Inhaled Pulmonary Vasodilators for the Treatment of Right Ventricular Failure in Cardio-Thoracic Surgery: Is One Better than the Others?
Abstract
:1. Background
2. Inhaled Pulmonary Vasodilators: Mechanisms of Actions and Fields of Application
2.1. Inhaled PGI2
2.2. Inhaled Nitric Oxide (iNO)
2.2.1. iNO in LVAD
2.2.2. iNO in Lung Transplantation
2.2.3. iNO in Heart Transplantation
3. Inhaled Milrinone
4. Inhaled Sildenafil
5. Inhaled Levosimendan
6. INO vs. iPGI2: Which One to Use?
6.1. I-Iloprost vs. iNO
6.2. iEPO vs. iNO
7. Discussion and Conclusions
- -
- when RVF occurs in the setting of normal PVR, inotropic therapy should be sufficient to improve RV output.
- -
- when RVF occurs in the setting of elevated PVR or the patient has evidence of a high RV afterload (TPG > 12 mm Hg), inhaled pulmonary vasodilators would be the preferred initial agents. The literature seems to support their pre-emptive use in patients at high risk of developing postoperative RVF.
- -
- If severe refractory postoperative PH and overt RVF occur, IPV should be combined with complementary pharmacology (inotropes and inodilators) as salvage therapy. If unsuccessful, RV mechanical support should be established.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Taylor, D.O.; Edwards, L.B.; Boucek, M.M.; Trulock, E.P.; Aurora, P.; Christie, J.; Dobbels, F.; Rahmel, A.O.; Keck, B.; Hertz, M.; et al. Registry of the International Society for Heart and Lung Transplantation: Twenty-fourth official adult heart transplant report—2007. J. Heart Lung Transplant. 2007, 26, 769–781. [Google Scholar] [CrossRef]
- Bellavia, D.; Iacovoni, A.; Scardulla, C.; Moja, L.; Pilato, M.; Kushwaha, S.S.; Senni, M.; Clemenza, F.; Agnese, V.; Falletta, C.; et al. Prediction of right ventricular failure after ventricular assist device implant: Systematic review and meta-analysis of observational studies. Eur. J. Heart Fail. 2017, 19, 926–946. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.; Unsworth, B.; Fontana, M.; Diller, G.P.; Kyriacou, A.; Baruah, R.; Mayet, J.; Francis, M. Selective right ventricular impairment following coronary artery bypass graft surgery. Eur. J. Cardiothorac. Surg. 2010, 37, 393–398. [Google Scholar] [CrossRef]
- Jabagi, H.; Nantsios, A.; Ruel, M.; Mielniczuk, L.M.; Denault, A.Y.; Sun, L.Y. A standardized definition for right ventricular failure in cardiac surgery patients. ESC Heart Fail. 2022, 9, 1542–1552. [Google Scholar] [CrossRef] [PubMed]
- Downing, S.W.; Edmunds, L.H., Jr. Release of vasoactive substances during cardiopulmonary bypass. Ann. Thorac. Surg. 1992, 54, 1236–1243. [Google Scholar] [CrossRef] [PubMed]
- Denault, A.; Deschamps, A.; Tardif, J.C.; Lambert, J.; Perrault, L. Pulmonary hypertension in cardiac surgery. Curr. Cardiol. Rev. 2010, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Price, L.C.; Wort, S.J.; Finney, S.J.; Marino, P.S.; Brett, S.J. Pulmonary vascular and right ventricular dysfunction in adult critical care: Current and emerging options for management: A systematic literature review. Crit. Care 2010, 14, R169. [Google Scholar] [CrossRef]
- Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.; Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2022, 43, 3618–3731. [Google Scholar] [CrossRef]
