure Long-Term Registry. Eur. J. Prev. Cardiol. 2023, 30, 1346–1358. [Google Scholar] [CrossRef]
- Khan, M.S.; Samman Tahhan, A.; Vaduganathan, M.; Greene, S.J.; Alrohaibani, A.; Anker, S.D.; Vardeny, O.; Fonarow, G.C.; Butler, J. Trends in prevalence of comorbidities in heart failure clinical trials. Eur. J. Heart Fail. 2020, 22, 1032–1042. [Google Scholar] [CrossRef] [PubMed]
- Biscaglia, S.; Guiducci, V.; Escaned, J.; Moreno, R.; Lanzilotti, V.; Santarelli, A.; Cerrato, E.; Sacchetta, G.; Jurado-Roman, A.; Menozzi, A.; et al. Complete or Culprit-Only PCI in Older Patients with Myocardial Infarction. N. Engl. J. Med. 2023, 389, 889–898. [Google Scholar] [CrossRef]
- Pagnesi, M.; Metra, M.; Cohen-Solal, A.; Edwards, C.; Adamo, M.; Tomasoni, D.; Lam, C.S.P.; Chioncel, O.; Diaz, R.; Filippatos, G.; et al. Uptitrating Treatment after Heart Failure Hospitalization Across the Spectrum of Left Ventricular Ejection Fraction. J. Am. Coll. Cardiol. 2023, 81, 2131–2144. [Google Scholar] [CrossRef]
- Schupp, T.; Akin, I.; Behnes, M. Pharmacological Treatment Following Myocardial Infarction: How Large Is the Gap between Guideline Recommendations and Routine Clinical Care? J. Am. Heart Assoc. 2021, 10, e021799. [Google Scholar] [CrossRef]
- Bardy, G.H.; Lee, K.L.; Mark, D.B.; Poole, J.E.; Packer, D.L.; Boineau, R.; Domanski, M.; Troutman, C.; Anderson, J.; Johnson, G.; et al. Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. N. Engl. J. Med. 2005, 352, 225–237. [Google Scholar] [CrossRef]
- Schupp, T.; Rusnak, J.; Egner-Walter, S.; Ruka, M.; Dudda, J.; Bertsch, T.; Müller, J.; Mashayekhi, K.; Tajti, P.; Ayoub, M.; et al. Prognosis of cardiogenic shock with and without acute myocardial infarction: Results from a prospective, monocentric registry. Clin. Res. Cardiol. 2023; online ahead of print. [Google Scholar] [CrossRef]
- Schmitt, A.; Schupp, T.; Reinhardt, M.; Abel, N.; Lau, F.; Forner, J.; Ayoub, M.; Mashayekhi, K.; Weiß, C.; Akin, I.; et al. Prognostic impact of acute decompensated heart failure in patients with heart failure and mildly reduced ejection fraction. Eur. Heart J. Acute Cardiovasc. Care, 2023; online ahead of print. [Google Scholar] [CrossRef]
- Sinning, C.; Kempf, T.; Schwarzl, M.; Lanfermann, S.; Ojeda, F.; Schnabel, R.B.; Zengin, E.; Wild, P.S.; Lackner, K.J.; Munzel, T.; et al. Biomarkers for characterization of heart failure—Distinction of heart failure with preserved and reduced ejection fraction. Int. J. Cardiol. 2017, 227, 272–277. [Google Scholar] [CrossRef]
- Jin, Y.; Wei, S.; Yao, L. Diagnostic performance of miR-214, BNP, NT-proBNP and soluble ST2 in acute heart failure. Int. J. Clin. Pract. 2021, 75, e14643. [Google Scholar] [CrossRef]
- Lee, K.K.; Doudesis, D.; Anwar, M.; Astengo, F.; Chenevier-Gobeaux, C.; Claessens, Y.E.; Wussler, D.; Kozhuharov, N.; Strebel, I.; Sabti, Z.; et al. Development and validation of a decision support tool for the diagnosis of acute heart failure: Systematic review, meta-analysis, and modelling study. BMJ 2022, 377, e068424. [Google Scholar] [CrossRef] [PubMed]
