Multidrug-Resistant Urinary Tract Infections in Pregnant Patients and Their Association with Adverse Pregnancy Outcomes—A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; E Wool, E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 464–473. [Google Scholar] [CrossRef]
- Espinoza, N.; Rojas, J.; Pollett, S.; Meza, R.; Patiño, L.; Leiva, M.; Camiña, M.; Bernal, M.; Reynolds, N.D.; Maves, R.; et al. Validation of the T86I mutation in the gyrA gene as a highly reliable real time PCR target to detect Fluoroquinolone-resistant Campylobacter jejuni. BMC Infect. Dis. 2020, 20, 518. [Google Scholar] [CrossRef] [PubMed]
- Ajileye, A.; Alvarez, N.; Merker, M.; Walker, T.M.; Akter, S.; Brown, K.; Moradigaravand, D.; Schön, T.; Andres, S.; Schleusener, V.; et al. Some Synonymous and Nonsynonymous gyrA Mutations in Mycobacterium tuberculosis Lead to Systematic False-Positive Fluoroquinolone Resistance Results with the Hain GenoType MTBDRsl Assays. Antimicrob. Agents Chemother. 2017, 61, e02169-16. [Google Scholar] [CrossRef]
- Lerminiaux, N.A.; Cameron, A.D.S. Horizontal transfer of antibiotic resistance genes in clinical environments. Can. J. Microbiol. 2019, 65, 34–44. [Google Scholar] [CrossRef]
- McInnes, R.S.; McCallum, G.E.; Lamberte, L.E.; van Schaik, W. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr. Opin. Microbiol. 2020, 53, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol. 2018, 26, 220–228. [Google Scholar] [CrossRef]
- Labrie, S.J.; Samson, J.E.; Moineau, S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 2010, 8, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Lorusso, A.B.; Carrara, J.A.; Barroso, C.D.N.; Tuon, F.F.; Faoro, H. Role of Efflux Pumps on Antimicrobial Resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022, 23, 15779. [Google Scholar] [CrossRef] [PubMed]
- Chetri, S.; Bhowmik, D.; Paul, D.; Pandey, P.; Chanda, D.D.; Chakravarty, A.; Bora, D.; Bhattacharjee, A. AcrAB-TolC efflux pump system plays a role in carbapenem non-susceptibility in Escherichia coli. BMC Microbiol. 2019, 19, 210. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, N.; Perumal, G.; Doble, M. Bacterial resistance in biofilm-associated bacteria. Future Microbiol. 2015, 10, 1743–1750. [Google Scholar] [CrossRef] [PubMed]
- Ansaldi, Y.; Martinez de Tejada Weber, B. Urinary tract infections in pregnancy. Clin. Microbiol. Infect. 2023, 29, 1249–1253. [Google Scholar] [CrossRef] [PubMed]
- Radu, V.D.; Vasilache, I.A.; Costache, R.C.; Scripcariu, I.S.; Nemescu, D.; Carauleanu, A.; Nechifor, V.; Groza, V.; Onofrei, P.; Boiculese, L.; et al. Pregnancy Outcomes in a Cohort of Patients Who Underwent Double-J Ureteric Stenting-A Single Center Experience. Medicina 2022, 58, 619. [Google Scholar] [CrossRef]
- Radu, V.D.; Vicoveanu, P.; Cărăuleanu, A.; Adam, A.M.; Melinte-Popescu, A.S.; Adam, G.; Onofrei, P.; Socolov, D.; Vasilache, I.A.; Harabor, A.; et al. Pregnancy Outcomes in Patients with Urosepsis and Uncomplicated Urinary Tract Infections-A Retrospective Study. Medicina 2023, 59, 2129. [Google Scholar] [CrossRef]
- Radu, V.D.; Costache, R.C.; Onofrei, P.; Antohi, L.; Bobeica, R.L.; Linga, I.; Tanase-Vasilache, I.; Ristescu, A.I.; Murgu, A.M.; Miftode, I.L.; et al. Factors Associated with Increased Risk of Urosepsis During Pregnancy and Treatment Outcomes, in a Urology Clinic. Medicina 2023, 59, 1972. [Google Scholar] [CrossRef]