- Douschan, P.; Kovacs, G.; Avian, A.; Foris, V.; Gruber, F.; Olschewski, A.; Olschewski, H. Mild Elevation of Pulmonary Arterial Pressure as a Predictor of Mortality. Am. J. Respir. Crit. Care Med. 2018, 197, 509–516. [Google Scholar] [CrossRef]
- Kolte, D.; Lakshmanan, S.; Jankowich, M.D.; Brittain, E.L.; Maron, B.A.; Choudhary, G. Mild Pulmonary Hypertension Is Associated With Increased Mortality: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2018, 7, e009729. [Google Scholar] [CrossRef]
- Mandras, S.; Kovacs, G.; Olschewski, H.; Broderick, M.; Nelsen, A.; Shen, E.; Champion, H. Combination Therapy in Pulmonary Arterial Hypertension-Targeting the Nitric Oxide and Prostacyclin Pathways. J. Cardiovasc. Pharmacol. Ther. 2021, 26, 453–462. [Google Scholar] [CrossRef]
- Liu, K.; Wang, H.; Yu, S.J.; Tu, G.W.; Luo, Z. Inhaled pulmonary vasodilators: A narrative review. Ann. Transl. Med. 2021, 9, 597. [Google Scholar] [CrossRef]
- Hawn, J.M.; Bauer, S.R.; Wanek, M.R.; Li, M.; Wang, X.; Duggal, A.; Torbic, H. Effectiveness, Safety, and Economic Comparison of Inhaled Epoprostenol Brands, Flolan and Veletri, in Acute Respiratory Distress Syndrome. Ann. Pharmacother. 2020, 54, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.C.; Dubosky, M.N.; Fiorino, K.A.; Quintana, V.; Kaplan, C.A.; Vines, D.L. The Effect of Nebulizer Position on Aerosolized Epoprostenol Delivery in an Adult Lung Model. Respir. Care 2017, 62, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Harnois, L.J.; Markos, B.; Roberts, K.M.; Homoud, S.A.; Liu, J.; Mirza, S.; Vines, D. Epoprostenol Delivered via High Flow Nasal Cannula for ICU Subjects with Severe Hypoxemia Comorbid with Pulmonary Hypertension or Right Heart Dysfunction. Pharmaceutics 2019, 11, 281. [Google Scholar] [CrossRef]
- Tepper, J.; Pfeiffer, J.; Bujold, K.; Fink, J.B.; Malcolmson, R.; Sullivan, D.; Authier, S.; Entcheva-Dimitrov, P.; Clark, A. Novel Toxicology Program to Support the Development of Inhaled VentaProst. Int. J. Toxicol. 2020, 39, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Olschewski, H.; Simonneau, G.; Galiè, N.; Higenbottam, T.; Naeije, R.; Rubin, L.J.; Nikkho, S.; Speich, R.; Hoeper, M.M.; Behr, J.; et al. Inhaled Iloprost for Severe Pulmonary Hypertension. N. Engl. J. Med. 2002, 347, 322–329. [Google Scholar] [CrossRef]
- Li, J.H.; Zhang, H.D.; Wang, Z.Z.; Lu, Q.Q.; Li, D.; Lian, T.Y.; Lv, Z.C.; Jiang, X.; Wu, Y.; Ye, J.; et al. Acute Iloprost Inhalation Improves Right Ventricle Function in Pulmonary Artery Hypertension: A Cardiac Magnetic Resonance Study. Front. Pharmacol. 2019, 21, 1550. [Google Scholar] [CrossRef]
- Kuang, H.; Li, Q.; Yi, Q.; Lu, T. The Efficacy and Safety of Aerosolized Iloprost in Pulmonary Arterial Hypertension: A Systematic Review and Meta-Analysis. Am. J. Cardiovasc. Drugs 2019, 19, 393–401. [Google Scholar] [CrossRef]
- Rex, S.; Schaelte, G.; Metzelder, S.; Flier, S.; de Waal, E.E.; Autschbach, R.; Rossaint, R.; Buhre, W. Inhaled iloprost to control pulmonary artery hypertension in patients undergoing mitral valve surgery: A prospective, randomized-controlled trial. Acta Anaesthesiol. Scand. 2008, 52, 65–72. [Google Scholar] [CrossRef]