- Behnes, M.; Brueckmann, M.; Ahmad-Nejad, P.; Lang, S.; Wolpert, C.; Elmas, E.; Kaelsch, T.; Gruettner, J.; Weiss, C.; Borggrefe, M.; et al. Diagnostic performance and cost effectiveness of measurements of plasma N-terminal pro brain natriuretic peptide in patients presenting with acute dyspnea or peripheral edema. Int. J. Cardiol. 2009, 135, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Behnes, M.; Brueckmann, M.; Lang, S.; Espeter, F.; Weiss, C.; Neumaier, M.; Ahmad-Nejad, P.; Borggrefe, M.; Hoffmann, U. Diagnostic and prognostic value of osteopontin in patients with acute congestive heart failure. Eur. J. Heart Fail. 2013, 15, 1390–1400. [Google Scholar] [CrossRef] [PubMed]
- Baggish, A.L.; van Kimmenade, R.R.; Januzzi, J.L., Jr. Amino-terminal pro-B-type natriuretic peptide testing and prognosis in patients with acute dyspnea, including those with acute heart failure. Am. J. Cardiol. 2008, 101, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Orsini, N.; Hage, C.; Dahlström, U.; Vedin, O.; Rosano, G.M.C.; Lund, L.H. Associations with and Prognostic and Discriminatory Role of N-Terminal Pro-B-Type Natriuretic Peptide in Heart Failure with Preserved Versus Mid-Range Versus Reduced Ejection Fraction. J. Card. Fail. 2018, 24, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Hage, C.; Orsini, N.; Dahlström, U.; Perrone-Filardi, P.; Rosano, G.M.; Lund, L.H. Reductions in N-Terminal Pro-Brain Natriuretic Peptide Levels Are Associated With Lower Mortality and Heart Failure Hospitalization Rates in Patients With Heart Failure with Mid-Range and Preserved Ejection Fraction. Circ. Heart Fail. 2016, 9, e003105. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, B.; Wändell, P.; Dahlström, U.; Näsman, P.; Lund, L.H.; Edner, M. Limited value of NT-proBNP as a prognostic marker of all-cause mortality in patients with heart failure with preserved and mid-range ejection fraction in primary care: A report from the swedish heart failure register. Scand. J. Prim. Health Care 2019, 37, 434–443. [Google Scholar] [CrossRef]
- Park, C.S.; Park, J.J.; Oh, I.Y.; Yoon, C.H.; Choi, D.J.; Park, H.A.; Kang, S.M.; Yoo, B.S.; Jeon, E.S.; Kim, J.J.; et al. Relation of Renal Function with Left Ventricular Systolic Function and NT-proBNP Level and Its Prognostic Implication in Heart Failure with Preserved versus Reduced Ejection Fraction: An analysis from the Korean Heart Failure (KorHF) Registry. Korean Circ. J. 2017, 47, 727–741. [Google Scholar] [CrossRef]
- Wang, K.; Ni, G.; Wu, Q.; Zhou, Y.; Yao, W.; Zhang, H.; Li, X. Prognostic Value of N-Terminal Pro-B-Type Natriuretic Peptide and Glomerular Filtration Rate in Patients With Acute Heart Failure. Front. Cardiovasc. Med. 2020, 7, 123. [Google Scholar] [CrossRef]