- Gordijn, S.J.; Beune, I.M.; Thilaganathan, B.; Papageorghiou, A.; Baschat, A.A.; Baker, P.N.; Silver, R.M.; Wynia, K.; Ganzevoort, W. Consensus definition of fetal growth restriction: A Delphi procedure. Ultrasound Obstet. Gynecol. 2016, 48, 333–339. [Google Scholar] [CrossRef] [PubMed]
- De Luca, D.; van Kaam, A.H.; Tingay, D.G.; Courtney, S.E.; Danhaive, O.; Carnielli, V.P.; Zimmermann, L.J.; Kneyber, M.C.J.; Tissieres, P.; Brierley, J.; et al. The Montreux definition of neonatal ARDS: Biological and clinical background behind the description of a new entity. Lancet Respir. Med. 2017, 5, 657–666. [Google Scholar] [CrossRef]
- World Health Organization. The WHO AWaRe (Access, Watch, Reserve) Antibiotic Book; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Asmat, U.; Mumtaz, M.Z.; Malik, A. Rising prevalence of multidrug-resistant uropathogenic bacteria from urinary tract infections in pregnant women. J. Taibah Univ. Med. Sci. 2021, 16, 102–111. [Google Scholar] [CrossRef]
- Gessese, Y.A.; Damessa, D.L.; Amare, M.M.; Bahta, Y.H.; Shifera, A.D.; Tasew, F.S.; Gebremedhin, E.Z. Urinary pathogenic bacterial profile, antibiogram of isolates and associated risk factors among pregnant women in Ambo town, Central Ethiopia: A cross-sectional study. Antimicrob. Resist. Infect. Control 2017, 6, 132. [Google Scholar] [CrossRef] [PubMed]
- Salari, N.; Khoshbakht, Y.; Hemmati, M.; Khodayari, Y.; Khaleghi, A.A.; Jafari, F.; Shohaimi, S.; Mohammadi, M. Global prevalence of urinary tract infection in pregnant mothers: A systematic review and meta-analysis. Public Health 2023, 224, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.Y.; Rocheleau, C.M.; Howley, M.M.; Chiu, S.K.; Arnold, K.E.; Ailes, E.C. Characteristics of Women with Urinary Tract Infection in Pregnancy. J. Women’s Health 2021, 30, 1556–1564. [Google Scholar] [CrossRef] [PubMed]
- Dinç, A. Prevalence of Urinary Incontinence During Pregnancy and Associated Risk Factors. Low. Urin. Tract Symptoms 2018, 10, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Liu, T.; Wu, D.; Wan, Q. Epidemiology, susceptibility, and risk factors for acquisition of MDR/XDR Gram-negative bacteria among kidney transplant recipients with urinary tract infections. Infect. Drug Resist. 2018, 11, 707–715. [Google Scholar] [CrossRef] [PubMed]
- Ormeño, M.A.; Ormeño, M.J.; Quispe, A.M.; Arias-Linares, M.A.; Linares, E.; Loza, F.; Ruiz, J.; Pons, M.J. Recurrence of Urinary Tract Infections due to Escherichia coli and Its Association with Antimicrobial Resistance. Microb. Drug Resist. 2022, 28, 185–190. [Google Scholar] [CrossRef]
- Lara-Isla, A.; Medina-Polo, J.; Alonso-Isa, M.; Benítez-Sala, R.; Sopeña-Sutil, R.; Justo-Quintas, J.; Gil-Moradillo, J.; González-Padilla, D.A.; García-Rojo, E.; Passas-Martínez, J.B.; et al. Urinary Infections in Patients with Catheters in the Upper Urinary Tract: Microbiological Study. Urol. Int. 2017, 98, 442–448. [Google Scholar] [CrossRef]
- LeFevre, M. Urinary tract infections during pregnancy. Am. Fam. Physician 2000, 61, 713–720. [Google Scholar]
- Kalinderi, K.; Delkos, D.; Kalinderis, M.; Athanasiadis, A.; Kalogiannidis, I. Urinary tract infection during pregnancy: Current concepts on a common multifaceted problem. J. Obstet. Gynaecol. 2018, 38, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Jin, Y.; Hang, H.; Yan, B. The association between urinary tract infection during pregnancy and preeclampsia: A meta-analysis. Medicine 2018, 97, e12192. [Google Scholar] [CrossRef]