- Theodoraki, K.; Tsiapras, D.; Tsourelis, L.; Zarkalis, D.; Sfirakis, P.; Kapetanakis, E.; Alivizatos, P.; Antoniou, T. Inhaled iloprost in eight heart transplant recipients presenting with post-bypass acute right ventricular dysfunction. Acta Anaesthesiol. Scand. 2006, 50, 1213–1217. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Arroyo, J.; Sakagami, M.; Syed, A.A.; Farkas, L.; Van Tassell, B.; Kraskauskas, D.; Mizuno, S.; Mizuno, S.; Abbate, A.; Bogaard, H.J.; et al. Iloprost reverses established fibrosis in experimental right ventricular failure. Eur. Respir. J. 2015, 45, 449–462. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, V.V.; Oudiz, R.J.; Frost, A.; Tapson, V.F.; Murali, S.; Channick, R.N.; Badesch, D.B.; Barst, R.J.; Hsu, H.H.; Rubin, L.J. Randomized study of adding inhaled iloprost to existing bosentan in pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med. 2006, 174, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Skoro-Sajer, N. Optimal use of treprostinil in pulmonary arterial hypertension: A guide to the correct use of different formulations. Drugs 2012, 72, 2351–2363. [Google Scholar] [CrossRef] [PubMed]
- American Academy of Pediatrics. Committee on Fetus and Newborn. Use of inhaled nitric oxide. Pediatrics 2000, 106 Pt 1, 344–345. [Google Scholar] [CrossRef]
- Tobin, M.J. Principles and practice of mechanical ventilation. Shock 1996, 5, 77. [Google Scholar] [CrossRef]
- Morrell, E.D.; Tsai, B.M.; Crisostomo, P.R.; Hammoud, Z.T.; Meldrum, D.R. Experimental therapies for hypoxia-induced pulmonary hypertension during acute lung injury. Shock 2006, 25, 214–226. [Google Scholar] [CrossRef]
- Lee, J.W.; Gonzalez, R.F.; Chapin, C.J.; Busch, J.; Fineman, J.R.; Gutierrez, J.A. Nitric oxide decreases surfactant protein gene expression in primary cultures of type II pneumocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 2005, 288, L950–L957. [Google Scholar] [CrossRef] [PubMed]
- Atz, A.M.; Adatia, I.; Wessel, D.L. Rebound pulmonary hypertension after inhalation of nitric oxide. Ann. Thorac. Surg. 1996, 62, 1759–1764. [Google Scholar] [CrossRef]
- Christenson, J.; Lavoie, A.; O’Connor, M.; Bhorade, S.; Pohlman, A.; Hall, J.B. The incidence and pathogenesis of cardiopulmonary deterioration after abrupt withdrawal of inhaled nitric oxide. Am. J. Respir. Crit. Care Med. 2000, 161, 1443–1449. [Google Scholar] [CrossRef]
- Sitbon, O.; Brenot, F.; Denjean, A.; Bergeron, A.; Parent, F.; Azarian, R.; Herve, P.; Raffestin, B.; Simonneau, G. Inhaled nitric oxide as a screening vasodilator agent in primary pulmonary hypertension. A dose-response study and comparison with prostacyclin. Am. J. Respir. Crit. Care Med. 1995, 151 Pt 1, 384–389. [Google Scholar] [CrossRef]
- Benedetto, M.; Romano, R.; Baca, G.; Sarridou, D.; Fischer, A.; Simon, A.; Marczin, N. Inhaled nitric oxide in cardiac surgery: Evidence or tradition? Nitric Oxide 2015, 49, 67–79. [Google Scholar] [CrossRef]
- Sparrow, C.T.; LaRue, S.J.; Schilling, J.D. Intersection of Pulmonary Hypertension and Right Ventricular Dysfunction in Patients on Left Ventricular Assist Device Support: Is There a Role for Pulmonary Vasodilators? Circ. Heart Fail. 2018, 11, e004255. [Google Scholar] [CrossRef] [PubMed]
