Bronchial Progenitor Cells in Obstructive and Neoplastic Lung Disease: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population
2.2. Respiratory Function Tests
2.3. Biopsies and Methods of Investigation
2.4. Statistical Analysis
3. Results
3.1. Patients
3.2. p63 Expression
3.3. Vimentin Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vestbo, J.; Lange, P. Natural history of COPD: Focusing on change in FEV1. Respirology 2016, 21, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Hogg, J.C.; Chu, F. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004, 350, 2645–2653. [Google Scholar] [CrossRef] [PubMed]
- McDonough, J.E.; Yuan, R.; Suzuki, M.; Seyednejad, N.; Elliott, W.M.; Sanchez, P.G.; Wright, A.C.; Gefter, W.B.; Litzky, L.; Coxson, H.O. Small-airway obstruction and emphysema in chronic obstructive pulmonary disease. N. Engl. J. Med. 2011, 365, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Regan, E.A.; Lynch, D.A. Clinical and Radiologic Disease in Smokers with Normal Spirometry. JAMA Intern. Med. 2015, 175, 1539. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, P.G.; Barr, R.G. Clinical Significance of Symptoms in Smokers with Preserved Pulmonary Function. N. Engl. J. Med. 2016, 374, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Kirby, M.; Tanabe, N. COLD Collaborative Research Group and the Canadian Respiratory Research Network. Total Airway Count on Computed Tomography and the Risk of COPD Progression: Findings from a Population-based Study. Am. J Respir. Crit. Care Med. 2018, 197, 56–65. [Google Scholar] [CrossRef] [PubMed]
- Shaykhiev, R.; Crystal, R.G. Early events in the pathogenesis of chronic obstructive pulmonary disease: Smoking-induced reprogramming of airway epithelial basal progenitor cells. Ann. Am. Thorac. Soc. 2014, 11, S252–S258. [Google Scholar] [CrossRef]
- Staudt, M.R.; Buro-Auriemma, L.J. Airway basal stem/progenitor cells have diminished capacity to regenerate airway epithelium in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 2014, 190, 955–958. [Google Scholar] [CrossRef]
- Jeffery, P.K. Remodeling and Inflammation of Bronchi in Asthma and Chronic Obstructive Pulmonary Disease. Proc. Am. Thorac. Soc. 2004, 1, 176–183. [Google Scholar] [CrossRef]
- Willis, B.C.; duBois, R.M. Epithelial Origin of Myofibroblasts during Fibrosis in the Lung. Proc. Am. Thorac. Soc. 2006, 3, 377–382. [Google Scholar] [CrossRef]
- Kalluri, R.; Weinberg, R.A. The basics of epithelial–mesenchymal transition. J. Clin. Investig. 2009, 119, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Zeisberg, M.; Neilson, E.G. Biomarkers for epithelial–mesenchymal transitions. J. Clin. Investig. 2009, 119, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R. EMT: When epithelial cells decide to become mesenchymal-like cells. J. Clin. Investig. 2009, 119, 1417–1419. [Google Scholar] [CrossRef]
- Ward, C.; Forrest, I.A. Phenotype of airway epithelial cells suggests epithelial to mesenchymal cell transition in clinically stable lung transplant recipients. Thorax 2005, 60, 865–871. [Google Scholar] [CrossRef]