- Anwaruddin, S.; Lloyd-Jones, D.M.; Baggish, A.; Chen, A.; Krauser, D.; Tung, R.; Chae, C.; Januzzi, J.L., Jr. Renal function, congestive heart failure, and amino-terminal pro-brain natriuretic peptide measurement: Results from the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) Study. J. Am. Coll. Cardiol. 2006, 47, 91–97. [Google Scholar] [CrossRef]
- Goei, D.; Schouten, O.; Boersma, E.; Welten, G.M.; Dunkelgrun, M.; Lindemans, J.; van Gestel, Y.R.; Hoeks, S.E.; Bax, J.J.; Poldermans, D. Influence of renal function on the usefulness of N-terminal pro-B-type natriuretic peptide as a prognostic cardiac risk marker in patients undergoing noncardiac vascular surgery. Am. J. Cardiol. 2008, 101, 122–126. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Popescu, B.A.; Andrade, M.J.; Badano, L.P.; Fox, K.F.; Flachskampf, F.A.; Lancellotti, P.; Varga, A.; Sicari, R.; Evangelista, A.; Nihoyannopoulos, P.; et al. European Association of Echocardiography recommendations for training, competence, and quality improvement in echocardiography. Eur. J. Echocardiogr. 2009, 10, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Lancellotti, P.; Tribouilloy, C.; Hagendorff, A.; Popescu, B.A.; Edvardsen, T.; Pierard, L.A.; Badano, L.; Zamorano, J.L. Recommendations for the echocardiographic assessment of native valvular regurgitation: An executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 611–644. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A. Estimating GFR using the CKD Epidemiology Collaboration (CKD-EPI) creatinine equation: More accurate GFR estimates, lower CKD prevalence estimates, and better risk predictions. Am. J. Kidney Dis. 2010, 55, 622–627. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983, 148, 839–843. [Google Scholar] [CrossRef]
- Cowie, M.R.; Mendez, G.F. BNP and congestive heart failure. Prog. Cardiovasc. Dis. 2002, 44, 293–321. [Google Scholar] [CrossRef]
- Ibrahim, I.; Kuan, W.S.; Frampton, C.; Troughton, R.; Liew, O.W.; Chong, J.P.; Chan, S.P.; Tan, L.L.; Lin, W.Q.; Pemberton, C.J.; et al. Superior performance of N-terminal pro brain natriuretic peptide for diagnosis of acute decompensated heart failure in an Asian compared with a Western setting. Eur. J. Heart Fail. 2017, 19, 209–217. [Google Scholar] [CrossRef]
- Salah, K.; Stienen, S.; Pinto, Y.M.; Eurlings, L.W.; Metra, M.; Bayes-Genis, A.; Verdiani, V.; Tijssen, J.G.P.; Kok, W.E. Prognosis and NT-proBNP in heart failure patients with preserved versus reduced ejection fraction. Heart 2019, 105, 1182–1189. [Google Scholar] [CrossRef]
- Holl, M.J.; van den Bos, E.J.; van Domburg, R.T.; Fouraux, M.A.; Kofflard, M.J. NT-proBNP is associated with mortality and adverse cardiac events in patients with atrial fibrillation presenting to the emergency department. Clin. Cardiol. 2018, 41, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Jiao, J.; Guo, Y.; Zhu, B.; Luo, L. N-terminal pro-brain natriuretic peptide levels had an independent and added ability in the evaluation of all-cause mortality in older Chinese patients with atrial fibrillation. BMC Geriatr. 2019, 19, 56. [Google Scholar] [CrossRef] [PubMed]