- Baer, R.J.; Nidey, N.; Bandoli, G.; Chambers, B.D.; Chambers, C.D.; Feuer, S.; Karasek, D.; Oltman, S.P.; Rand, L.; Ryckman, K.K.; et al. Risk of Early Birth among Women with a Urinary Tract Infection: A Retrospective Cohort Study. AJP Rep. 2021, 11, e5–e14. [Google Scholar] [CrossRef] [PubMed]
- Byonanuwe, S.; Nzabandora, E.; Nyongozi, B.; Pius, T.; Ayebare, D.S.; Atuheire, C.; Mugizi, W.; Nduwimana, M.; Okello, M.; Fajardo, Y.; et al. Predictors of Premature Rupture of Membranes Among Pregnant Women in Rural Uganda: A Cross-Sectional Study at a Tertiary Teaching Hospital. Int. J. Reprod. Med. 2020, 2020, 1862786. [Google Scholar] [CrossRef]
- Amiri, M.; Lavasani, Z.; Norouzirad, R.; Najibpour, R.; Mohamadpour, M.; Nikpoor, A.R.; Raeisi, M.; Marzouni, H.Z. Prevalence of urinary tract infection among pregnant women and its complications in their newborns during the birth in the hospitals of Dezful city, Iran, 2012–2013. Iran. Red Crescent Med. J. 2015, 17, e26946. [Google Scholar] [CrossRef] [PubMed]
- Mazor-Dray, E.; Levy, A.; Schlaeffer, F.; Sheiner, E. Maternal urinary tract infection: Is it independently associated with adverse pregnancy outcome? J. Matern. Fetal Neonatal Med. 2009, 22, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Kayastha, B.; Tamrakar, S.R. Maternal and Perinatal Outcome of Urinary Tract Infection in Pregnancy at Dhulikhel Hospital, Kathmandu University Hospital. Kathmandu Univ. Med. J. 2022, 20, 82–86. [Google Scholar] [CrossRef]
- Chegini, Z.; Khoshbayan, A.; Vesal, S.; Moradabadi, A.; Hashemi, A.; Shariati, A. Bacteriophage therapy for inhibition of multi drug-resistant uropathogenic bacteria: A narrative review. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 30. [Google Scholar] [CrossRef] [PubMed]
- Bhargava, K.; Nath, G.; Dhameja, N.; Kumar, R.; Aseri, G.K.; Jain, N. Bacteriophage therapy for Escherichia coli-induced urinary tract infection in rats. Future Microbiol. 2023, 18, 323–334. [Google Scholar] [CrossRef]
- Maszewska, A.; Zygmunt, M.; Grzejdziak, I.; Różalski, A. Use of polyvalent bacteriophages to combat biofilm of Proteus mirabilis causing catheter-associated urinary tract infections. J. Appl. Microbiol. 2018, 125, 1253–1265. [Google Scholar] [CrossRef]
Type of Bacteria | MDR UTIs (70 Patients, Group 1) | UTIs Resistant to One Class of AB (108 Patients, Group 2) | UTIs Resistant to Two Classes of AB (102 Patients, Group 3) | Sensitive UTIs (91 Patients, Group 4) | p Value |
---|---|---|---|---|---|
Escherichia coli | 37 (43.58%) | 63 (67.25%) | 60 (63.51%) | 71 (56.6%) | 0.003 |
Enterococcus faecalis | 11 (6.60%) | 12 (16.59%) | 24 (15.67%) | 10 (13.98%) | 0.04 |
Klebsiella spp. | 11 (6.60%) | 14 (10.19%) | 6 (9.62%) | 4 (8.58%) | 0.02 |
Staphylococcus spp. | 3 (2.45%) | 4 (3.78%) | 3 (3.57%) | 3 (3.19%) | 0.96 |
Enterobacter | 1 (1.89%) | 5 (2.91%) | 3 (3.57%) | 1 (2.45%) | 0.41 |
Streptococcus spp. | 1 (1.89%) | 3 (2.32%) | 3 (3.57%) | 1 (2.45%) | 0.75 |
Pseudomonas aeruginosa | 2 (3.6%) | 0 (0%) | 0 (0%) | 0 (0%) | NA |
Acinetobacter baumanii | 2 (3.6%) | 0 (0%) | 0 (0%) | 0 (0%) | NA |
Characteristic | MDR UTIs (70 Patients, Group 1) | UTIs Resistant to one Class of AB (108 Patients, Group 2) | UTIs Resistant to Two Classes of AB (102 Patients, Group 3) | Sensitive UTIs (91 Patients, Group 4) | p Value |
---|---|---|---|---|---|
Age, years (mean ± SD) | 28.12 ± 6.32 | 29.09 ± 6.60 | 27.08 ± 6.34 | 28.26 ± 6.29 | 0.18 |
Environment (n/%) | Rural = 32 (51.6%) Urban = 45 (41.8%) | Rural = 66 (62.9%) Urban = 36 (39.1%) | Rural = 42 (43.8%) Urban = 29 (27.2%) | Rural = 58 (56.1%) Urban = 33 (34.9%) | 0.76 |
