Changes in Intestinal Flora and Serum Metabolites Pre- and Post-Antitumor Drug Therapy in Patients with Non-Small Cell Lung Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Study Design and Patient Enrollment
2.3. Clinical Parameters
2.4. Sample Collection
2.5. DNA Extraction
2.6. PCR Amplification and 16S rDNA Sequencing
2.7. Microbiome Data Analysis
2.8. Analysis of Serum Samples
2.9. Non-Targeted Metabolomics Analysis
2.10. Statistical Analysis
3. Results
3.1. General Clinical Findings
3.2. Gut Microbial Profile
3.3. Differentially Abundant Metabolites
3.4. Correlation Analysis
3.5. Subgroup Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-small cell lung cancer. Nature 2018, 553, 446–454. [Google Scholar] [CrossRef]
- Travis, W.D.; Brambilla, E.; Riely, G.J. New Pathologic Classification of Lung Cancer: Relevance for Clinical Practice and Clinical Trials. J. Clin. Oncol. 2013, 31, 992–1001. [Google Scholar] [CrossRef]
- Janne, P.A.; Johnson, B.E. Effect of Epidermal Growth Factor Receptor Tyrosine Kinase Domain Mutations on the Outcome of Patients with Non–Small Cell Lung Cancer Treated with Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors. Clin. Cancer Res. 2006, 12 Pt 2, 4416s–4420s. [Google Scholar] [CrossRef]
- Couraud, S.; Zalcman, G.; Milleron, B.; Morin, F.; Souquet, P.J. Lung cancer in never smokers—A review. J. Clin. Oncol. 2007, 25, 561–570. [Google Scholar] [CrossRef]
- Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: Adverse Effects of Cancer Chemotherapy: Anything New to Improve Tolerance and Reduce Sequelae? Front. Pharmacol. 2018, 9, 245. [Google Scholar] [CrossRef]
- Lyon, A.R.; Lyon, A.R.; López-Fernández, T.; López-Fernández, T.; Couch, L.S.; Couch, L.S.; Asteggiano, R.; Asteggiano, R.; Aznar, M.C.; Aznar, M.C.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef]
- O’Brien, M.E.; Ciuleanu, T.-E.; Tsekov, H.; Shparyk, Y.; Čučeviá, B.; Juhasz, G.; Thatcher, N.; Ross, G.A.; Dane, G.C.; Crofts, T. Phase III Trial Comparing Supportive Care Alone with Supportive Care with Oral Topotecan in Patients with Relapsed Small-Cell Lung Cancer. J. Clin. Oncol. 2006, 24, 5441–5447. [Google Scholar] [CrossRef]
- Nenova, I.; Grudeva-Popova, J. Carcinogenic potential of antitumor therapies—Is the risk predictable? J. Buon. 2017, 22, 1378–1384. [Google Scholar]
- Zimmermann, M.; Zimmermann-Kogadeeva, M.; Wegmann, R.; Goodman, A.L. Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature 2019, 570, 462–467. [Google Scholar] [CrossRef]
- Routy, B.; le Chatelier, E.; DeRosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; et al. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science 2018, 359, 91–97. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef]
- Ni, B.; Kong, X.; Yan, Y.; Fu, B.; Zhou, F.; Xu, S. Combined analysis of gut microbiome and serum metabolomics reveals novel biomarkers in patients with early-stage non-small cell lung cancer. Front. Cell Infect. Microbiol. 2023, 13, 1091825. [Google Scholar] [CrossRef]
- Qian, X.; Zhang, H.; Li, Q.; Ma, G.; Chen, Z.; Ji, X.; Li, C.; Zhang, A. Integrated microbiome, metabolome, and proteome analysis identifies a novel interplay among commensal bacteria, metabolites and candidate targets in non-small cell lung cancer. Clin. Transl. Med. 2022, 12, e947. [Google Scholar] [CrossRef]
- Botticelli, A.; Vernocchi, P.; Marini, F.; Quagliariello, A.; Cerbelli, B.; Reddel, S.; Del Chierico, F.; Di Pietro, F.; Giusti, R.; Tomassini, A.; et al. Gut metabolomics profiling of non-small cell lung cancer (NSCLC) patients under immunotherapy treatment. J. Transl. Med. 2020, 18, 49. [Google Scholar] [CrossRef]