- Sabato, L.A.; Salerno, D.M.; Moretz, J.D.; Jennings, D.L. Inhaled Pulmonary Vasodilator Therapy for Management of Right Ventricular Dysfunction after Left Ventricular Assist Device Placement and Cardiac Transplantation. Pharmacotherapy 2017, 37, 944–955. [Google Scholar] [CrossRef]
- Argenziano, M.; Choudhri, A.F.; Moazami, N.; Rose, E.A.; Smith, C.R.; Levin, H.R.; Smerling, A.J.; Oz, M.C. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann. Thorac. Surg. 1998, 65, 340–345. [Google Scholar] [CrossRef]
- Potapov, E.; Meyer, D.; Swaminathan, M.; Ramsay, M.; El Banayosy, A.; Diehl, C.; Veynovich, B.; Gregoric, I.D.; Kukucka, M.; Gromann, T.W.; et al. Inhaled nitric oxide after left ventricular assist device implantation: A prospective, randomized, double-blind, multicenter, placebo-controlled trial. J. Heart Lung Transplant. 2011, 30, 870–878. [Google Scholar] [CrossRef] [PubMed]
- Strüber, M.; Harringer, W.; Ernst, M.; Morschheuser, T.; Hein, M.; Bund, M.; Haverich, A. Inhaled nitric oxide as a prophylactic treatment against reperfusion injury of the lung. Thorac. Cardiovasc. Surg. 1999, 47, 179–182. [Google Scholar] [CrossRef]
- Perrin, G.; Roch, A.; Michelet, P.; Reynaud-Gaubert, M.; Thomas, P.; Doddoli, C.; Auffray, J.P. Inhaled nitric oxide does not prevent pulmonary edema after lung transplantation measured by lung water content: A randomized clinical study. Chest 2006, 129, 1024–1030. [Google Scholar] [CrossRef] [PubMed]
- Botha, P.; Jeyakanthan, M.; Rao, J.N.; Fisher, A.J.; Prabhu, M.; Dark, J.H.; Clark, S.C. Inhaled nitric oxide for modulation of ischemia-reperfusion injury in lung transplantation. J. Heart Lung Transplant. 2007, 26, 1199–1205. [Google Scholar] [CrossRef]
- Meade, M.O.; Granton, J.T.; Matte-Martyn, A.; McRae, K.; Weaver, B.; Cripps, P.; Keshavjee, S.H. Toronto Lung Transplant Program. A randomized trial of inhaled nitric oxide to prevent ischemia-reperfusion injury after lung transplantation. Am. J. Respir. Crit. Care Med. 2003, 167, 1483–1489. [Google Scholar] [CrossRef] [PubMed]
- Abman, S.H.; Hansmann, G.; Archer, S.L.; Ivy, D.D.; Adatia, I.; Chung, W.K.; Hanna, B.D.; Rosenzweig, E.B.; Raj, J.U.; Cornfield, D.; et al. Pediatric Pulmonary Hypertension: Guidelines From the American Heart Association and American Thoracic Society. Circulation 2015, 132, 2037–2099. [Google Scholar] [CrossRef]
- Rea, R.S.; Ansani, N.T.; Seybert, A.L. Role of inhaled nitric oxide in adult heart or lung transplant recipients. Ann. Pharmacother. 2005, 39, 913–917. [Google Scholar] [CrossRef]
- Denault, A.Y.; Bussières, J.S.; Arellano, R.; Finegan, B.; Gavra, P.; Haddad, F.; Nguyen, A.Q.N.; Varin, F.; Fortier, A.; Levesque, S.; et al. A multicentre randomized-controlled trial of inhaled milrinone in high-risk cardiac surgical patients. Can. J. Anaesth. 2016, 63, 1140–1153. [Google Scholar] [CrossRef] [PubMed]
- Haglund, N.A.; Burdorf, A.; Jones, T.; Shostrom, V.; Um, J.; Ryan, T.; Shillcutt, S.; Fischer, P.; Cox, Z.L.; Raichlin, E.; et al. Inhaled Milrinone After Left Ventricular Assist Device Implantation. J. Card. Fail. 2015, 21, 792–797. [Google Scholar] [CrossRef] [PubMed]