- Puchelle, E.; Zahm, J.M. Airway epithelial repair, regeneration, and remodeling after injury in chronic obstructive pulmonary disease. Proc. Am. Thorac. Soc. 2006, 3, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Gohy, S.T.; Hupin, C. Imprinting of the COPD airway epithelium for dedifferentiation and mesenchymal transition. Eur. Respir. J. 2015, 45, 1258–1272. [Google Scholar] [CrossRef] [PubMed]
- Yoh, K.; Prywes, R. Pathway Regulation of p63, a Director of Epithelial Cell Fate. Front. Endocrinol. 2015, 6, 51. [Google Scholar] [CrossRef]
- Levine, A. p53, the cellular gatekeeper for growth and division. Cell 1997, 88, 323–331. [Google Scholar] [CrossRef]
- Yang, A.; McKeon, F. p63 and p73: p53 mimics, menaces and more. Nat. Rev. Mol. Cell Biol. 2000, 1, 199–207. [Google Scholar] [CrossRef]
- Senoo, M.; Pinto, F. p63 is essential for the proliferative potential of stem cells in stratified epithelia. Cell 2007, 129, 523–536. [Google Scholar] [CrossRef]
- Miller, M.R.; Boggs, P.B. Standardisation of spirometry. Eur. Respir. J 2005, 26, 319–338. [Google Scholar] [CrossRef]
- Crystal, R.G.; Randell, S.H. Airway Epithelial Cells, Current Concepts and Challenges. Proc. Am. Thorac. Soc. 2008, 5, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, N.F.; Schamberger, A.C. Detection and quantification of epithelial progenitor cell populations in human healthy and IPF lungs. Respir. Res. 2016, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Crosby, L.M.; Waters, C.M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2010, 298, L715–L731. [Google Scholar] [CrossRef] [PubMed]
- Jonsdottir, H.R.; Arason, A.J. Basal cells of the human airways acquire mesenchymal traits in idiopathic pulmonary fibrosis and in culture. Lab. Investig. 2015, 95, 1418–1428. [Google Scholar] [CrossRef] [PubMed]
- Otsuki, Y.; Saya, H. Prospects for new lung cancer treatments that target EMT signaling. Dev. Dyn. 2018, 247, 462–472. [Google Scholar] [CrossRef] [PubMed]
- Jolly, M.K.; Ward, C. Epithelial-mesenchymal transition, a spectrum of states: Role in lung development, homeostasis, and disease. Dev. Dyn. 2018, 247, 346–358. [Google Scholar] [CrossRef]
- Su, X.; Wu, W.; Zhu, Z.; Lin, X.; Zeng, Y. The effect of epithelial-mesenchymal transitions in COPD induced by cigarette smoke: An update. Respir. Res. 2022, 23, 225. [Google Scholar] [CrossRef]
- Usman, S.; Waseem, N.H.; Nguyen, T.K.N.; Mohsin, S.; Jamal, A.; Teh, M.-T.; Waseem, A. Vimentin Is at the Heart of Epithelial Mesenchymal Transition (EMT) Mediated Metastasis. Cancers 2021, 13, 4985. [Google Scholar] [CrossRef]
- Shen, H.; Sun, Y.; Zhang, S.; Jiang, J.; Dong, X.; Jia, Y.; Shen, J.; Guan, Y.; Zhang, L.; Li, F.; et al. Cigarette smoke-induced alveolar epithelial-mesenchymal transition is mediated by Rac1 activation. Biochim. Biophys Acta 2014, 1840, 1838–1849. [Google Scholar] [CrossRef]
- Pan, K.; Lu, J.; Song, Y. Artesunate ameliorates cigarette smoke-induced airway remodelling via PPAR-γ/TGF-β1/Smad2/3 signalling pathway. Respir Res. 2021, 22, 91. [Google Scholar] [CrossRef] [PubMed]