- Schupp, T.; Rusnak, J.; Forner, J.; Weidner, K.; Ruka, M.; Egner-Walter, S.; Dudda, J.; Bertsch, T.; Kittel, M.; Behnes, M.; et al. Cardiac Troponin I but Not N-Terminal Pro-B-Type Natriuretic Peptide Predicts Outcomes in Cardiogenic Shock. J. Pers. Med. 2023, 13, 1348. [Google Scholar] [CrossRef] [PubMed]
- Ceglarek, U.; Schellong, P.; Rosolowski, M.; Scholz, M.; Willenberg, A.; Kratzsch, J.; Zeymer, U.; Fuernau, G.; de Waha-Thiele, S.; Büttner, P.; et al. The novel cystatin C, lactate, interleukin-6, and N-terminal pro-B-type natriuretic peptide (CLIP)-based mortality risk score in cardiogenic shock after acute myocardial infarction. Eur. Heart J. 2021, 42, 2344–2352. [Google Scholar] [CrossRef]
- Forner, J.; Schupp, T.; Weidner, K.; Rusnak, J.; Jawhar, S.; Dulatahu, F.; Brück, L.M.; Behnes, M.; Hoffmann, U.; Bertsch, T.; et al. Cardiac Troponin I Reveals Diagnostic and Prognostic Superiority to Aminoterminal Pro-B-Type Natriuretic Peptide in Sepsis and Septic Shock. J. Clin. Med. 2022, 11, 6592. [Google Scholar] [CrossRef]
- Kang, S.H.; Park, J.J.; Choi, D.J.; Yoon, C.H.; Oh, I.Y.; Kang, S.M.; Yoo, B.S.; Jeon, E.S.; Kim, J.J.; Cho, M.C.; et al. Prognostic value of NT-proBNP in heart failure with preserved versus reduced EF. Heart 2015, 101, 1881–1888. [Google Scholar] [CrossRef]
- Horii, M.; Matsumoto, T.; Uemura, S.; Sugawara, Y.; Takitsume, A.; Ueda, T.; Nakagawa, H.; Nishida, T.; Soeda, T.; Okayama, S.; et al. Prognostic value of B-type natriuretic peptide and its amino-terminal proBNP fragment for cardiovascular events with stratification by renal function. J. Cardiol. 2013, 61, 410–416. [Google Scholar] [CrossRef]
- Bruch, C.; Fischer, C.; Sindermann, J.; Stypmann, J.; Breithardt, G.; Gradaus, R. Comparison of the prognostic usefulness of N-terminal pro-brain natriuretic Peptide in patients with heart failure with versus without chronic kidney disease. Am. J. Cardiol. 2008, 102, 469–474. [Google Scholar] [CrossRef]
- Gao, P.; Zhu, Q.; Bian, S.; Liu, H.; Xie, H. Prognostic value of plasma NT-proBNP levels in very old patients with moderate renal insufficiency in China. Z. Gerontol. Geriatr. 2018, 51, 889–896. [Google Scholar] [CrossRef]
- Borg, R.; Kriegbaum, M.; Grand, M.K.; Lind, B.; Andersen, C.L.; Persson, F. Chronic kidney disease in primary care: Risk of cardiovascular events, end stage kidney disease and death. BMC Prim. Care 2023, 24, 128. [Google Scholar] [CrossRef]
- Weidner, K.; Behnes, M.; Schupp, T.; Rusnak, J.; Reiser, L.; Taton, G.; Reichelt, T.; Ellguth, D.; Engelke, N.; Bollow, A.; et al. Prognostic impact of chronic kidney disease and renal replacement therapy in ventricular tachyarrhythmias and aborted cardiac arrest. Clin. Res. Cardiol. 2019, 108, 669–682. [Google Scholar] [CrossRef] [PubMed]
- Becher, P.M.; Schrage, B.; Ferrannini, G.; Benson, L.; Butler, J.; Carrero, J.J.; Cosentino, F.; Dahlström, U.; Mellbin, L.; Rosano, G.M.C.; et al. Use of sodium-glucose co-transporter 2 inhibitors in patients with heart failure and type 2 diabetes mellitus: Data from the Swedish Heart Failure Registry. Eur. J. Heart Fail. 2021, 23, 1012–1022. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef] [PubMed]