- Rashid, J.; Patel, B.; Nozik-Grayck, E.; McMurtry, I.F.; Stenmark, K.R.; Ahsan, F. Inhaled sildenafil as an alternative to oral sildenafil in the treatment of pulmonary arterial hypertension (PAH). J. Control. Release 2017, 250, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Elhassan, A.; Essandoh, M. Inhaled Levosimendan for Pulmonary Hypertension Treatment During Cardiac Surgery: A Novel Application to Avoid Systemic Hypotension. J. Cardiothorac. Vasc. Anesth. 2019, 33, 1169–1170. [Google Scholar] [CrossRef] [PubMed]
- Winterhalter, M.; Simon, A.; Fischer, S.; Rahe-Meyer, N.; Chamtzidou, N.; Hecker, H.; Zuk, J.; Piepenbrock, S.; Strüber, M. Comparison of inhaled iloprost and nitric oxide in patients with pulmonary hypertension during weaning from cardiopulmonary bypass in cardiac surgery: A prospective randomized trial. J. Cardiothorac. Vasc. Anesth. 2008, 22, 406–413. [Google Scholar] [CrossRef]
- Preston, I.R.; Sagliani, K.D.; Roberts, K.E.; Shah, A.M.; Desouza, S.A.; Howard, W.; Brennan, J.; Hill, N.S. Comparison of acute hemodynamic effects of inhaled nitric oxide and inhaled epoprostenol in patients with pulmonary hypertension. Pulm. Circ. 2013, 3, 68–73. [Google Scholar] [CrossRef]
- Khan, T.A.; Schnickel, G.; Ross, D.; Bastani, S.; Laks, H.; Esmailian, F.; Marelli, D.; Beygui, R.; Shemin, R.; Watson, L.; et al. A prospective, randomized, crossover pilot study of inhaled nitric oxide versus inhaled prostacyclin in heart transplant and lung transplant recipients. J. Thorac. Cardiovasc. Surg. 2009, 138, 1417–1424. [Google Scholar] [CrossRef]
- McGinn, K.; Reichert, M. A Comparison of Inhaled Nitric Oxide Versus Inhaled Epoprostenol for Acute Pulmonary Hypertension Following Cardiac Surgery. Ann. Pharmacother. 2016, 50, 22–26. [Google Scholar] [CrossRef]
- Fattouch, K.; Sbraga, F.; Bianco, G.; Speziale, G.; Gucciardo, M.; Sampognaro, R.; Ruvolo, G. Inhaled prostacyclin, nitric oxide, and nitroprusside in pulmonary hypertension after mitral valve replacement. J. Card. Surg. 2005, 20, 171–176. [Google Scholar] [CrossRef]
- Ghadimi, K.; Cappiello, J.L.; Wright, M.C.; Levy, J.H.; Bryner, B.S.; DeVore, A.D.; Schroder, J.N.; Patel, C.B.; Rajagopal, S.; Shah, S.H.; et al. Inhaled Epoprostenol Compared with Nitric Oxide for Right Ventricular Support After Major Cardiac Surgery. Circulation 2023, 148, 1316–1329. [Google Scholar] [CrossRef] [PubMed]
- Ghadimi, K.; Cappiello, J.; Cooter-Wright, M.; Haney, J.C.; Reynolds, J.M.; Bottiger, B.A.; Klapper, J.A.; Levy, J.H.; Hartwig, M.G.; INSPIRE-FLO Investigators. Inhaled Pulmonary Vasodilator Therapy in Adult Lung Transplant: A Randomized Clinical Trial. JAMA Surg. 2022, 157, e215856. [Google Scholar] [CrossRef]
- Antoniou, T.; Prokakis, C.; Athanasopoulos, G.; Thanopoulos, A.; Rellia, P.; Zarkalis, D.; Kogerakis, N.; Koletsis, E.N.; Bairaktaris, A. Inhaled nitric oxide plus iloprost in the setting of post-left assist device right heart dysfunction. Ann. Thorac. Surg. 2012, 94, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Rocca, G.D.; Coccia, C.; Pompei, L.; Ruberto, F.; Venuta, F.; De Giacomo, T.; Pietropaoli, P. Hemodynamic and oxygenation changes of combined therapy with inhaled nitric oxide and inhaled aerosolized prostacyclin. J. Cardiothorac. Vasc. Anesth. 2001, 15, 224–227. [Google Scholar] [CrossRef] [PubMed]