Parity (n/%) | 2.06 ± 2.08 | 1.56 ± 0.5 | 1.36 ± 0.48 | 1.27 ± 0.62 | 0.44 |
Immunosuppressive conditions (n/%) | Yes—24 (34.28%) | Yes—11 (10.18%) | Yes—8 (7.84%) | Yes—5 (5.4%) | <0.001 |
UHN (n/%) | Yes—16 (22.85%) | Yes—6 (5.55%) | Yes—7 (6.86%) | Yes—4 (4.39%) | <0.001 |
Nephrolithiasis (n/%) | Yes—7 (10%) | Yes—3 (2.77%) | Yes—4 (3.92%) | Yes—0 (0%) | 0.03 |
History of pyelonephritis or lower UTIs (n/%) | Yes—11 (15.71%) | Yes—4 (3.70%) | Yes—4 (3.92%) | Yes—0 (0%) | <0.001 |
JJ stent (n/%) | Yes—9 (12.85%) | Yes—1 (0.92%) | Yes—3 (2.94%) | Yes—0 (0%) | 0.01 |
Variables | MDR UTIs (Group 1) | p Value | UTIs Resistant to one Class of AB (Group 2) | p Value | UTIs Resistant to Two Classes of AB (Group 3) | p Value | |
---|---|---|---|---|---|---|---|
Risk Ratio, 95%CI | Risk Ratio, 95%CI | Risk Ratio, 95%CI | |||||
Adverse obstetric outcomes | Preterm birth | 2.64 (−0.27–8.42) | 0.028 | 0.26 (−0.22–0.74) | 0.28 | 1.78 (0.14–6.88) | 0.042 |
FGR/SGA | 0.33 (−0.23–0.90) | 0.25 | −0.44 (−1.05–0.96) | 0.15 | 0.23 (−0.20–0.87) | 0.22 | |
Intra-amniotic infections | 0.35 (0.07–4.04) | 0.14 | - | - | - | - | |
Premature rupture of membranes | 3.97 (0.40–9.01) | 0.03 | 0.13 (−2.07–1.42) | 0.90 | 0.56 (−1.33–1.78) | 0.93 | |
Adverse neonatal outcomes | Cesarean birth | 0.82 (−1.35–3.01) | 0.63 | 0.21 (−1.44–0.98) | 0.76 | 0.56 (−1.71–1.23) | 0.44 |
Respiratory distress | 2.17 (0.14–7.23) | <0.001 | 1.64 (0.22–4.56) | 0.006 | 1.98 (1.38–5.61) | 0.004 | |
NICU admission | 1.97 (0.32–4.51) | <0.001 | 1.02 (−0.04–3.23) | 0.05 | 1.47 (0.14–5.08) | 0.04 | |
Neonatal infections | 0.18 (−2.75–1.22) | 0.86 | - | - | - | - | |
Postoperative neonatal death | 0.15 (−2.86–1.44) | 0.76 | - | - | - | - | |
Late neonatal death | - | - | - | - | 0.09 (−2.99–0.86) | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anton, G.-I.; Gheorghe, L.; Radu, V.-D.; Scripcariu, I.-S.; Vasilache, I.-A.; Carauleanu, A.; Condriuc, I.-S.; Socolov, R.; Onofrei, P.; Pruteanu, A.-I.; et al. Multidrug-Resistant Urinary Tract Infections in Pregnant Patients and Their Association with Adverse Pregnancy Outcomes—A Retrospective Study. J. Clin. Med. 2024, 13, 6664. https://doi.org/10.3390/jcm13226664
Anton G-I, Gheorghe L, Radu V-D, Scripcariu I-S, Vasilache I-A, Carauleanu A, Condriuc I-S, Socolov R, Onofrei P, Pruteanu A-I, et al. Multidrug-Resistant Urinary Tract Infections in Pregnant Patients and Their Association with Adverse Pregnancy Outcomes—A Retrospective Study. Journal of Clinical Medicine. 2024; 13(22):6664. https://doi.org/10.3390/jcm13226664
Chicago/Turabian StyleAnton, Gabriel-Ioan, Liliana Gheorghe, Viorel-Dragos Radu, Ioana-Sadiye Scripcariu, Ingrid-Andrada Vasilache, Alexandru Carauleanu, Iustina-Solomon Condriuc, Razvan Socolov, Pavel Onofrei, Andreea-Ioana Pruteanu, and et al. 2024. "Multidrug-Resistant Urinary Tract Infections in Pregnant Patients and Their Association with Adverse Pregnancy Outcomes—A Retrospective Study" Journal of Clinical Medicine 13, no. 22: 6664. https://doi.org/10.3390/jcm13226664
APA StyleAnton, G.-I., Gheorghe, L., Radu, V.-D., Scripcariu, I.-S., Vasilache, I.-A., Carauleanu, A., Condriuc, I.-S., Socolov, R., Onofrei, P., Pruteanu, A.-I., Ursu, R.-G., Gisca, T., & Socolov, D. (2024). Multidrug-Resistant Urinary Tract Infections in Pregnant Patients and Their Association with Adverse Pregnancy Outcomes—A Retrospective Study. Journal of Clinical Medicine, 13(22), 6664. https://doi.org/10.3390/jcm13226664