- Myhre, P.L.; Vaduganathan, M.; Claggett, B.L.; Miao, Z.M.; Jhund, P.S.; de Boer, R.A.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; et al. Influence of NT-proBNP on Efficacy of Dapagliflozin in Heart Failure With Mildly Reduced or Preserved Ejection Fraction. JACC Heart Fail. 2022, 10, 902–913. [Google Scholar] [CrossRef]
- Bollano, E.; Redfors, B.; Rawshani, A.; Venetsanos, D.; Völz, S.; Angerås, O.; Ljungman, C.; Alfredsson, J.; Jernberg, T.; Råmunddal, T.; et al. Temporal trends in characteristics and outcome of heart failure patients with and without significant coronary artery disease. ESC Heart Fail. 2022, 9, 1812–1822. [Google Scholar] [CrossRef] [PubMed]
- Tsutsui, H.; Albert, N.M.; Coats, A.J.S.; Anker, S.D.; Bayes-Genis, A.; Butler, J.; Chioncel, O.; Defilippi, C.R.; Drazner, M.H.; Felker, G.M.; et al. Natriuretic Peptides: Role in the Diagnosis and Management of Heart Failure: A Scientific Statement From the Heart Failure Association of the European Society of Cardiology, Heart Failure Society of America and Japanese Heart Failure Society. J. Card. Fail. 2023, 29, 787–804. [Google Scholar] [CrossRef]
- Riccardi, M.; Myhre, P.L.; Zelniker, T.A.; Metra, M.; Januzzi, J.L.; Inciardi, R.M. Soluble ST2 in Heart Failure: A Clinical Role beyond B-Type Natriuretic Peptide. J. Cardiovasc. Dev. Dis. 2023, 10, 468. [Google Scholar] [CrossRef]
- Bansal, N.; Zelnick, L.; Go, A.; Anderson, A.; Christenson, R.; Deo, R.; Defilippi, C.; Lash, J.; He, J.; Ky, B.; et al. Cardiac Biomarkers and Risk of Incident Heart Failure in Chronic Kidney Disease: The CRIC (Chronic Renal Insufficiency Cohort) Study. J. Am. Heart Assoc. 2019, 8, e012336. [Google Scholar] [CrossRef]
Non-ADHF (n = 440) | ADHF (n = 315) | p Value | |||
---|---|---|---|---|---|
Age, median (IQR) | 70 | (60–79) | 80 | (73–85) | 0.001 |
Male sex, n (%) | 304 | (69.1) | 181 | (57.5) | 0.001 |
Body mass index, kg/m2, median (IQR) | 26.9 | (23.9–30.9) | 26.3 | (23.7–31.1) | 0.602 |
SBP, mmHg, median (IQR) | 140 | (120–157) | 140 | (120–160) | 0.773 |
DBP, mmHg, median (IQR) | 78 | (68–89) | 75 | (64–89) | 0.097 |
Heart rate, bpm, median (IQR) | 80 | (68–96) | 83 | (70–99) | 0.089 |
Medical history, n (%) | |||||
Coronary artery disease | 171 | (38.9) | 130 | (41.3) | 0.506 |
Prior myocardial infarction | 100 | (22.7) | 76 | (24.1) | 0.654 |
Prior PCI | 124 | (28.2) | 98 | (31.1) | 0.384 |
Prior CABG | 42 | (9.5) | 34 | (10.8) | 0.574 |
Prior valvular surgery | 23 | (5.2) | 16 | (5.1) | 0.928 |
Congestive heart failure | 135 | (30.7) | 155 | (49.2) | 0.001 |
Decompensated heart failure < 12 months | 44 | (10.0) | 63 | (20.0) | 0.001 |
Prior ICD | 14 | (3.2) | 3 | (1.0) | 0.042 |
Prior sICD | 4 | (0.9) | 1 | (0.3) | 0.323 |
Prior CRT-D | 6 | (1.4) | 4 | (1.3) | 0.911 |
Prior Pacemaker | 23 | (5.2) | 38 | (12.1) | 0.001 |