- Hill, L.L.; Pearl, R.G. Combined inhaled nitric oxide and inhaled prostacyclin during experimental chronic pulmonary hypertension. J. Appl. Physiol. 1999, 86, 1160–1164. [Google Scholar] [CrossRef] [PubMed]
- Fattouch, K.; Sbraga, F.; Sampognaro, R.; Bianco, G.; Gucciardo, M.; Lavalle, C.; Vizza, C.D.; Fedele, F.; Ruvolo, G. Treatment of pulmonary hypertension in patients undergoing cardiac surgery with cardiopulmonary bypass: A randomized, prospective, double-blind study. J. Cardiovasc. Med. 2006, 7, 119–123. [Google Scholar] [CrossRef]
- Kemming, G.; Kisch-Wedel, H.; Flondor, M.; Hofstetter, C.; Kreyling, W.; Thein, E.; Meisner, F.; Bruhn, S.; Zwissler, B. Improved ventricular function during inhalation of PGI (2) aerosol partly relies on enhanced myocardial contractility. Eur. Surg. Res. 2005, 37, 9–17. [Google Scholar] [CrossRef]
- Holmboe, S.; Andersen, A.; Vildbrad, M.D.; Nielsen, J.M.; Ringgaard, S.; Nielsen-Kudsk, J.E. Iloprost improves ventricular function in the hypertrophic and functionally impaired right heart by direct stimulation. Pulm. Circ. 2013, 3, 870–879. [Google Scholar] [CrossRef]
- Haché, M.; Denault, A.; Bélisle, S.; Robitaille, D.; Couture, P.; Sheridan, P.; Pellerin, M.; Babin, D.; Noël, N.; Guertin, M.C.; et al. Inhaled epoprostenol (prostacyclin) and pulmonary hypertension before cardiac surgery. J. Thorac. Cardiovasc. Surg. 2003, 125, 642–649. [Google Scholar] [CrossRef]
- Holmboe, S.; Andersen, A.; Jensen, R.V.; Kimose, H.H.; Ilkjær, L.B.; Shen, L.; Clapp, L.H.; Nielsen-Kudsk, J.E. Prostacyclins have no direct inotropic effect on isolated atrial strips from the normal and pressure-overloaded human right heart. Pulm. Circ. 2017, 7, 339–347. [Google Scholar] [CrossRef]
- Moffat, M.P.; Ferrier, G.R.; Karmazyn, M. A possible role for endogenous prostaglandins in the electrophysiological effects of acetylstrophanthidin on isolated canine ventricular tissues. Circ. Res. 1986, 58, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Kisch-Wedel, H.; Kemming, G.; Meisner, F.; Flondor, M.; Bruhn, S.; Koehler, C.; Messmer, K.; Zwissler, B. Effect of prostaglandin I2 analogues on left ventricular diastolic function in vivo. Eur. J. Pharmacol. 2005, 517, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Austin, D.R.; Lai, Y.; Mueller, A.; Shelton, K.T. Inhaled Pulmonary Vasodilator Utilization and Cost Following Initiation of a Protocol in a Quaternary Academic Heart Center Intensive Care Unit. J. Cardiothorac. Vasc. Anesth. 2022, 36, 1343–1349. [Google Scholar] [CrossRef] [PubMed]
- Henke, V.G. Inhaled Selective Pulmonary Vasodilator Use After Cardiac Surgery: Broader Insights From a Study Describing Significant Changes in Drug Utilization and Savings After Implementation of a Guideline Favoring Inhaled Epoprostenol. J. Cardiothorac. Vasc. Anesth. 2022, 36, 1350–1353. [Google Scholar] [CrossRef]