- Emanuel, E.J.; Wendler, D.; Grady, C. What Makes Clinical Research Ethical? JAMA 2000, 283, 2701–2711. [Google Scholar] [CrossRef]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef]
- Vickers, A.J. The use of percentage change from baseline as an outcome in a controlled trial is statistically inefficient: A simulation study. BMC Med. Res. Methodol. 2001, 1, 6. [Google Scholar] [CrossRef]
- Senn, S. Change from baseline and analysis of covariance revisited. Stat. Med. 2006, 25, 4334–4344. [Google Scholar] [CrossRef]
- Fitzmaurice, G.M.; Laird, N.M.; Ware, J.H. Applied Longitudinal Analysis, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011; p. 752. [Google Scholar] [CrossRef]
- Logue, J.B.; Stedmon, A.C.; Kellerman, A.M.; Nielsen, N.J.; Andersson, A.F.; Laudon, H.; Lindström, E.S.; Kritzberg, E.S. Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J. 2016, 10, 533–545. [Google Scholar] [CrossRef]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal Internal Transcribed Spacer Marker Gene Primers for Microbial Community Surveys. mSystems 2016, 1, e00009-15. [Google Scholar] [CrossRef]
- Reyon, D.; Tsai, S.Q.; Khayter, C.; A Foden, J.; Sander, J.D.; Joung, J.K. FLASH assembly of TALENs for high-throughput genome editing. Nat. Biotechnol. 2012, 30, 460–465. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Author Correction: Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 1091. [Google Scholar] [CrossRef]
- Takai, K.; Horikoshi, K. Rapid Detection and Quantification of Members of the Archaeal Community by Quantitative PCR Using Fluorogenic Probes. Appl. Environ. Microbiol. 2000, 66, 5066–5072. [Google Scholar] [CrossRef] [PubMed]
- Kuhl, C.; Tautenhahn, R.; Böttcher, C.; Larson, T.R.; Neumann, S. CAMERA: An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets. Anal. Chem. 2012, 84, 283–289. [Google Scholar] [CrossRef]
- Wen, B.; Mei, Z.; Zeng, C.; Liu, S. metaX: A flexible and comprehensive software for processing metabolomics data. BMC Bioinform. 2017, 18, 183. [Google Scholar] [CrossRef]
- Alexander, J.L.; Wilson, I.D.; Teare, J.; Marchesi, J.R.; Nicholson, J.K.; Kinross, J.M. Gut microbiota modulation of chemotherapy efficacy and toxicity. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Montassier, E.; Gastinne, T.; Vangay, P.; Al-Ghalith, G.A.; Bruley des Varannes, S.; Massart, S.; Moreau, P.; Potel, G.; De La Cochetière, M.F.; Batard, E.; et al. Chemotherapy-driven dysbiosis in the intestinal microbiome. Aliment. Pharmacol. Ther. 2015, 42, 515–528. [Google Scholar] [CrossRef]
- Touchefeu, Y.; Montassier, E.; Nieman, K.; Gastinne, T.; Potel, G.; Varannes, S.B.D.; Le Vacon, F.; de La Cochetière, M.F. Systematic review: The role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis—Current evidence and potential clinical applications. Aliment. Pharmacol. Ther. 2014, 40, 409–421. [Google Scholar] [CrossRef]
- Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillère, R.; Hannani, D.; Enot, D.P.; Pfirschke, C.; Engblom, C.; Pittet, M.J.; et al. The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science 2013, 342, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Ling, Z.; Yang, Z.; Kiela, P.R.; Wang, T.; Wang, C.; Cao, L.; Geng, F.; Shen, M.; Ran, X.; et al. Gut Microbial Dysbiosis May Predict Diarrhea and Fatigue in Patients Undergoing Pelvic Cancer Radiotherapy: A Pilot Study. PLoS ONE 2015, 10, e0126312. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Liu, Y.; Tang, H.; Qiu, M.; Li, C.; Duan, C.; Wang, C.; Yang, J.; Zhou, X. Glabridin Prevents Doxorubicin-Induced Cardiotoxicity through Gut Microbiota Modulation and Colonic Macrophage Polarization in Mice. Front. Pharmacol. 2019, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Walter, J.; Segal, E.; Spector, T.D. Role of the gut microbiota in nutrition and health. BMJ 2018, 361, k2179. [Google Scholar] [CrossRef]