Chronic kidney disease | 97 | (22.0) | 168 | (53.3) | 0.001 |
Peripheral artery disease | 41 | (9.3) | 43 | (13.7) | 0.062 |
Stroke | 49 | (11.1) | 49 | (15.6) | 0.075 |
Liver cirrhosis | 7 | (1.6) | 9 | (2.9) | 0.234 |
Malignancy | 68 | (15.5) | 45 | (14.3) | 0.657 |
COPD | 53 | (12.0) | 54 | (17.1) | 0.048 |
Cardiovascular risk factors, n (%) | |||||
Arterial hypertension | 316 | (71.8) | 269 | (85.4) | 0.001 |
Diabetes mellitus | 136 | (30.9) | 155 | (49.2) | 0.001 |
Hyperlipidemia | 143 | (32.5) | 102 | (32.4) | 0.973 |
Smoking | |||||
Current | 100 | (22.7) | 32 | (10.2) | 0.001 |
Former | 94 | (21.4) | 65 | (20.6) | 0.809 |
Family history | 57 | (13.0) | 21 | (6.7) | 0.005 |
Department of index admission, n (%) | |||||
Internal medicine | 387 | (88.0) | 271 | (86.0) | 0.082 |
Surgery | 19 | (4.3) | 17 | (5.4) | |
Neurology | 11 | (2.5) | 5 | (1.6) | |
Orthopedics | 3 | (0.7) | 6 | (1.9) | |
Urology | 8 | (1.8) | 10 | (3.2) | |
Others | 12 | (2.7) | 6 | (1.9) | |
Comorbidities at index hospitalization, n (%) | |||||
Acute coronary syndrome | |||||
Unstable angina | 25 | (5.7) | 7 | (2.2) | 0.020 |
STEMI | 70 | (15.9) | 14 | (4.4) | 0.001 |
NSTEMI | 74 | (16.8) | 35 | (11.1) | 0.028 |
Cardiogenic shock | 16 | (3.6) | 17 | (5.4) | 0.243 |
Atrial fibrillation | 148 | (33.6) | 185 | (58.7) | 0.001 |
Cardiopulmonary resuscitation | 15 | (3.4) | 11 | (3.5) | 0.951 |
Out-of-hospital | 8 | (1.8) | 3 | (1.0) | 0.328 |
In-hospital | 7 | (1.6) | 8 | (2.5) | 0.357 |
Stroke | 21 | (4.8) | 7 | (2.2) | 0.067 |
Medication on admission, n (%) | |||||
ACE-inhibitor | 142 | (32.3) | 125 | (39.7) | 0.036 |
ARB | 101 | (23.0) | 80 | (25.4) | 0.438 |
Beta-blocker | 221 | (50.2) | 221 | (70.2) | 0.001 |
Aldosterone antagonist | 41 | (9.3) | 43 | (13.7) | 0.062 |
ARNI | 5 | (1.1) | 3 | (1.0) | 0.808 |
SGLT2-inhibitor | 12 | (2.7) | 8 | (2.5) | 0.874 |
Loop diuretics | 123 | (28.0) | 196 | (62.2) | 0.001 |
Statin | 201 | (45.7) | 153 | (48.6) | 0.433 |
ASA | 149 | (33.9) | 97 | (30.8) | 0.375 |
P2Y12-inhibitor | 39 | (8.9) | 39 | (12.4) | 0.117 |
DOAC | 84 | (19.1) | 109 | (34.6) | 0.001 |
Vitamin K antagonist | 22 | (5.0) | 29 | (9.2) | 0.023 |
Non-ADHF (n = 440) | ADHF (n = 315) | p Value | |||
---|---|---|---|---|---|
Heart failure etiology, n (%) | |||||
Ischemic | 287 | (65.2) | 178 | (56.5) | 0.001 |
Non-ischemic cardiomyopathy | 37 | (8.4) | 21 | (6.7) | |
Hypertensive cardiomyopathy | 21 | (4.8) | 21 | (6.7) | |
Congenital heart disease | 1 | (0.2) | 0 | (0.0) | |
Valvular heart disease | 11 | (2.5) | 28 | (8.9) | |
Tachycardia associated | 14 | (3.2) | 21 | (6.7) | |
Tachymyopathy | 10 | (2.3) | 9 | (2.9) | |
Pacemaker-induced cardiomyopathy | 2 | (0.5) | 4 | (1.3) | |
Unknown | 57 | (13.0) | 33 | (10.5) | |
NYHA functional class, n (%) | |||||
I/II | 334 | (75.9) | 66 | (20.9) | 0.001 |
III | 85 | (19.3) | 141 | (44.8) | |
IV | 21 | (4.8) | 108 | (34.3) | |
Echocardiographic data | |||||
LVEF, %, median (IQR) | 45 (45–47) | 45 (44–47) | 0.300 | ||