- Hoeper, M.M.; Eschenbruch, C.; Zink-Wohlfart, C.; Schulz, A.; Markworth, S.; Pohl, K.; Fabel, H. Effects of inhaled nitric oxide and aerosolized iloprost in pulmonary veno-occlusive disease. Respir. Med. 1999, 93, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Chen, L.K.; Teng, T.H.; Chou, W.H. Comparison of inhaled nitric oxide with aerosolized prostacyclin or analogues for the postoperative management of pulmonary hypertension: A systematic review and meta-analysis. Ann. Med. 2020, 52, 120–130. [Google Scholar] [CrossRef]
- Augoustides, J.G.; Ochroch, E.A. Pro: Inhaled prostaglandin as a pulmonary vasodilator instead of nitric oxide. J. Cardiothorac. Vasc. Anesth. 2005, 19, 400–402. [Google Scholar] [CrossRef]
- Rao, V.; Ghadimi, K.; Keeyapaj, W.; Parsons, C.A.; Cheung, A.T. Inhaled Nitric Oxide (iNO) and Inhaled Epoprostenol (iPGI2) Use in Cardiothoracic Surgical Patients: Is there Sufficient Evidence for Evidence-Based Recommendations? J. Cardiothorac. Vasc. Anesth. 2018, 32, 1452–1457. [Google Scholar] [CrossRef]
- Holman, W. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). What Have We Learned and What Will we Learn? Circulation 2012, 126, 1401–1406. [Google Scholar] [CrossRef]
- INTERMACS. Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). Appendix A—Adverse Event Definitions; UAB School of Medicine: Birmingham, AL, USA, 2018. [Google Scholar]
- Benza, R.L.; Seeger, W.; McLaughlin, V.V.; Channick, R.N.; Voswinckel, R.; Tapson, V.F.; Robbins, I.M.; Olschewski, H.; Rubin, L.J. Long-term effects of inhaled treprostinil in patients with pulmonary arterial hypertension: The Treprostinil Sodium Inhalation Used in the Management of Pulmonary Arterial Hypertension (TRIUMPH) study open-label extension. J. Heart Lung Transplant. 2011, 30, 1327–1333. [Google Scholar] [CrossRef] [PubMed]
Inhaled Pulmonary Vasodilator | Indications | Administration | Dose | Onset of Action | Half Life | Cost | Outcomes | Adverse Effects |
---|---|---|---|---|---|---|---|---|
I–Epoprostenol | Vasoreactivity testing * Hypertensive crisis * | Aerosolized solution | 50 g/via mask for 10 min or hours to day | 30–60 s | 3-5 min | $36/ administration | Decreased mPAP Decreased PVR Increased oxygenation | Withdrawal Headache Jawache Nausea Diarrhea |
I–Iloprost | Group 1 PAH Improves exercise tolerance and avoids deterioration | Aerosolized solution | 2.5 or 5 g/dose 6–9 times/day or continuous nebulisation | 30–60 s | 30 min | $70,000/year | Decreased mPAP Increased 6MWT tolerance | Cough Wheeze |
I–Treprostinil | Group 1 PAH Improve exercise tolerance and avoids deterioration | Puffs | 3–9 puffs 4 times/die | 60 min | 3–4 h | $100,000/years | Increased 6MWT tolerance | Cough Headache Sorethroat Irritation Nausea Diarrhea Syncope |
i-Nitrix Oxide | PPHN Vasoreactivity testing * Hypertensive crisis * | Gas | 5–40 ppm for hours to days | 5–10 s | 10–20 s | $100–400/h | Decreased mPAP Decreased PVR Improved oxygenation Increased 6 MWT | Possible withdrawal Increased methemoglobin |
Authors | Year | Type of Study | Patients’ Population | Group | Administration Dose | Timing | Size | Overall Results |
---|---|---|---|---|---|---|---|---|
Winterhalter et al. [47] | 2008 | Prospective, randomized, single centre | Cardiac surgery (HT and LVAD excluded) | iNO | 20 ppm | immediately after weaning from CPB | 23 | i-Iloprost more effective in decrease PVR, mPAP and increase CO |