- Knight, D.A.; Holgate, S.T. The airway epithelium: Structural and functional properties in health and disease. Respirology 2003, 8, 432–446. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, S.D.; Malkinson, A.M. Clara cell: Progenitor for the bronchiolar epithelium. Int. J. Biochem. Cell Biol. 2010, 42, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Rock, J.R.; Onaitis, M.W.; Rawlins, E.L.; Lu, Y.; Clark, C.P.; Xue, Y.; Randell, S.H.; Hogan, B.L.M. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl. Acad. Sci. USA 2009, 106, 12771–12775. [Google Scholar] [CrossRef] [PubMed]
- Rock, J.R.; Hogan, B.L.M. Branching takes nerve. Science 2010, 329, 1610–1611. [Google Scholar] [CrossRef]
- Bostancieri, N.; Bakir, K.; Kul, S.; Eralp, A.; Kayalar, O.; Konyalilar, N.; Rajabi, H.; Yuncu, M.; Yildrim, A.Ö.; Bayram, H. The effect of multiple outgrowths from bronchial tissue explants on progenitor/stem cell number in primary bronchial epithelial cell cultures from smokers and patients with COPD. Front. Med. 2023, 10, 1118715. [Google Scholar] [CrossRef]
- Chu, S.; Ma, L.; Wu, Y.; Zhao, X.; Xiao, B.; Pan, Q. C-EBPβ mediates in cigarette/IL-17A-induced bronchial epithelial-mesenchymal transition in COPD mice. BMC Pulm. Med. 2021, 21, 376. [Google Scholar] [CrossRef]
- Moreno-Valladares, M.; Moncho-Amor, V.; Silva, T.M.; Garcés, J.P.; Álvarez-Satta, M.; Matheu, A. KRT5+/p63+ Stem Cells Undergo Senescence in the Human Lung with Pathological Aging. Aging Dis. 2022, 14, 1013–1027. [Google Scholar] [CrossRef]
Enrolled Subjects N = 25 | |
---|---|
Age (mean ± SD), years | 73.6 ± 8.1 |
Sex M/F | 15/10 |
Non-smokers/Former smokers | 5/20 |
FEV1% predicted (mean ± SD) | 78.3 ± 19 |
COPD with E | 16/25 (64%) |
COPD without E | 5/25 (20%) |
Lung cancer | 17/25 (68%) |
Squamous cell carcinomas | 6 |
Adenocarcinomas | 6 |
Small cell carcinomas | 3 |
NSCLC | 2 |
P63+ Bronchial Cells | ||
---|---|---|
Mean | p | |
COPD | 36.79 ± 6.64 | 0.68 |
Non-COPD | 35.24 ± 8.96 | |
Biopsies from the trachea or main bronchi | 36.69 ± 6.72 | 0.04 |
Biopsies from lobar or segmental bronchi | 34.00 ± 6.72 |
Vimentin+ Bronchial Cells | ||
---|---|---|
Mean | p | |
COPD | 21.54 ± 10.56 | 0.96 |
Non-COPD | 21.76 ± 5.34 | |
Biopsies from the trachea or main bronchi | 17.32 ± 6.95 | 0.04 |
Biopsies from lobar or segmental bronchi | 24.62 ± 10.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragnoli, B.; Fusco, F.; Pignatti, P.; Cena, T.; Valente, G.; Malerba, M. Bronchial Progenitor Cells in Obstructive and Neoplastic Lung Disease: A Pilot Study. J. Clin. Med. 2024, 13, 609. https://doi.org/10.3390/jcm13020609
Ragnoli B, Fusco F, Pignatti P, Cena T, Valente G, Malerba M. Bronchial Progenitor Cells in Obstructive and Neoplastic Lung Disease: A Pilot Study. Journal of Clinical Medicine. 2024; 13(2):609. https://doi.org/10.3390/jcm13020609
Chicago/Turabian StyleRagnoli, Beatrice, Federica Fusco, Patrizia Pignatti, Tiziana Cena, Guido Valente, and Mario Malerba. 2024. "Bronchial Progenitor Cells in Obstructive and Neoplastic Lung Disease: A Pilot Study" Journal of Clinical Medicine 13, no. 2: 609. https://doi.org/10.3390/jcm13020609
APA StyleRagnoli, B., Fusco, F., Pignatti, P., Cena, T., Valente, G., & Malerba, M. (2024). Bronchial Progenitor Cells in Obstructive and Neoplastic Lung Disease: A Pilot Study. Journal of Clinical Medicine, 13(2), 609. https://doi.org/10.3390/jcm13020609