IVSd, median (IQR) | 12 (10–13) | 12 (11–13) | 0.008 | ||
LVEDD, mm, median (IQR) | 49 (45–54) | 49 (45–54) | 0.384 | ||
TAPSE, mm, median (IQR) | 20 (17–23) | 20 (16–22) | 0.012 | ||
LA diameter, mm, median (IQR) | 40 (36–46) | 45 (40–49) | 0.001 | ||
LA surface, cm2, median (IQR) | 20 (17–24) | 24 (21–29) | 0.001 | ||
E/A, median (IQR) | 0.9 (0.7–1.3) | 1.0 (0.6–1.5) | 0.254 | ||
E/E`, median (IQR) | 9.5 (6.5–13.5) | 13.8 (7.4–19.6) | 0.001 | ||
Diastolic dysfunction, n (%) | 290 | (65.9) | 230 | (73.0) | 0.038 |
Moderate-severe aortic stenosis, n (%) | 26 | (5.9) | 42 | (13.3) | 0.001 |
Moderate-severe aortic regurgitation, n (%) | 15 | (3.4) | 28 | (8.9) | 0.001 |
Moderate-severe mitral regurgitation, n (%) | 36 | (8.2) | 86 | (27.3) | 0.001 |
Moderate-severe tricuspid regurgitation, n (%) | 49 | (11.1) | 105 | (33.3) | 0.001 |
VCI, mm, median (IQR) | 17 (13–22) | 23 (17–27) | 0.001 | ||
Aortic root, mm, median (IQR) | 33 (30–36) | 33 (29–36) | 0.064 | ||
Coronary angiography, n (%) | 248 | (56.4) | 126 | (40.0) | 0.001 |
No evidence of coronary artery disease | 42 | (16.9) | 30 | (23.8) | 0.011 |
1-vessel disease | 52 | (21.0) | 24 | (19.0) | |
2-vessel disease | 53 | (21.4) | 11 | (8.7) | |
3-vessel disease | 101 | (40.7) | 61 | (48.4) | |
CABG | 21 | (8.5) | 10 | (7.9) | 0.860 |
Chronic total occlusion | 27 | (10.9) | 13 | (10.3) | 0.866 |
PCI, n (%) | 151 | (60.9) | 58 | (46.0) | 0.006 |
Sent to CABG, n (%) | 9 | (3.6) | 7 | (5.6) | 0.384 |
Baseline laboratory values, median (IQR) | |||||
Potassium, mmol/L | 3.9 (3.6–4.2) | 3.8 (3.5–4.2) | 0.015 | ||
Sodium, mmol/L | 139 (137–141) | 139 (137–141) | 0.567 | ||
Creatinine, mg/dL | 1.01 (0.85–1.30) | 1.35 (1.01–1.98) | 0.001 | ||
eGFR, mL/min/1.73 m2 | 72 (53–91) | 49 (32–69) | 0.001 | ||
Hemoglobin, g/dL | 12.8 (10.9–14.3) | 11.2 (9.3–12.7) | 0.001 | ||
WBC count, ×109/L | 8.20 (6.57–10.21) | 8.38 (6.52–10.59) | 0.540 | ||
Platelet count, ×109/L | 224 (176–287) | 237 (175–299) | 0.260 | ||
HbA1c, % | 5.8 (5.4–6.5) | 6.2 (5.6–7.3) | 0.004 | ||
LDL-cholesterol, mg/dL | 96 (74–132) | 87 (63–119) | 0.007 | ||
HDL-cholesterol, mg/dL | 42 (34–52) | 42 (33–51) | 0.334 | ||
C-reactive protein, mg/L | 14 (3–45) | 21 (8–59) | 0.001 | ||
NT-pro BNP, pg/mL | 1655 (481–3326) | 5394 (2510–11,883) | 0.001 | ||
Cardiac troponin I, µg/L | 0.05 (0.02–0.42) | 0.04 (0.02–0.15) | 0.096 | ||
Medication at discharge, n (%) | |||||
ACE-inhibitor | 236 | (54.8) | 141 | (47.8) | 0.065 |
ARB | 113 | (26.2) | 85 | (28.8) | 0.441 |
Beta-blocker | 349 | (81.0) | 254 | (86.1) | 0.070 |
Aldosterone antagonist | 62 | (14.4) | 72 | (24.4) | 0.001 |
ARNI | 7 | (1.6) | 4 | (1.4) | 0.771 |
SGLT2-inhibitor | 29 | (6.7) | 14 | (4.7) | 0.266 |
Loop diuretics | 169 | (39.2) | 267 | (90.5) | 0.001 |
Statin | 309 | (71.7) | 191 | (64.7) | 0.047 |
Digitalis | 16 | (3.7) | 17 | (5.8) | 0.193 |
Amiodarone | 14 | (3.2) | 9 | (3.1) | 0.881 |
ASA | 238 | (55.2) | 119 | (40.3) | 0.001 |