i-iloprost | 20 mcg/2 mL (aerosolized) | 4–6 min after weaning from CPB | 22 | |||||
Preston et al. [48] | 2013 | Prospective, randomized, single centre | IPH and HFpEF patients | IPH (PAWP < 15 mmHg) | iNO 20 ppm and iEPO 50 ng/kg/min | during right catheterization * | 12 | Exposure of HFpEF patients to inhaled vasodilators worsens the PAWP without hemodynamic benefit |
HFpEF (PAWP 16–25 mmHg) | iNO 20 ppm and iEPO 50 ng/kg/min | 7 | ||||||
Khan A et al. [49] | 2009 | Prospective, randomized, single centre | HT and LT | iNO | 20 ppm | immediately after weaning from CPB if pulmonary PH, refractory hypoxemia, or RVF | 14 | No differences in decrease mPAP, PVC or increase CI or venous oxygen saturation |
iEPO | 20 ng/mL 8 mL/h | 11 | ||||||
McGinn et al. [50] | 2016 | Retrospective, single-centre, observational | Cardiac surgery ** | iNO | 10–40 ppm | after weaning from CPB if acute PH | 49 | No difference in decrease mPAP, significant cost saving with iEPO |
iEPO | 20 ng/mL 8–12 mL/h | 49 | ||||||
Fattouch et al. [51] | 2005 | Prospective randomized, single center, double-blind | Mitral valve surgery (MVS with elevated PVR) | iNO | 20 ppm | immediately after admission in ICU | 22 | No difference in decreased mPAP, PVR and increased CO. PGI2 free from toxic effect and easier to administer |
iPGI2 | 10 ng/mL rates of 0.3 mL/h | 18 | ||||||
Ghadimi et al. [52] for the INSPIRE FLOW Investigation | 2023 | Prospective randomized duoble blind, single center | HT and LVAD | iNO | 20 ppm | 15 min before weaning from CPB | 111 | No difference in RVF development |
iEPO | 50 ng/kg/m | 120 | ||||||
Ghadimi et al. [53] for the INPIRE FLOW Investigation | 2023 | Prospective randomized duoble blind, single center | LT | iNO | 20 ppm | 15 min before reperfusion of the first lung | 108 | No difference in PGD development |
iEPO | 50 ng/kg/min | 112 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benedetto, M.; Piccone, G.; Gottin, L.; Castelli, A.; Baiocchi, M. Inhaled Pulmonary Vasodilators for the Treatment of Right Ventricular Failure in Cardio-Thoracic Surgery: Is One Better than the Others? J. Clin. Med. 2024, 13, 564. https://doi.org/10.3390/jcm13020564
Benedetto M, Piccone G, Gottin L, Castelli A, Baiocchi M. Inhaled Pulmonary Vasodilators for the Treatment of Right Ventricular Failure in Cardio-Thoracic Surgery: Is One Better than the Others? Journal of Clinical Medicine. 2024; 13(2):564. https://doi.org/10.3390/jcm13020564
Chicago/Turabian StyleBenedetto, Maria, Giulia Piccone, Leonardo Gottin, Andrea Castelli, and Massimo Baiocchi. 2024. "Inhaled Pulmonary Vasodilators for the Treatment of Right Ventricular Failure in Cardio-Thoracic Surgery: Is One Better than the Others?" Journal of Clinical Medicine 13, no. 2: 564. https://doi.org/10.3390/jcm13020564
APA StyleBenedetto, M., Piccone, G., Gottin, L., Castelli, A., & Baiocchi, M. (2024). Inhaled Pulmonary Vasodilators for the Treatment of Right Ventricular Failure in Cardio-Thoracic Surgery: Is One Better than the Others? Journal of Clinical Medicine, 13(2), 564. https://doi.org/10.3390/jcm13020564