- Bottacini, F.; Ventura, M.; van Sinderen, D.; Motherway, M.O. Diversity, ecology and intestinal function of bifidobacteria. Microb. Cell Factories 2014, 13 (Suppl. S1), S4. [Google Scholar] [CrossRef]
- Sears, C.L. A dynamic partnership: Celebrating our gut flora. Anaerobe 2005, 11, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Podschun, R.; Ullmann, U. Klebsiella spp. as Nosocomial Pathogens: Epidemiology, Taxonomy, Typing Methods, and Pathogenicity Factors. Clin. Microbiol. Rev. 1998, 11, 589–603. [Google Scholar] [CrossRef]
- Shin, N.-R.; Whon, T.W.; Bae, J.-W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef]
- Belzer, C.; de Vos, W.M. Microbes inside—From diversity to function: The case of Akkermansia. ISME J. 2012, 6, 1449–1458. [Google Scholar] [CrossRef]
- Wescombe, A.P.; Heng, N.C.; Burton, J.P.; Chilcott, C.N.; Tagg, J.R. Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Futur. Microbiol. 2009, 4, 819–835. [Google Scholar] [CrossRef]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and Their Role as Members of the Human Gut Microbiota. Front. Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef]
- Ríos-Covián, D.; Ruas-Madiedo, P.; Margolles, A.; Gueimonde, M.; De Los Reyes-Gavilán, C.G.; Salazar, N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front. Microbiol. 2016, 7, 185. [Google Scholar] [CrossRef]
- Martin, R.M.; Bachman, M.A. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front. Cell Infect. Microbiol. 2018, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Vance, J.E. Phospholipid Synthesis and Transport in Mammalian Cells. Traffic 2015, 16, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Meikle, P.J.; Christopher, M.J. Lipidomics is providing new insight into the metabolic syndrome and its sequelae. Curr. Opin. Infect. Dis. 2011, 22, 210–215. [Google Scholar] [CrossRef]
- Balla, T. Phosphoinositides: Tiny Lipids with Giant Impact on Cell Regulation. Physiol. Rev. 2013, 93, 1019–1137. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Cantabrana, C.; Delgado, S.; Ruiz, L.; Ruas-Madiedo, P.; Sánchez, B.; Margolles, A. Bifidobacteria and Their Health-Promoting Effects. Microbiol. Spectr. 2017, 5, 73–98. [Google Scholar] [CrossRef]
- Shen, S.; Lim, G.; You, Z.; Ding, W.; Huang, P.; Ran, C.; Doheny, J.; Caravan, P.; Tate, S.; Hu, K.; et al. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat. Neurosci. 2017, 20, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Wuri, J.; Zheng, Z.; Li, W.; Yan, T. Microbiota modulate Doxorubicin induced cardiotoxicity. Eur. J. Pharm. Sci. 2021, 166, 105977. [Google Scholar] [CrossRef]
- Meng, C.; Bai, C.; Brown, T.D.; Hood, L.E.; Tian, Q. Human Gut Microbiota and Gastrointestinal Cancer. Genom. Proteom. Bioinform. 2018, 16, 33–49. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Ahn, J.; Sampson, J.N.; Shi, J.; Yu, G.; Xiong, X.; Hayes, R.B.; Goedert, J.J. Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS ONE 2016, 11, e0152126. [Google Scholar] [CrossRef] [PubMed]
Inclusion Criteria | Exclusion Criteria |
---|---|
Diagnosed with non-small cell lung cancer | Has a gastrointestinal disease such as inflammatory bowel disease or a gastrointestinal tumor |
Will receive anticancer drugs | Also has a cardiovascular disease such as coronary heart disease, valvular disease, or arrhythmia |
Can undergo regular follow-ups for 4 cycles | Also has acute kidney injury or chronic kidney disease |
Written informed consent provided | Also has hepatic insufficiency |