P2Y12-inhibitor | 185 | (42.9) | 86 | (29.2) | 0.001 |
DOAC | 132 | (30.6) | 136 | (46.1) | 0.001 |
Vitamin k antagonist | 23 | (5.3) | 26 | (8.8) | 0.067 |
r | p Value | |
---|---|---|
Age | 0.382 | 0.001 |
Body mass index (kg/m2) | −0.202 | 0.001 |
LVEF (%) | −0.098 | 0.007 |
TAPSE (mm) | −0.089 | 0.015 |
eGFR (mL/min/1.73 m2) | −0.476 | 0.001 |
Hemoglobin (g/dL) | −0.466 | 0.001 |
Cardiac troponin I (µg/L) | 0.241 | 0.001 |
LDL-cholesterol (mg/dL) | −0.211 | 0.001 |
HDL-cholesterol (mg/dL) | −0.069 | 0.154 |
HbA1c (%) | 0.087 | 0.090 |
C-reactive protein (mg/L) | 0.319 | 0.001 |
Variables | HR | 95% CI | p Value |
---|---|---|---|
Model 1 | |||
Age (per year increase) | 1.032 | 1.011–1.052 | 0.002 |
Males | 1.141 | 0.816–1.595 | 0.442 |
Prior congestive heart failure | 1.450 | 1.034–2.034 | 0.031 |
Atrial fibrillation | 1.076 | 0.756–1.531 | 0.684 |
Ischemic cardiomyopathy | 0.858 | 0.618–1.191 | 0.359 |
eGFR (per mL/min increase) | 0.996 | 0.990–1.003 | 0.288 |
Hemoglobin (per g/dL increase) | 0.927 | 0.856–1.003 | 0.061 |
NT-proBNP > 3946 pg/mL | 1.712 | 1.166–2.512 | 0.006 |
Model 2 * | |||
eGFR ≥ 60 mL/min | 4.841 | 2.149–10.907 | 0.001 |
eGFR ≥ 30–<60 mL/min | 1.225 | 0.769–1.952 | 0.392 |
eGFR < 30 mL/min | 2.106 | 0.773–5.741 | 0.145 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schupp, T.; Abumayyaleh, M.; Weidner, K.; Lau, F.; Schmitt, A.; Reinhardt, M.; Abel, N.; Forner, J.; Akin, M.; Ayoub, M.; et al. Diagnostic and Prognostic Value of Aminoterminal Prohormone of Brain Natriuretic Peptide in Heart Failure with Mildly Reduced Ejection Fraction Stratified by the Degree of Renal Dysfunction. J. Clin. Med. 2024, 13, 489. https://doi.org/10.3390/jcm13020489
Schupp T, Abumayyaleh M, Weidner K, Lau F, Schmitt A, Reinhardt M, Abel N, Forner J, Akin M, Ayoub M, et al. Diagnostic and Prognostic Value of Aminoterminal Prohormone of Brain Natriuretic Peptide in Heart Failure with Mildly Reduced Ejection Fraction Stratified by the Degree of Renal Dysfunction. Journal of Clinical Medicine. 2024; 13(2):489. https://doi.org/10.3390/jcm13020489
Chicago/Turabian StyleSchupp, Tobias, Mohammad Abumayyaleh, Kathrin Weidner, Felix Lau, Alexander Schmitt, Marielen Reinhardt, Noah Abel, Jan Forner, Muharrem Akin, Mohamed Ayoub, and et al. 2024. "Diagnostic and Prognostic Value of Aminoterminal Prohormone of Brain Natriuretic Peptide in Heart Failure with Mildly Reduced Ejection Fraction Stratified by the Degree of Renal Dysfunction" Journal of Clinical Medicine 13, no. 2: 489. https://doi.org/10.3390/jcm13020489
APA StyleSchupp, T., Abumayyaleh, M., Weidner, K., Lau, F., Schmitt, A., Reinhardt, M., Abel, N., Forner, J., Akin, M., Ayoub, M., Mashayekhi, K., Bertsch, T., Akin, I., & Behnes, M. (2024). Diagnostic and Prognostic Value of Aminoterminal Prohormone of Brain Natriuretic Peptide in Heart Failure with Mildly Reduced Ejection Fraction Stratified by the Degree of Renal Dysfunction. Journal of Clinical Medicine, 13(2), 489. https://doi.org/10.3390/jcm13020489