Participating in another drug intervention study |
Parameter | |
---|---|
Age, years, median (Q1–Q3) | 65 (45–75) |
Male, N (%) | 46 (76.7) |
Pathological type | |
Squamous cell carcinoma, N (%) | 34 (56.7) |
Adenocarcinoma, N (%) | 25 (41.7) |
Large cell carcinoma, N (%) | 1 (1.6) |
Stage | |
Stage III, N (%) | 28 (46.7) |
Stage IV, N (%) | 32 (53.3) |
Treatment regimen | |
Platinum-based chemotherapy, N (%) | 26 (43.3) |
Platinum-based chemotherapy combined with immune checkpoint inhibitors, N (%) | 25 (41.7) |
Platinum-based chemotherapy combined with vascular endothelial growth factor inhibitors (VEGF inhibitors), N (%) | 9 (15.0) |
Taxane-based chemotherapy, N (%) | 38 (63.3) |
Therapeutic effect | |
Partial response (PR), N (%) | 44 (73.3) |
Stable disease (SD), N (%) | 11 (18.3) |
Progressive disease (PD), N (%) | 5 (8.4) |
Parameter | Before | After | p-value † |
Complete blood count | |||
WBC (×109/L) | 7.09 ± 2.46 | 5.98 ± 2.26 | 0.002 ** |
Hb (g/L) | 125.31 ± 22.69 | 114.81 ± 13.83 | 0.003 ** |
PLT (×109/L) | 233.94 ± 95.52 | 207.05 ± 53.32 | 0.042 * |
Liver function | |||
ALT (U/L) | 62.34 ± 31.96 | 63.18 ± 31.18 | 0.863 |
AST (U/L) | 80.55 ± 33.29 | 80.74 ± 32.18 | 0.975 |
TBIL (μmol/L) | 9.91 ± 4.65 | 11.93 ± 5.71 | 0.040 * |
ALB (g/L) | 41.84 ± 7.73 | 38.48 ± 6.25 | 0.012 * |
GGT (U/L) | 29.76 ± 12.1 | 35.50 ± 15.75 | 0.018 * |
ALP (U/L) | 58.26 ± 28.48 | 60.35 ± 25.40 | 0.677 |
Renal function | |||
BUN (mmol/L) | 4.92 ± 1.62 | 5.09 ± 1.51 | 0.595 |
Cr (mmol/L) | 76.74 ± 21.93 | 73.95 ± 21.15 | 0.498 |
Markers of myocardial injury | |||
NT-proBNP (pg/mL) | 225.48 ± 97.33 | 275.11 ± 115.623 | 0.015 * |
cTnT (pg/mL) | 0.008 ± 0.039 | 0.011 ± 0.006 | 0.011 * |
CK-MB (U/L) | 17.69 ± 4.45 | 19.23 ± 4.54 | 0.094 |
Echocardiography | |||
Left atrial antero-posterior diameter (mm) | 33.29 ± 6.15 | 33.75 ± 6.30 | 0.530 |
Left atrial area (cm2) | 18.20 ± 5.69 | 19.02 ± 5.81 | 0.183 |
Right atrial area (cm2) | 13.87 ± 2.50 | 14.27 ± 2.49 | 0.147 |
Interventricular septal thickness (mm) | 7.55 ± 1.28 | 7.62 ± 1.20 | 0.808 |
Left ventricular posterior wall thickness (mm) | 7.74 ± 0.53 | 7.79 ± 0.55 | 0.455 |
Left ventricular end-diastolic diameter (mm) | 48.83 ± 6.51 | 50.26 ± 6.32 | 0.040 * |
Left ventricular end-systolic diameter (mm) | 28.94 ± 4.62 | 30.11 ± 4.61 | 0.017 * |
Right ventricular antero-posterior diameter (mm) | 20.40 ± 2.25 | 20.62 ± 2.22 | 0.406 |
Left atrial pressure (mmHg) | 7.23 ± 2.49 | 7.84 ± 2.81 | 0.039 * |
LVEF (%) | 70.87 ± 4.25 | 70.63 ± 4.07 | 0.583 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Z.; Liu, Y.; Zhu, D.; Cao, B.; Cui, M. Changes in Intestinal Flora and Serum Metabolites Pre- and Post-Antitumor Drug Therapy in Patients with Non-Small Cell Lung Cancer. J. Clin. Med. 2024, 13, 529. https://doi.org/10.3390/jcm13020529
Tian Z, Liu Y, Zhu D, Cao B, Cui M. Changes in Intestinal Flora and Serum Metabolites Pre- and Post-Antitumor Drug Therapy in Patients with Non-Small Cell Lung Cancer. Journal of Clinical Medicine. 2024; 13(2):529. https://doi.org/10.3390/jcm13020529
Chicago/Turabian StyleTian, Zhenyu, Yan’e Liu, Dan Zhu, Baoshan Cao, and Ming Cui. 2024. "Changes in Intestinal Flora and Serum Metabolites Pre- and Post-Antitumor Drug Therapy in Patients with Non-Small Cell Lung Cancer" Journal of Clinical Medicine 13, no. 2: 529. https://doi.org/10.3390/jcm13020529
APA StyleTian, Z., Liu, Y., Zhu, D., Cao, B., & Cui, M. (2024). Changes in Intestinal Flora and Serum Metabolites Pre- and Post-Antitumor Drug Therapy in Patients with Non-Small Cell Lung Cancer. Journal of Clinical Medicine, 13(2), 529. https://doi.org/10.3390/jcm13020529